
CSC411/2515 Tutorial: K-NN and Decision Tree

Mengye Ren
csc{411,2515}ta@cs.toronto.edu

September 25, 2016



Cross-validation

K -nearest-neighbours

Decision Trees



Review: Motivation for Validation

Framework: learning as optimization

Goal: optimize model complexity (for our task)

Formulation: minimize underfitting and overfitting

In particular, we want our model to generalize well without
overfitting.

We can ensure this by validating the model.



Review: Motivation for Validation

Framework: learning as optimization

Goal: optimize model complexity (for our task)

Formulation: minimize underfitting and overfitting

In particular, we want our model to generalize well without
overfitting.

We can ensure this by validating the model.



Review: Motivation for Validation

Framework: learning as optimization

Goal: optimize model complexity (for our task)

Formulation: minimize underfitting and overfitting

In particular, we want our model to generalize well without
overfitting.

We can ensure this by validating the model.



Types of Validation (1)

hold-out validation: split data into training set and validation set

I usually: 30% as hold-out set

Problems:

I waste of dataset

I estimation of error rate may be misleading



Types of Validation (1)

hold-out validation: split data into training set and validation set

I usually: 30% as hold-out set

Problems:

I waste of dataset

I estimation of error rate may be misleading



Types of Validation (2)

cross-validation: random sub-sampling

1

Problem:

I more computationally expensive than hold-out validation

1
Figure from Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.



Types of Validation (2)

cross-validation: random sub-sampling

1

Problem:

I more computationally expensive than hold-out validation

1
Figure from Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.



Variants of Cross-validation (1)

leave-p-out: use p examples as the validation set, and the rest as
training; repeat for all configurations of examples.

e.g., for p = 1:

Problem:

I exhaustive: We are required to train and test
(N
p

)
times,

where N is the number of training examples.



Variants of Cross-validation (1)

leave-p-out: use p examples as the validation set, and the rest as
training; repeat for all configurations of examples.

e.g., for p = 1:

Problem:

I exhaustive: We are required to train and test
(N
p

)
times,

where N is the number of training examples.



Variants of Cross-validation (2)

K -fold: partition training data into K equally sized
subsamples; for each fold, use K − 1 subsamples as
training data with the last subsample as validation



Variants of Cross-validation (2): K -fold

Advantages:

I All observations are used for both training and validation, and
each observation is used for validation exactly once.

I non-exhaustive =⇒ more tractable than LpOCV

Problems:

I expensive for large N, K (since we train/test K models on N
examples)

I but there are some efficient hacks to save time over the
brute-force method . . .

I can still overfit if we validate too many models!
I Solution: hold out an additional test set before doing any

model selection, and check that the best model performs well
even on the additional test set (nested cross-validation)



Variants of Cross-validation (2): K -fold

Advantages:

I All observations are used for both training and validation, and
each observation is used for validation exactly once.

I non-exhaustive =⇒ more tractable than LpOCV

Problems:

I expensive for large N, K (since we train/test K models on N
examples)

I but there are some efficient hacks to save time over the
brute-force method . . .

I can still overfit if we validate too many models!
I Solution: hold out an additional test set before doing any

model selection, and check that the best model performs well
even on the additional test set (nested cross-validation)



Practical Tips for Using K -fold Cross-validation

I Q: How many folds do we need?

I A: with larger K , . . .

I error estimation tends to be more accurate

I but computation time will be greater

In practice:

I usually choose K ≈ 10

I BUT larger dataset =⇒ choose smaller K



Practical Tips for Using K -fold Cross-validation

I Q: How many folds do we need?

I A: with larger K , . . .

I error estimation tends to be more accurate

I but computation time will be greater

In practice:

I usually choose K ≈ 10

I BUT larger dataset =⇒ choose smaller K



Cross-validation

K -nearest-neighbours

Decision Trees



K -nearest-neighbours: Definition

Training: store all training examples (perfect memory)

Test: predict value/class of an unseen (test) instance based
on closeness to stored training examples, relative to
some distance (similarity) measure

2

2
Figure from Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT press.



Predicting with K -nearest-neighbours

I for K = 1,

I predict the same value/class as the nearest instance in the
training set.

I for K > 1,

I find the K closest training examples, and either
I predict class by majority vote (in classification).

I predict value by average weighted inverse distance (in
regression).



Practical Tips for Using KNN (1)

I ties may occur in a classification problem when K > 1

I for binary classification: choose K odd to avoid ties

I for multi-class classification:

I decrease the value of K until the tie is broken

I if that doesn’t work, use the class given by a 1NN classifier



Practical Tips for Using KNN (2)

I magnitude of K :

I smaller K : predictions have higher variance (less stable)

I larger K : predictions have higher bias (less true)



Aside: The Bias-variance Tradeoff

A learning procedure creates
biased models if . . .

I the predictive distribution of
the models differs greatly
from the target distribution.

A learning procedure creates
models with high variance if . . .

I the models have greatly
different test predictions
(across different training
sets from the same target
distribution).



Aside: The Bias-variance Tradeoff

A learning procedure creates
biased models if . . .

I the predictive distribution of
the models differs greatly
from the target distribution.

A learning procedure creates
models with high variance if . . .

I the models have greatly
different test predictions
(across different training
sets from the same target
distribution).



Practical Tips for Using KNN (2)

I magnitude of K :

I smaller K : predictions have higher variance (less stable)

I larger K : predictions have higher bias (less true)

Cross-validation can help here!



Practical Tips for Using KNN (3)

I the choice of distance measure affects the results!

I e.g., standard Euclidean distance:

dE (x, y) =

√∑
i

(xi − yi )
2

Problems:

I assumes features have equal variance

I Solution: standardize / scale the feature values

I assumes features are uncorrelated

I Solution: use a more complex model (e.g., a Gaussian)

I in high-dimensional space, noisy features dominate

I Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (3)

I the choice of distance measure affects the results!

I e.g., standard Euclidean distance:

dE (x, y) =

√∑
i

(xi − yi )
2

Problems:

I assumes features have equal variance

I Solution: standardize / scale the feature values

I assumes features are uncorrelated

I Solution: use a more complex model (e.g., a Gaussian)

I in high-dimensional space, noisy features dominate

I Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (3)

I the choice of distance measure affects the results!

I e.g., standard Euclidean distance:

dE (x, y) =

√∑
i

(xi − yi )
2

Problems:

I assumes features have equal variance

I Solution: standardize / scale the feature values

I assumes features are uncorrelated

I Solution: use a more complex model (e.g., a Gaussian)

I in high-dimensional space, noisy features dominate

I Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (3)

I the choice of distance measure affects the results!

I e.g., standard Euclidean distance:

dE (x, y) =

√∑
i

(xi − yi )
2

Problems:

I assumes features have equal variance

I Solution: standardize / scale the feature values

I assumes features are uncorrelated

I Solution: use a more complex model (e.g., a Gaussian)

I in high-dimensional space, noisy features dominate

I Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (3)

I the choice of distance measure affects the results!

I e.g., standard Euclidean distance:

dE (x, y) =

√∑
i

(xi − yi )
2

Problems:

I assumes features have equal variance

I Solution: standardize / scale the feature values

I assumes features are uncorrelated

I Solution: use a more complex model (e.g., a Gaussian)

I in high-dimensional space, noisy features dominate

I Solution: apply (learn?) feature weightings



Practical Tips for Using KNN (4)

I KNN has perfect memory, so computational complexity is an
issue

I at test time: O(N · D) computations per test point

Solutions:

I dimensionality reduction

I sample features

I project the data to a lower dimensional space

I sample training examples

I use clever data structures, like k-D trees



Practical Tips for Using KNN (4)

I KNN has perfect memory, so computational complexity is an
issue

I at test time: O(N · D) computations per test point

Solutions:

I dimensionality reduction

I sample features

I project the data to a lower dimensional space

I sample training examples

I use clever data structures, like k-D trees



MATLAB Demo



Cross-validation

K -nearest-neighbours

Decision Trees



Decision Trees: Definition

Goal: Approximate a discrete-valued target function

Representation: a tree, of which

I each internal (non-leaf) node tests an attribute
I each branch corresponds to an attribute value
I each leaf node assigns a class

3

3
Example from Mitchell, T (1997). Machine Learning, McGraw Hill.



Decision Trees: Induction

The ID3 algorithm:

I while training examples are not perfectly classified, do

I choose the “most informative” attribute θ (that has not
already been used) as the decision attribute for the next node
N (greedy selection)

I for each value (discrete θ) / range (continuous θ), create a
new descendant of N

I sort the training examples to the descendants of N



Decision Trees: Example PlayTennis



After splitting the training examples first on Outlook . . .

What should we choose as the next attribute under the branch
Outlook = Sunny?



Choosing the “Most Informative” Attribute

Formulation: Maximise information gain over attributes Y .

Information Gain (PlayTennis | Y )

= H(PlayTennis)− H(PlayTennis | Y )

=
∑
x

P(PlayTennis = x) logP(PlayTennis = x)

−
∑
x ,y

P(PlayTennis = x ,Y = y) log
P(Y = y)

P(PlayTennis = x ,Y = y)



Information Gain Computation (1)

InfoGain (PlayTennis | Humidity) = .970− 3
5(0.0)− 2

5(0.0)

= .970



Information Gain Computation (2)

InfoGain (PlayTennis | Temperature) = .970− 2
5(0.0)− 2

5(1.0)− 1
5(0.0)

= .570



Information Gain Computation (3)

InfoGain (PlayTennis |Wind) = .970− 2
5(1.0)− 3

5(0.918)

= .019



The Decision Tree for PlayTennis



Recall : The Bias-variance Tradeoff

I Where do decision trees naturally lie in this space?

I Answer: high variance

I How to fix: pruning (e.g., reduced-error pruning, rule
post-pruning)



Recall : The Bias-variance Tradeoff

I Where do decision trees naturally lie in this space?

I Answer: high variance

I How to fix: pruning (e.g., reduced-error pruning, rule
post-pruning)



Recall : The Bias-variance Tradeoff

I Where do decision trees naturally lie in this space?

I Answer: high variance

I How to fix: pruning (e.g., reduced-error pruning, rule
post-pruning)


	Cross-validation
	K-nearest-neighbours
	Decision Trees

