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Today

Multi-class classification with:

Least-squares regression

Logistic Regression

K-NN

Decision trees
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Discriminant Functions for K > 2 classes

First idea: Use K − 1 classifiers, each solving a two class problem of
separating point in a class Ck from points not in the class.

Known as 1 vs all or 1 vs the rest classifier

PROBLEM: More than one good answer for green region!
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Discriminant Functions for K > 2 classes

Another simple idea: Introduce K (K − 1)/2 two-way classifiers, one for each
possible pair of classes

Each point is classified according to majority vote amongst the disc. func.

Known as the 1 vs 1 classifier

PROBLEM: Two-way preferences need not be transitive
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K-Class Discriminant

We can avoid these problems by considering a single K-class discriminant
comprising K functions of the form

yk(x) = wT
k x + wk,0

and then assigning a point x to class Ck if

∀j 6= k yk(x) > yj(x)

Note that wT
k is now a vector, not the k-th coordinate

The decision boundary between class Cj and class Ck is given by
yj(x) = yk(x), and thus it’s a (D − 1) dimensional hyperplane defined as

(wk −wj)
Tx + (wk0 − wj0) = 0

What about the binary case? Is this different?

What is the shape of the overall decision boundary?
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K-Class Discriminant

The decision regions of such a discriminant are always singly connected
and convex

In Euclidean space, an object is convex if for every pair of points within the
object, every point on the straight line segment that joins the pair of points
is also within the object

Which object is convex?
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K-Class Discriminant

The decision regions of such a discriminant are always singly connected
and convex

Consider 2 points xA and xB that lie inside decision region Rk

Any convex combination x̂ of those points also will be in Rk

x̂ = λxA + (1− λ)xB
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Proof

A convex combination point, i.e., λ ∈ [0, 1]

x̂ = λxA + (1− λ)xB

From the linearity of the classifier y(x)

yk(x̂) = λyk(xA) + (1− λ)yk(xB)

Since xA and xB are in Rk , it follows that yk(xA) > yj(xA), yk(xB) > yj(xB),
∀j 6= k

Since λ and 1− λ are positive, then x̂ is inside Rk

Thus Rk is singly connected and convex
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Example
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Multi-class Classification with Linear Regression

From before we have:
yk(x) = wT

k x + wk,0

which can be rewritten as:
y(x) = W̃T x̃

where the k-th column of W̃ is [wk,0,wT
k ]T , and x̃ is [1, xT ]T

Training: How can I find the weights W̃ with the standard sum-of-squares
regression loss?

1-of-K encoding:

For multi-class problems (with K classes), instead of using t = k (target
has label k) we often use a 1-of-K encoding, i.e., a vector of K target
values containing a single 1 for the correct class and zeros elsewhere

Example: For a 4-class problem, we would write a target with class
label 2 as:

t = [0, 1, 0, 0]T
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Multi-class Classification with Linear Regression

Sum-of-least-squares loss:

`(W̃) =
N∑

n=1

||W̃T x̃(n) − t(n)||2

= ||X̃ W̃ − T||2F

where the n-th row of X̃ is [x̃(n)]T , and n-th row of T is [t(n)]T

Setting derivative wrt W̃ to 0, we get:

W̃ =
(
X̃T X̃)−1X̃TT
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Multi-class Logistic Regression

Associate a set of weights with each class, then use a normalized
exponential output

p(Ck |x) = yk(x) =
exp(zk)∑
j exp(zj)

where the activations are given by

zk = wT
k x

The function exp(zk )∑
j exp(zj )

is called a softmax function
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Multi-class Logistic Regression

The likelihood

p(T|w1, · · · ,wk) =
N∏

n=1

K∏
k=1

p(Ck |x(n))
t

(n)
k =

N∏
n=1

K∏
k=1

y
(n)
k (x(n))

t
(n)
k

with
p(Ck |x) = yk(x) =

exp(zk)∑
j exp(zj)

where n-th row of T is 1-of-K encoding of example n and

zk = wT
k x + wk0

What assumptions have I used to derive the likelihood?

Derive the loss by computing the negative log-likelihood:

E (w1, · · · ,wK ) = − log p(T|w1, · · · ,wK ) = −
N∑

n=1

K∑
k=1

t
(n)
k log[y

(n)
k (x(n))]

This is known as the cross-entropy error for multiclass classification

How do we obtain the weights?
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Training Multi-class Logistic Regression

How do we obtain the weights?

E (w1, · · · ,wK ) = − log p(T|w1, · · · ,wK ) = −
N∑

n=1

K∑
k=1

t
(n)
k log[y

(n)
k (x(n))]

Do gradient descent, where the derivatives are

∂y
(n)
j

∂z
(n)
k

= δ(k , j)y
(n)
j − y

(n)
j y

(n)
k

and

∂E

∂z
(n)
k

=
K∑
j=1

∂E

∂y
(n)
j

·
∂y

(n)
j

∂z
(n)
k

= y
(n)
k − t

(n)
k

∂E

∂wk,i
=

N∑
n=1

K∑
j=1

∂E

∂y
(n)
j

·
∂y

(n)
j

∂z
(n)
k

·
∂z

(n)
k

∂wk,i
=

N∑
n=1

(y
(n)
k − t

(n)
k ) · x (n)

i

The derivative is the error times the input
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Softmax for 2 Classes

Let’s write the probability of one of the classes

p(C1|x) = y1(x) =
exp(z1)∑
j exp(zj)

=
exp(z1)

exp(z1) + exp(z2)

I can equivalently write this as

p(C1|x) = y1(x) =
exp(z1)

exp(z1) + exp(z2)
=

1

1 + exp (−(z1 − z2))

So the logistic is just a special case that avoids using redundant parameters

Rather than having two separate set of weights for the two classes, combine
into one

z ′ = z1 − z2 = wT
1 x−wT

2 x = wTx

The over-parameterization of the softmax is because the probabilities must
add to 1.
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Multi-class K-NN

Can directly handle multi class problems
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Multi-class Decision Trees

Can directly handle multi class problems

How is this decision tree constructed?
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