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Motivation

* Uncertainty arises through:
* Noisy measurements

* Finite size of data sets

 Ambiguity: The word bank can mean (1) a financial institution, (2) the side of a river,
or (3) tilting an airplane. Which meaning was intended, based on the words that

appear nearby?
* Limited Model Complexity
* Probability theory provides a consistent framework for the quantification
and manipulation of uncertainty

* Allows us to make optimal predictions given all the information available to
us, even though that information may be incomplete or ambiguous



Sample Space

* The sample space Q is the set of possible outcomes of an experiment.
Points w in Q are called sample outcomes, realizations, or elements.
Subsets of Q are called Events.

* Example. If we toss a coin twice then Q = {HH,HT, TH, TT}. The event
that the first toss is heads is A = {HH,HT}

* We say that events Al and A2 are disjoint (mutually exclusive) if Ai N
Aj =1}
* Example: first flip being heads and first flip being tails



Probability

* We will assign a real number P(A) to every event A, called the
probability of A.

* To qualify as a probability, P must satisfy three axioms:
e Axiom 1: P(A) > 0 for every A
e Axiom2:P(Q)=1
 Axiom 3:If A1,A2, ... are disjoint then
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Joint and Conditional Probabilities

* Joint Probability
* P(X)Y)
* Probability of Xand Y

e Conditional Probability
* P(X]Y)
* Probability of X given Y



Independent and Conditional Probabilities

* Assuming that P(B) > 0, the conditional probability of A given B:
* P(A|B)=P(AB)/P(B)
 P(AB) = P(A|B)P(B) = P(B|A)P(A)

* Product Rule

* Two events A and B are independent if
* P(AB) = P(A)P(B)

* Joint = Product of Marginals

* Two events A and B are conditionally independent given C if they are
independent after conditioning on C

* P(AB|C) =P(B|AC)P(A|C) =P(B|C)P(A]|C)



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

* These are made up values.



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

 Reworded: What percent of students passed the midterm given they
passed the final?

* P(MF) =P(M,F) / P(F)
* = .45/ .60
¢ =.75

* These are made up values.



Marginalization and Law of Total Probability

* Marginalization (Sum Rule)

plx)

Y pla.y)

* Law of Total Probability

px) = Y plz]y)-py)
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Bayes’ Rule

P(A
P(A
P(A

B) = P(AB) /P(B) (Conditional Probability)
B) = P(B|A)P(A) /P(B) (Product Rule)
B) =P(B|A)P(A) /2 P(B|A)P(A) (Law of Total Probability)

P(A) P(B|A)

P(A|B) = =5

P(B) =) P(B| A4;)P(4;)

]



Bayes’ Rule

P(A) P(B|A)
P(B)

plx|0)p(8)
plz)

P(A|B) =

plflx) =

Posterior = Likelihood * Prior

Evidence

Posterior probability oc Likelihood x Prior probability



Example

e Suppose you have tested positive for a disease; what is the
probability that you actually have the disease?

* It depends on the accuracy and sensitivity of the test, and on the
background (prior) probability of the disease.

* P(T=1|D=1) = .95 (true positive)
* P(T=1|D=0) =.10 (false positive)
 P(D=1) = .01 (prior)

* P(D=1|T=1) = ?



Example

e P(T=1|D=1) =.95 (true positive)
 P(T=1|D=0) =.10 (false positive)

 P(D=1) =.01 (prior)

Bayes’ Rule Law of Total Probability

 P(D|T) = P(T|D)P(D) / P(T)  P(T) =2 P(T|D)P(D)

= .95 * .01 /.1085 = P(T|D=1)P(D=1) + P(T| D=0)P(D=0)

=.1085
The probability that you have the disease given you tested positive is 8.7%



Random Variable

* How do we link sample spaces and events to data?

* A random variable is a mapping that assigns a real number X(w) to
each outcome w

* Example: Flip a coin ten times. Let X(w) be the number of heads in the
sequence w. If w = HHTHHTHHTT, then X(w) = 6.



Discrete vs Continuous Random Variables

 Discrete: can only take a countable number of values
* Example: number of heads
* Distribution defined by probability mass function (pmf)

* Marginalization: p(z) = Z;r(.r-y]
y

e Continuous: can take infinitely many values (real numbers)
* Example: time taken to accomplish task
* Distribution defined by probability density function (pdf)

* Marginalization:
[ ple,y) dy
i

plx)



Probability Distribution Statistics

e
* Mean: E[X] == first moment =/ rf(x)dx Univariate continuous random variable
—o0
ol
= Z i Py Univariate discrete random variable
i=1

* Variance: Var(X) = E [(X — u)]
=E [(X - E[X])’]
= E[X? — 2X E[X] 4 (E[X])?]
= E[X?] — 2E[X]E[X] + (E[X])?
=E[X’] - (E[X])"

» Nth moment = f‘j (x — )" f(x)dx



Discrete Distribution

Bernoulli Distribution

* Input: x € {0, 1}
* Parameter: u

* Example: Probability of flipping heads (x=1)
Pin) for p=0.6

0.6

Bern(z|) = p*(1 — )"~

e Mean = E[x] = u

i = = L =
L] L] L] L] L]
= [»0 L e n

 Variance = u(1 - u)




. . ) Banomual distnbubon withn =15 and p= 0.4
Discrete Distribution

Binomial Distribution o] [
% —
* Input: m = number of successes E "7
* Parameters: N = number of trials “ :|_ —l—l__
W = probability of success EEEEIEEY REERETRE

* Example: Probability of flipping heads m times out of N independent
flips with success probability u

, o N .
Eillfﬁj'i'.!|_'ﬂ'lr'. |“,:' — ( )I“J”['l - I|!I!]-,"r — T
T

* Mean = E[x] = Nu
* Variance = Nu(1 - u)



Discrete Distribution

Multinomial Distribution

* The multinomial distribution is a generalization of the binomial
distribution to k categories instead of just binary (success/fail)

* For n independent trials each of which leads to a success for exactly
one of k categories, the multinomial distribution gives the probability
of any particular combination of numbers of successes for the various
categories

* Example: Rolling a die N times



Discrete Distribution

Multinomial Distribution

* Input: m, ... m (counts)
* Parameters: N = number of trials
K=, ... L probability of success for each category, 2p=1

. N
Mult(m,. ma. ... ., mp |, N ) = Tk
|72y, T3 )|, N ) (j‘.‘!ﬂ'.‘-!:---f.'-!h') HF I

* Mean of m: N,
* Variance of m: N, (1-p,)



Continuous Distribution

Gaussian Distribution

e Aka the normal distribution
* Widely used model for the distribution of continuous variables

* In the case of a single variable x, the Gaussian distribution can be
written in the form

F 2 ] ) y 2 2 / \
Nzl o?) = ——mepd —s5@—m’t 1/

(2rear?) LA

* where pis the mean and o? is the variance




Gaussian Distribution

e Gaussians with different means and variances

10—

a3

a2

a0




Multivariate Gaussian Distribution

* For a D-dimensional vector x, the multivariate Gaussian distribution
takes the form

1 1 1 T

. reo E _ . it A ' . | B \
N(x|p, X) (27 D72 [5[1/2 exp { 5 (X —n) ¥ (x ,n}}
* where U is a D-dimensional mean vector

* > isa D x D covariance matrix
* |2| denotes the determinant of 2




Inferring Parameters

 We have data X and we assume it comes from some distribution

* How do we figure out the parameters that ‘best’ fit that distribution?
 Maximum Likelihood Estimation (MLE)

Tywre = argmax P(A

r—
48

 Maximum a Posteriori (MAP)

Tagap = argmax Pw|X)

T

See ‘Gibbs Sampling for the Uninitiated’ for a straightforward introduction to parameter
estimation: http://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf



.1.D.

 Random variables are independent and identically distributed (i.i.d.) if
they have the same probability distribution as the others and are all
mutually independent.

* Example: Coin flips are assumed to be IID



MILE for parameter estimation

* The parameters of a Gaussian distribution are the mean (
variance (0?)

(27w a2)]

, , 1 1 -
Niz\p, o) = = eXp {—ﬁ[.?' — u)”

e

* We'll estimate the parameters using MLE

1) and

* Given observations x,, . . ., X, the likelihood of those observations

for a certain p and o2 (assuming IID) is

J) J—

gy .;,
: H 1 —xy — 1)*
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MILE for parameter estimation

. - 1 1 :
N |:..'E'|||'_.!.,_;]"£:| — exp {_-}ﬂ.‘g (x — lu_}d}

(2mo2)’ &
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1 1 —(xn — 1)
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What’s the distribution’s mean
and variance?

E - = AR e e R R R L —
T




MLE for Gaussian Parameters

X —(&n —p)’
Likelihood = JL'[J'I ----- I."I-'l.”"jgjl = H o le}{ [ ;HE F ::I }

* Now we want to maximize this function wrt u

* Instead of maximizing the product, we take the log of the likelihood so
the product becomes a sum

E : —(zn — p)*
Log Likelihood = log plary, ... .&xxn|u. o’ Log —m=—xp P2

‘I... 2mo

* We can do this because log is monotonically increasing

max L(f) = max log L(#)

* Meaning



MLE for Gaussian Parameters

* Log Likelihood simplifies to:

N
Cip,o)= —%-"I. log(2 Z J“ — ’“

* Now we want to maximize this function wrt u
e How?

To see proofs for these derivations: http://www.statlect.com/normal_distribution_maximum_likelihood.htm



MLE for Gaussian Parameters

* Log Likelihood simplifies to:

il

N
Cip,o)= —%-"I.' log(2 Z J“ — ’“

* Now we want to maximize this function wrt u
* Take the derivative, set to 0, solve for u

-1 .
= — v 2 — . _ iy
=5 Z I'n =5 ;[J n — i)

To see proofs for these derivations: http://www.statlect.com/normal_distribution_maximum_likelihood.htm



Maximum Likelihood and Least Squares

e Suppose that you are presented with a al ot
sequence of data points (X, T,), ..., (X,, T.), ° /
and you are asked to find the “best fit” line YW
passing through those points. —

* In order to answer this you need to know /
precisely how to tell whether one line is
“fitter” than another

« A common measure of fitness is the squared-
error N 1

Z[ri*ﬂ () ]:

[

=1
For a good discussion of Maximum likelihood estimators and least squares see

http://people.math.gatech.edu/~ecroot/3225/maximum_likelihood.pdf



Maximum Likelihood and Least Squares

f

v(x,w) is estimating the target t

Ad o

. P o .2 . y e
Redline ylx.w)=wy+unr+wer” +...+wyr = Wi /
j —1{]

* Error/Loss/Cost/Objective function measures the squared error

Green lines f(w) _ Z[Ihﬂ _},i}:} ]2

* Least Square Regression
* Minimize L(w) wrt w



Maximum Likelihood and Least Squares

* Now we approach curve fitting from a probabilistic perspective

* We can express our uncertainty over the value of the target variable
using a probability distribution

* We assume, given the value of x, the corresponding value of t has a
Gaussian distribution with a mean equal to the value y(x,w)

p(tlz,w,5) =N (tly(z,w), 3 ")

B is the precision parameter (inverse variance)



Maximum Likelihood and Least Squares

JJ[”.!'. w,3) =N “ y(x. w), 3 l}
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Maximum Likelihood and Least Squares

* We now use the training data {x, t} to ) 1
determine the values of the unknown p(tlz,w,3) =N (tly(z, w), 77"
parameters w and B by maximum likelihood

. 4
r -
p(tix, w.6) = [ [N (taly(wn. w), 571) e
n=1
* Log Likelihood y(zo, W) JIN B Igﬂ
N . 7 o 2N N p(t|lzo, w, 5)
X, w, )= —_ T, w)—t. Y+ —1Injg— —In(27)
n p(t|x, w, 3] 5 Z]{yh W } 5 In 5 n(2m)

&y T



Maximum Likelihood and Least Squares

* Log Likelihood 1 _

N _ _ y(z, w)
; | 3 | s N N |

In p(t|x, w, 3) = -5 Z lylz,,w) —1t,}" + 5 Inf§ — —In(27) /

= YlTo, W) -t >-J IQJ
. . . . p(t|zo, w, 3)
* Maximize Log Likelihood wrt to w /
* Since last two terms, don’t depend on w,

they can be omitted. = —
* Also, scaling the log likelihood by a positive
constant B/2 does not alter the location of
the maximum with respect to w, so it can be
ignored N ..
e Result: Maximize - {w(za.w) — .}’

n=1



Maximum Likelihood and Least Squares

* MLE .
+ Maximize 3™ fy(z,,w) —1,)°
n=1

* Least Squares
* Minimize > [£? 5™

* Therefore, maximizing likelihood is equivalent, so far as determining w is
concerned, to minimizing the sum-of-squares error function

* Significance: sum-of-squares error function arises as a consequence of
maximizing likelihood under the assumption of a Gaussian noise
distribution



Questions?



