CSC 411 Tutorial: Optimization for Machine Learning

Renjie Liao

September 19, 2016

1Based on tutorials and slides by Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang and others
Contents

- Overview
- Gradient Descent
- Convexity
Overview of Optimization
An informal definition of optimization

Minimize (or maximize) some quantity.
Applications

- Engineering: Minimize fuel consumption of an automobile
- Economics: Maximize returns on an investment
- Supply Chain Logistics: Minimize time taken to fulfill an order
- Life: Maximize happiness
More formally

Goal: find \(\theta^* = \arg\min_{\theta} f(\theta) \), (possibly subject to constraints on \(\theta \)).

- \(\theta \in \mathbb{R}^n \): optimization variable
- \(f : \mathbb{R}^n \to \mathbb{R} \): objective function

Maximizing \(f(\theta) \) is equivalent to minimizing \(-f(\theta)\), so we can treat everything as a minimization problem.
Optimization is a large area of research

The best method for solving the optimization problem depends on which assumptions we want to make:

- Is θ discrete or continuous?
- What form do constraints on θ take? (if any)
- Is f “well-behaved”? (linear, differentiable, convex, submodular, etc.)
Often in machine learning we are interested in learning the parameters θ of a model.
Goal: minimize some loss function

- For example, if we have some data (x, y), we may want to maximize $P(y|x, \theta)$.
- Equivalently, we can minimize $-\log P(y|x, \theta)$.
- We can also minimize other sorts of loss functions

log can help for numerical reasons
Gradient Descent
Gradient Descent: Motivation

From calculus, we know that the minimum of f must lie at a point where $\frac{\partial f(\theta^*)}{\partial \theta} = 0$.

- Sometimes, we can solve this equation analytically for θ.
- Most of the time, we are not so lucky and must resort to iterative methods.

Review

- Gradient: $\nabla_{\theta} f = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial \theta_2}, \ldots, \frac{\partial f}{\partial \theta_k} \right)$
Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- for $t = 1 : T$:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

The learning rate shouldn’t be too big (objective function will blow up) or too small (will take a long time to converge)
Gradient Descent with Line-Search

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- for $t = 1 : T$:
 - Finding a step size η_t such that $f(\theta_t - \eta_t \nabla \theta_{t-1}) < f(\theta_t)$
 - $\delta_t \leftarrow -\eta_t \nabla \theta_{t-1} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

Require a line-search step in each iteration.
Gradient Descent with Momentum

We can introduce a momentum coefficient $\alpha \in [0, 1)$ so that the updates have “memory”:

- Initialize θ_0 randomly
- Initialize δ_0 to the zero vector
- for $t = 1 : T$:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f + \alpha \delta_{t-1}$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$

Momentum is a nice trick that can help speed up convergence. Generally we choose α between 0.8 and 0.95, but this is problem dependent.
Outline of Gradient Descent Algorithm

Where η is the learning rate and T is the number of iterations:

- Initialize θ_0 randomly
- Do:
 - $\delta_t \leftarrow -\eta \nabla_{\theta_{t-1}} f$
 - $\theta_t \leftarrow \theta_{t-1} + \delta_t$
- Until convergence

Setting a convergence criteria.
Some convergence criteria

- Change in objective function value is close to zero:
 \[|f(\theta_{t+1}) - f(\theta_t)| < \epsilon \]
- Gradient norm is close to zero:
 \[\|\nabla_{\theta} f\| < \epsilon \]
- Validation error starts to increase (this is called early stopping)
When implementing the gradient computation for machine learning models, it’s often difficult to know if our implementation of f and ∇f is correct.

We can use finite-differences approximation to the gradient to help:

$$\frac{\partial f}{\partial \theta_i} \approx \frac{f((\theta_1, \ldots, \theta_i + \epsilon, \ldots, \theta_n)) - f((\theta_1, \ldots, \theta_i - \epsilon, \ldots, \theta_n))}{2\epsilon}$$

Why don’t we always just use the finite differences approximation?

- slow: we need to recompute f twice for each parameter in our model.
- numerical issues
Stochastic Gradient Descent

- Any iteration of a gradient descent (or quasi-Newton) method requires that we sum over the entire dataset to compute the gradient.
- SGD idea: at each iteration, sub-sample a small amount of data (even just 1 point can work) and use that to estimate the gradient.
- Each update is noisy, but very fast!
- This is the basis of optimizing ML algorithms with huge datasets (e.g., recent deep learning).
- Computing gradients using the full dataset is called batch learning, using subsets of data is called mini-batch learning.
Stochastic Gradient Descent

- The reason SGD works is because similar data yields similar gradients, so if there is enough redundancy in the data, the noise from subsampling won’t be so bad.
- SGD is very easy to implement compared to other methods, but the step sizes need to be tuned to different problems, whereas batch learning typically “just works”.
- Tip 1: divide the log-likelihood estimate by the size of your mini-batches. This makes the learning rate invariant to mini-batch size.
- Tip 2: subsample without replacement so that you visit each point on each pass through the dataset (this is known as an epoch).
Demo

- Logistic regression
Convexity
Definition of Convexity

A function f is **convex** if for any two points θ_1 and θ_2 and any $t \in [0, 1]$,

$$f(t\theta_1 + (1 - t)\theta_2) \leq tf(\theta_1) + (1 - t)f(\theta_2)$$

We can *compose* convex functions such that the resulting function is also convex:

- If f is convex, then so is αf for $\alpha \geq 0$
- If f_1 and f_2 are both convex, then so is $f_1 + f_2$
- *etc.*, see http://www.ee.ucla.edu/ee236b/lectures/functions.pdf for more
Why do we care about convexity?

▶ Any local minimum is a global minimum.
▶ This makes optimization a lot easier because we don’t have to worry about getting stuck in a local minimum.
Examples of Convex Functions

Quadratics

```
In [6]:
import matplotlib.pyplot as plt
plt.xkcd()
theta = linspace(-5, 5)
f = theta**2
plt.plot(theta, f)
```

Out[6]: [<matplotlib.lines.Line2D at 0x3ceae90>]

![Graph of a quadratic function](image)
Examples of Convex Functions

Negative logarithms

In [8]:

```python
import matplotlib.pyplot as plt
plt.xkcd()
theta = linspace(0.1, 5)
f = -np.log(theta)
plt.plot(theta, f)
```

Out[8]: [matplotlib.lines.Line2D at 0x3ef4a10]
Convexity for logistic regression

Cross-entropy objective function for logistic regression is also convex!

\[
f(\theta) = -\sum_n t^{(n)} \log p(y = 1|x^{(n)}, \theta) + (1 - t^{(n)}) \log p(y = 0|x^{(n)}, \theta)
\]

Plot of \(-\log \sigma(\theta)\)

```
In [15]:
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

theta = linspace(-5, 5)
f = -np.log(sigmoid(theta))
plt.plot(theta, f)
```

Out[15]: [<matplotlib.lines.Line2D at 0x4c453d0>]

![Plot of -\log \sigma(\theta)](image)
More on optimization

Convex Optimization by Boyd & Vandenberghe
Book available for free online at
http://www.stanford.edu/~boyd/cvxbook/

Numerical Optimization by Nocedal & Wright
Electronic version available from UofT Library