CSC 411: Lecture 05: Nearest Neighbors

Rich Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto
Today

- Non-parametric models
 - distance
 - non-linear decision boundaries

Note: We will mainly use today’s method for classification, but it can also be used for regression
Classification: Oranges and Lemons

![Graph showing the distribution of heights and widths for oranges and lemons. Red circles represent oranges, and blue triangles represent lemons. The graph is labeled with axes for height (cm) and width (cm).]
Can construct simple linear decision boundary:

\[y = \text{sign}(w_0 + w_1x_1 + w_2x_2) \]
Classification is intrinsically non-linear

- It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
What is the meaning of "linear" classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer

- Linear classification means that the part that adapts is linear (just like linear regression)
 \[
 z(x) = w^T x + w_0
 \]
 with adaptive \(w, w_0 \)
What is the meaning of ”linear” classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- **Linear classification** means that the part that adapts is linear (just like linear regression)
 \[
 z(x) = w^T x + w_0
 \]
 with adaptive \(w, w_0 \)
- The adaptive part is followed by a non-linearity to make the decision
 \[
 y(x) = f(z(x))
 \]
What is the meaning of “linear” classification

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- **Linear classification** means that the part that adapts is linear (just like linear regression)
 \[z(x) = w^T x + w_0 \]
 with adaptive \(w, w_0 \)
- The adaptive part is followed by a non-linearity to make the decision
 \[y(x) = f(z(x)) \]
- What functions \(f() \) have we seen so far in class?
Classification as Induction

A scatter plot showing the relationship between height (cm) and width (cm) for oranges and lemons. The plot includes data points for each category, with oranges represented by red circles and lemons by blue triangles. A question mark is also present, indicating an unknown item to be classified.
Alternative to parametric models are non-parametric models.
Alternative to parametric models are non-parametric models

These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems)
Alternative to parametric models are non-parametric models.

These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems).

Learning amounts to simply storing training data.
Instance-based Learning

Alternative to parametric models are non-parametric models

These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems)

Learning amounts to simply storing training data

Test instances classified using similar training instances
Alternative to parametric models are non-parametric models.

These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems).

Learning amounts to simply storing training data.

Test instances classified using similar training instances.

Embodies often sensible underlying assumptions:

- Output varies smoothly with input
- Data occupies sub-space of high-dimensional input space
Nearest Neighbors

- Training example in Euclidean space: \(x \in \mathbb{R}^d \)
Nearest Neighbors

- Training example in Euclidean space: \(\mathbf{x} \in \mathbb{R}^d \)

- **Idea:** The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
Nearest Neighbors

- Training example in Euclidean space: \(x \in \mathbb{R}^d \)
- **Idea**: The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
- Distance typically defined to be Euclidean:

\[
\| x^{(a)} - x^{(b)} \|_2 = \sqrt{\sum_{j=1}^{d} (x^{(a)}_j - x^{(b)}_j)^2}
\]

Algorithm:
1. Find example \((x^*, t^*)\) (from the stored training set) closest to the test instance \(x \). That is:
 \[
 x^* = \text{argmin}_{x^i \in \text{train. set}} \text{distance}(x^i, x)
 \]
2. Output \(y = t^* \)

Note: we don't really need to compute the square root. Why?
Nearest Neighbors

- Training example in Euclidean space: \(\mathbf{x} \in \mathbb{R}^d \)
- **Idea**: The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
- Distance typically defined to be Euclidean:

\[
\| \mathbf{x}^{(a)} - \mathbf{x}^{(b)} \|_2 = \sqrt{\sum_{j=1}^{d} (x_j^{(a)} - x_j^{(b)})^2}
\]

Algorithm:

1. Find example \((\mathbf{x}^*, t^*)\) (from the stored training set) closest to the test instance \(\mathbf{x}\). That is:

\[
\mathbf{x}^* = \arg\min_{\mathbf{x}^{(i)} \in \text{train. set}} \text{distance}(\mathbf{x}^{(i)}, \mathbf{x})
\]

2. Output \(y = t^*\)
Nearest Neighbors

- Training example in Euclidean space: \(\mathbf{x} \in \mathbb{R}^d \)
- **Idea:** The value of the target function for a new query is estimated from the known value(s) of the **nearest training example(s)**
- Distance typically defined to be Euclidean:

\[
||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_{j}^{(a)} - x_{j}^{(b)})^2}
\]

Algorithm:

1. Find example \((\mathbf{x}^*, t^*)\) (from the stored training set) closest to the test instance \(\mathbf{x}\). That is:

\[
\mathbf{x}^* = \arg\min_{\mathbf{x}^{(i)} \in \text{train. set}} \text{distance}\left(\mathbf{x}^{(i)}, \mathbf{x}\right)
\]

2. Output \(y = t^*\)

- Note: we don’t really need to compute the square root. Why?
Nearest Neighbors: Decision Boundaries

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred.
Nearest Neighbors: Decision Boundaries

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred.

- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes.
Example: 2D decision boundary
Example: 3D decision boundary
Nearest Neighbors: Multi-modal Data

- Nearest Neighbor approaches can work with multi-modal data

[Slide credit: O. Veksler]
Nearest neighbors sensitive to mis-labeled data ("class noise"). Solution?
k-Nearest Neighbors

- Nearest neighbors sensitive to mis-labeled data ("class noise"). Solution?
- Smooth by having k nearest neighbors vote
k-Nearest Neighbors

Nearest neighbors sensitive to mis-labeled data ("class noise"). Solution?

Smooth by having k nearest neighbors vote

Algorithm (kNN):

1. Find k examples \(\{x^{(i)}, t^{(i)}\} \) closest to the test instance \(x \)
2. Classification output is majority class

\[
y = \arg \max_{t(z)} \sum_{r=1}^{k} \delta(t(z), t^{(r)})
\]
How do we choose k?

- Larger k may lead to better performance
- But if we set k too large we may end up looking at samples that are not neighbors (are far away from the query)
How do we choose k?

- Larger k may lead to better performance
- But if we set k too large we may end up looking at samples that are not neighbors (are far away from the query)
- We can use cross-validation to find k
How do we choose k?

- Larger k may lead to better performance
- But if we set k too large we may end up looking at samples that are not neighbors (are far away from the query)
- We can use cross-validation to find k
- Rule of thumb is $k < \sqrt{n}$, where n is the number of training examples

[Slide credit: O. Veksler]
If some attributes (coordinates of \(x \)) have larger ranges, they are treated as more important.
If some attributes (coordinates of \(\mathbf{x} \)) have larger ranges, they are treated as more important

- normalize scale
 - Simple option: Linearly scale the range of each feature to be, e.g., in range \([0,1]\)
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean \(\mu \) and variance \(\sigma^2 \) for an attribute \(x_j \) and scale: \((x_j - m)/\sigma \))
- be careful: sometimes scale matters
If some attributes (coordinates of \mathbf{x}) have larger ranges, they are treated as more important

- **normalize scale**
 - Simple option: Linearly scale the range of each feature to be, e.g., in range $[0,1]$.
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j - m)/\sigma$).

- be careful: sometimes scale matters

- **Irrelevant, correlated** attributes add noise to distance measure
If some attributes (coordinates of \(x\)) have larger ranges, they are treated as more important

- **normalize scale**
 - Simple option: Linearly scale the range of each feature to be, e.g., in range [0,1]
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean \(\mu\) and variance \(\sigma^2\) for an attribute \(x_j\) and scale: \((x_j - \mu)/\sigma\))

- be careful: sometimes scale matters

Irrelevant, correlated attributes add noise to distance measure

- eliminate some attributes
If some attributes (coordinates of x) have larger ranges, they are treated as more important

- normalize scale
 - Simple option: Linearly scale the range of each feature to be, e.g., in range $[0,1]$
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j - m)/\sigma$)
- be careful: sometimes scale matters

Irrelevant, correlated attributes add noise to distance measure

- eliminate some attributes
- or vary and possibly adapt weight of attributes
If some attributes (coordinates of \mathbf{x}) have larger ranges, they are treated as more important

- normalize scale
 - Simple option: Linearly scale the range of each feature to be, e.g., in range $[0,1]$
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j - \mu)/\sigma$)
- be careful: sometimes scale matters

- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes

- Non-metric attributes (symbols)
If some attributes (coordinates of x) have larger ranges, they are treated as more important

- normalize scale
 - Simple option: Linearly scale the range of each feature to be, e.g., in range $[0,1]$
 - Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j - m)/\sigma$)

- be careful: sometimes scale matters

- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes

- Non-metric attributes (symbols)
 - Hamming distance
Expensive at test time: To find one nearest neighbor of a query point \(\mathbf{x} \), we must compute the distance to all \(N \) training examples. Complexity: \(O(kdN) \) for \(k \)NN

- Use subset of dimensions
- Pre-sort training examples into fast data structures (e.g., kd-trees)
- Compute only an approximate distance (e.g., LSH)
- Remove redundant data (e.g., condensing)

Storage Requirements: Must store all training data

- Remove redundant data (e.g., condensing)
- Pre-sorting often increases the storage requirements

High Dimensional Data: “Curse of Dimensionality”

- Required amount of training data increases exponentially with dimension
- Computational cost also increases

[Slide credit: David Claus]
If all Voronoi neighbors have the same class, a sample is useless, remove it

[Slide credit: O. Veksler]
Example: Digit Classification

- Decent performance when lots of data

Yann LeCunn – MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: $d = 784$
 - 60,000 training samples
 - 10,000 test samples

Nearest neighbour is competitive

<table>
<thead>
<tr>
<th>Method</th>
<th>Test Error Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifier (1-layer NN)</td>
<td>12.0</td>
</tr>
<tr>
<td>K-nearest-neighbors, Euclidean</td>
<td>5.0</td>
</tr>
<tr>
<td>K-nearest-neighbors, Euclidean, deskewed</td>
<td>2.4</td>
</tr>
<tr>
<td>K-NN, Tangent Distance, 16x16</td>
<td>1.1</td>
</tr>
<tr>
<td>K-NN, shape context matching</td>
<td>0.67</td>
</tr>
<tr>
<td>1000 RBF + linear classifier</td>
<td>3.6</td>
</tr>
<tr>
<td>SVM deg 4 polynomial</td>
<td>1.1</td>
</tr>
<tr>
<td>2-layer NN, 300 hidden units</td>
<td>4.7</td>
</tr>
<tr>
<td>2-layer NN, 300 HU, [deskewing]</td>
<td>1.6</td>
</tr>
<tr>
<td>LeNet-5, [distortions]</td>
<td>0.8</td>
</tr>
<tr>
<td>Boosted LeNet-4, [distortions]</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Problem: Where (e.g., which country or GPS location) was this picture taken?

Fun Example: Where on Earth is this Photo From?

Fun Example: Where on Earth is this Photo From?

- Problem: Where (e.g., which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with GPS info (dense sampling across world)
 - Represent each image with meaningful features
 - Do kNN!

Fun Example: Where on Earth is this Photo From?

- Problem: Where (eg, which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with gps info (dense sampling across world)
 - Represent each image with meaningful features
 - Do kNN (large k better, they use $k = 120$)!

Naturally forms complex decision boundaries; adapts to data density
- Naturally **forms complex decision boundaries**; adapts to data density
- If we have lots of samples, kNN typically works well
K-NN Summary

- Naturally **forms complex decision boundaries**; adapts to data density
- If we have lots of samples, kNN typically works well
- Problems:
 - Sensitive to class noise
 - Sensitive to scales of attributes
 - Distances are less meaningful in high dimensions
 - Scales linearly with number of examples
K-NN Summary

- Naturally forms complex decision boundaries; adapts to data density
- If we have lots of samples, kNN typically works well
- Problems:
 - Sensitive to class noise
 - Sensitive to scales of attributes
 - Distances are less meaningful in high dimensions
 - Scales linearly with number of examples
- Inductive Bias: What kind of decision boundaries do we expect to find?