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Framework: learning as optimization

Goal: optimize model complexity (for our task)

Formulation: minimize underfitting and overfitting

In particular, we want our model to generalize well without
overfitting.

We can ensure this by validating the model.
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Types of Validation (1)

hold-out validation: split data into training set and validation set

» usually: 30% as hold-out set

Original Set
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Training Testing

Problems:

» waste of dataset

» estimation of error rate may be misleading



Types of Validation (2)

cross-validation: random sub-sampling
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1Figure from Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.



Types of Validation (2)

cross-validation: random sub-sampling

L [ ] ] nme
L 0 [ | e
L 1 ] | runs

| | | run 4

Problem:

» more computationally expensive than hold-out validation

1
Figure from Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.



Variants of Cross-validation (1)

leave-p-out: use p examples as the validation set, and the rest as
training; repeat for all configurations of examples.
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Variants of Cross-validation (1)

leave-p-out: use p examples as the validation set, and the rest as
training; repeat for all configurations of examples.

Total number of examples

3
¥

Experiment 1
Experiment 2 H‘ ‘
eg., forp=1:
Experiment 3 H| ‘
< Single test example
H /
Experiment N ‘ H
Problem:

» exhaustive: We are required to train and test (’F\,’) times,
where N is the number of training examples.



Variants of Cross-validation (2)

K-fold: partition training data into K equally sized
subsamples; for each fold, use K — 1 subsamples as
training data with the last subsample as validation

k folds (all instances)
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Variants of Cross-validation (2): K-fold

Advantages:

» All observations are used for both training and validation, and
each observation is used for validation exactly once.

» non-exhaustive = more tractable than LpOCV



Variants of Cross-validation (2): K-fold

Advantages:

» All observations are used for both training and validation, and
each observation is used for validation exactly once.

» non-exhaustive — more tractable than LpOCV

Problems:

» expensive for large N, K (since we train/test K models on N
examples)
» but there are some efficient hacks to save time over the
brute-force method . ..
» can still overfit if we validate too many models!
» Solution: hold out an additional test set before doing any
model selection, and check that the best model performs well
even on the additional test set (nested cross-validation)



Practical Tips for Using K-fold Cross-validation

» Q: How many folds do we need?

> A: with larger K, ...
» error estimation tends to be more accurate

> but computation time will be greater



Practical Tips for Using K-fold Cross-validation

» Q: How many folds do we need?

> A: with larger K, ...
» error estimation tends to be more accurate

> but computation time will be greater

In practice:
> usually choose K ~ 10

» BUT larger dataset = choose smaller K



K-nearest-neighbours



K-nearest-neighbours: Definition

Training: store all training examples (perfect memory)

Test: predict value/class of an unseen (test) instance based
on closeness to stored training examples, relative to
some distance (similarity) measure

2Figure from Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective; MIT press.



Predicting with K-nearest-neighbours

» for K =1,

» predict the same value/class as the nearest instance in the
training set.

» for K > 1,

» find the K closest training examples, and either
> predict class by majority vote (in classification).

> predict value by average weighted inverse distance (in
regression).



Practical Tips for Using KNN (1)

> ties may occur in a classification problem when K > 1

» for binary classification: choose K odd to avoid ties

» for multi-class classification:

» decrease the value of K until the tie is broken

> if that doesn't work, use the class given by a 1NN classifier



Practical Tips for Using KNN (2)

» magnitude of K:
» smaller K: predictions have higher variance (less stable)

» larger K: predictions have higher bias (less true)



Aside: The Bias-variance Tradeoff

A learning procedure creates
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» the predictive distribution of
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Aside: The Bias-variance Tradeoff

Low Bias

High Bias

Low Variance

High Variance

A learning procedure creates
biased models if ...

> the predictive distribution of
the models differs greatly
from the target distribution.

A learning procedure creates
models with high variance if ...

» the models have greatly
different test predictions
(across different training
sets from the same target
distribution).



Practical Tips for Using KNN (2)

» magnitude of K:
» smaller K: predictions have higher variance (less stable)

» larger K: predictions have higher bias (less true)

Cross-validation can help here!



Practical Tips for Using KNN (3)

» the choice of distance measure affects the results!

» e.g., standard Euclidean distance:
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Practical Tips for Using KNN (3)

» the choice of distance measure affects the results!

» e.g., standard Euclidean distance:

dE(x y Z (xl I
Problems: \/

» assumes features have equal variance

» Solution: standardize / scale the feature values

» assumes features are uncorrelated

» Solution: use a more complex model (e.g., a Gaussian)

» in high-dimensional space, noisy features dominate

» Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (4)

» KNN has perfect memory, so computational complexity is an
issue

> at test time: O(N - D) computations per test point



Practical Tips for Using KNN (4)

» KNN has perfect memory, so computational complexity is an
issue

> at test time: O(N - D) computations per test point

Solutions:

» dimensionality reduction

» sample features

> project the data to a lower dimensional space
» sample training examples

» use clever data structures, like k-D trees



MATLAB Demo



Decision Trees



Decision Trees: Definition

Goal: Approximate a discrete-valued target function

Representation: a tree, of which

» each internal (non-leaf) node tests an attribute
» each branch corresponds to an attribute value
» each leaf node assigns a class

Outlook
Sunny ()vcri‘asf Rain
High Normal Strong Weak
No Yes No Yes 3

3E><amp|e from Mitchell, T (1997). Machine Learning, McGraw Hill.



Decision Trees: Induction

The ID3 algorithm:

» while training examples are not perfectly classified, do

» choose the “most informative” attribute 6 (that has not
already been used) as the decision attribute for the next node
N (greedy selection)

» for each value (discrete ) / range (continuous #), create a
new descendant of N

» sort the training examples to the descendants of N



Decision Trees: Example PlayTennis

Day Outlook Temperature Humidity Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No




After splitting the training examples first on Outlook . ..

{D1,D2, ..., D14}
[9+.5-1

Sunny Overcast Rain
{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}
[2+,3-] [4+,0-] [3+,2-]

What should we choose as the next attribute under the branch
Outlook = Sunny?



Choosing the “Most Informative” Attribute

Formulation: Maximise information gain over attributes Y.

Information Gain (PlayTennis | Y)
= H(PlayTennis) — H(PlayTennis | Y)

= Z P(PlayTennis = x) log P(PlayTennis = x)

P(Y =y)

— Z P(PlayTennis = x, Y = y) log

y P(PlayTennis = x,Y = y)



Information Gain Computation (1)

Day  Outlook  Temperature Humidity Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal Strong Yes
DS Sunny Mild High Weak No
D9 Sunny Cool Normal ‘Weak Yes

10 Rain Mild Normal Weak Yes
|D1 1 Sunny Mild Normal  Strong Yes |

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

InfoGain (Play Tennis | Humidity) = .970 — 2(0.0) — £(0.0)
= .970



Information Gain Computation (2)

Day  Outlook  Temperature Humidity Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal Strong Yes
DS Sunny Mild High Weak No
D9 Sunny Cool Normal /eak Yes

10 Rain Mild Normal Weak Yes
|D1 1 Sunny Mild Normal  Strong Yes |

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

InfoGain (Play Tennis | Temperature) = .970 — 2(0.0) — 2(1.0) — £(0.0)
= .570



Information Gain Computation (3)

Day  Outlook  Temperature Humidity Wind  PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7  Overcast Cool Normal Strong Yes
DS Sunny Mild High Weak No
D9 Sunny Cool Normal /eak Yes

10 Rain Mild Normal Weak Yes
|D1 1 Sunny Mild Normal  Strong Yes |

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

InfoGain (Play Tennis | Wind) = .970 — 2(1.0) — 2(0.918)
=.019



The Decision Tree for PlayTennis

Outlook

Sunny Overcast Rain

Humidity | g Wind
[ Humidiy Yes | Wind_|

High Normal Strong Weak

L / N

No Yes No Yes



Recall: The Bias-variance Tradeoff

Low Variance High Variance

» Where do decision trees naturally lie in this space?
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Recall: The Bias-variance Tradeoff

Low Variance High Variance

(0)(c

» Where do decision trees naturally lie in this space?

Low Bias

High Bias

> Answer: high variance

» How to fix: pruning (e.g., reduced-error pruning, rule
post-pruning)
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