Today

- Administration details
- Why is machine learning so cool?
The Team I

- **Instructors:**
 - Raquel Urtasun
 - Richard Zemel

- **Email:**
 - `csc411prof@cs.toronto.edu`

- **Offices:**
 - Raquel: 290E in Pratt
 - Richard: 290D in Pratt

- **Office hours:** TBA
The Team II

- **TA’s:**
 - Siddharth Ancha
 - Azin Asgarian
 - Min Bai
 - Lluis Castrejon Subira
 - Kaustav Kundu
 - Hao-Wei Lee
 - Renjie Liao
 - Shun Liao
 - Wenjie Luo
 - David Madras
 - Seyed Parsa Mirdehghan
 - Mengye Ren
 - Geoffrey Roeder
 - Yulia Rubanova
 - Elias Tragas
 - Eleni Triantafillou
 - Shenlong Wang
 - Ayazhan Zhakhan

- **Email:**
 - csc411ta@cs.toronto.edu
Liberal wrt waiving pre-requisites

- But it is up to you to determine if you have the appropriate background

Do I have the appropriate background?

- Linear algebra: vector/matrix manipulations, properties
- Calculus: partial derivatives
- Probability: common distributions; Bayes Rule
- Statistics: mean/median/mode; maximum likelihood
- Sheldon Ross: A First Course in Probability
Course Information (Section 1)

- **Class**: Mondays at 11-1pm in AH 400
- **Instructor**: Raquel Urtasun
- **Tutorials**: Monday, 3-4pm, same classroom
- **Class Website**:
 http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

- The class will use Piazza for **announcements** and **discussions**:

- First time, sign up here:
 https://piazza.com/utoronto.ca/fall2016/csc411

- Your grade will **not depend on your participation on Piazza**. It’s just a good way for asking questions, discussing with your instructor, TAs and your peers.
Course Information (Section 2)

- **Class**: Wednesdays at 11-1pm in MS 2170
- **Instructor**: Raquel Urtasun
- **Tutorials**: Wednesday, 3-4pm, BA 1170
- **Class Website**:

 http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/
 CSC411_Fall16.html

- The class will use Piazza for **announcements** and **discussions**:

 https://piazza.com/utoronto.ca/fall2016/csc411/home

- First time, sign up here:

 https://piazza.com/utoronto.ca/fall2016/csc411/home

- Your grade will **not depend on your participation on Piazza**. It’s just a good way for asking questions, discussing with your instructor, TAs and your peers.
Course Information (Section 3)

- **Class**: Thursdays at 4-6pm in KP 108
- **Instructor**: Richard Zemel
- **Tutorials**: Thursday, 6-7pm, same class
- **Class Website**:

 http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
- The class will use Piazza for **announcements** and **discussions**:

- First time, sign up here:

- Your grade will **not depend on your participation on Piazza**. It's just a good way for asking questions, discussing with your instructor, TAs and your peers
Course Information (Section 4)

- **Class**: Fridays at 11-1pm in MS 2172
- **Instructor**: Richard Zemel
- **Tutorials**: Thursday, 3-4pm, same class
- **Class Website**:

 http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

- The class will use Piazza for **announcements** and **discussions**:

 https://piazza.com/utoronto.ca/fall2016/csc411/home

- First time, sign up here:

 https://piazza.com/utoronto.ca/fall2016/csc411/home

- Your grade will **not depend on your participation on Piazza**. It’s just a good way for asking questions, discussing with your instructor, TAs and your peers
Textbook(s)

- Christopher Bishop: "Pattern Recognition and Machine Learning", 2006
Textbook(s)

- Christopher Bishop: "Pattern Recognition and Machine Learning", 2006
- Other Textbooks:
 - Kevin Murphy: "Machine Learning: a Probabilistic Perspective"
 - David Mackay: "Information Theory, Inference, and Learning Algorithms"
Requirements (Undergrads)

- Do the readings!
Requirements (Undergrads)

- Do the **readings**!

- **Assignments:**
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper
Requirements (Undergrads)

- Do the **readings**!

- **Assignments:**
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper

- **Mid-term:**
 - One hour exam
 - Worth 20% of course mark
Requirements (Undergrads)

- Do the **readings**!

- **Assignments:**
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper

- **Mid-term:**
 - One hour exam
 - Worth 20% of course mark

- **Final:**
 - Focused on second half of course
 - Worth 25% of course mark
Requirements (Grads)

- Do the *readings*!
Requirements (Grads)

- Do the **readings**!

- **Assignments:**
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper
Requirements (Grads)

- Do the **readings**!

- **Assignments:**
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper

- **Mid-term:**
 - One hour exam
 - Worth 20% of course mark
Requirements (Grads)

- Do the readings!

- Assignments:
 - Three assignments, first two worth 15% each, last one worth 25%, for a total of 55%
 - Programming: take code and extend it
 - Derivations: pen(cil)-and-paper

- Mid-term:
 - One hour exam
 - Worth 20% of course mark

- Final:
 - Focused on second half of course
 - Worth 25% of course mark
More on Assignments

- **Collaboration** on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.
Collaboration on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.

The schedule of assignments is included in the syllabus. Assignments are due at the beginning of class/tutorial on the due date.
More on Assignments

- **Collaboration** on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.

- The **schedule** of assignments is included in the syllabus. Assignments are due at the beginning of class/tutorial on the due date.

- Assignments handed in **late** but before 5 pm of that day will be penalized by 5% (i.e., total points multiplied by 0.95); a late penalty of 10% per day will be assessed thereafter.
Collaboration on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.

The schedule of assignments is included in the syllabus. Assignments are due at the beginning of class/tutorial on the due date.

Assignments handed in late but before 5 pm of that day will be penalized by 5% (i.e., total points multiplied by 0.95); a late penalty of 10% per day will be assessed thereafter.

Extensions will be granted only in special situations, and you will need a Student Medical Certificate or a written request approved by the instructor at least one week before the due date.
More on Assignments

- **Collaboration** on the assignments is not allowed. Each student is responsible for his/her own work. Discussion of assignments should be limited to clarification of the handout itself, and should not involve any sharing of pseudocode or code or simulation results. Violation of this policy is grounds for a semester grade of F, in accordance with university regulations.

- The **schedule** of assignments is included in the syllabus. Assignments are due at the beginning of class/tutorial on the due date.

- Assignments handed in **late** but before 5 pm of that day will be penalized by 5% (i.e., total points multiplied by 0.95); a late penalty of 10% per day will be assessed thereafter.

- **Extensions** will be granted only in special situations, and you will need a Student Medical Certificate or a written request approved by the instructor at least one week before the due date.

- Final assignment is a **bake-off**: competition between ML algorithms. We will give you some data for training a ML system, and you will try to develop the best method. We will then determine which system performs best on unseen test data. Grads can do own project.
Provisional Calendar (Section 1)

- Intro + Linear Regression
- Linear Classif. + Logistic Regression
- Non-parametric + Decision trees
- Multi-class + Prob. Classif I
- **Thanksgiving**
- Prob. Classif II + NNets I
- Nnet II + Clustering
- **Midterm** + Mixt. of Gaussians
- Reading Week
- PCA/Autoencoders + SVM
- Kernels + Ensemble I
- Ensemble II + RL
Provisional Calendar (Sections 2,3,4)

- Intro + Linear Regression
- Linear Classif. + Logistic Regression
- Non-parametric + Decision trees
- Multi-class + Prob. Classif I
- Prob. Classif II + NNets I
- Nnet II + Clustering
- Midterm + Mixt. of Gaussians
- PCA/Autoencoders + SVM
- Kernels + Ensemble I
- Ensemble II + RL
What is Machine Learning?

- How can we solve a specific problem?

 As computer scientists we write a program that encodes a set of rules that are useful to solve the problem.

 In many cases it is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image.

 Learning systems are not directly programmed to solve a problem, instead they develop their own program based on:

 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem

 Different than standard CS:

 - Want to implement unknown function, only have access e.g., to sample input-output pairs (training examples)

 Learning simply means incorporating information from the training examples.
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem

Figure: How can we make a robot cook?
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we **write a program** that encodes a set of rules that are useful to solve the problem
 - In many cases is **very difficult to specify those rules**, e.g., given a picture determine whether there is a cat in the image

Zemel, Urtasun, Fidler (UofT)
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we write a program that encodes a set of rules that are useful to solve the problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem

- Different than standard CS:
 - Want to implement unknown function, only have access e.g., to sample input-output pairs (training examples)
What is Machine Learning?

- How can we solve a specific problem?
 - As computer scientists we **write a program** that encodes a set of rules that are useful to solve the problem.
 - In many cases is **very difficult to specify those rules**, e.g., given a picture determine whether there is a cat in the image.

- Learning systems are not directly programmed to solve a problem, instead **develop own program** based on:
 - **Examples** of how they should behave
 - From **trial-and-error** experience trying to solve the problem

- Different than standard CS:
 - Want to implement unknown function, only have access e.g., to sample input-output pairs (training examples)

- Learning simply means incorporating information from the training examples into the system
Tasks that requires machine learning: What makes a 2?
Tasks that benefits from machine learning: cooking!

Robots learn to cook by watching YouTube

When it comes to learning how to cook, it turns out that robots may not be so different from humans after all... or are they?

When it comes to teaching robots how to do things, there are some very key differences. A human knows what you mean when you say "I need a cup". A robot needs to be taught that that means it has to turn around, go to the cupboard, open it, take out the cup, close the cupboard, turn back around, return to you, manoeuvre the cup over the bench, and release the cup.

This is one of the key parts of figuring out machine learning: How can you program a robot so that it can intuit that a plastic cup, a glass and a mug may all be classified under the general term "cup"? How can you design a robot that is able to teach itself?

One way, as researchers at the University of Maryland Institute for Advanced Computer Studies are finding out, is YouTube. More specifically, cooking tutorials on YouTube. By watching these videos, robots could be taught the complicated series of grasping and manipulation motions required for...
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit.
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
- Instead of writing a program by hand, we collect examples that specify the correct output for a given input
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
- Instead of writing a program by hand, we collect examples that specify the correct output for a given input
- A machine learning algorithm then takes these examples and produces a program that does the job
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?

- Instead of writing a program by hand, we collect examples that specify the correct output for a given input

- A machine learning algorithm then takes these examples and produces a program that does the job
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?

- Instead of writing a program by hand, we collect examples that specify the correct output for a given input

- A machine learning algorithm then takes these examples and produces a program that does the job
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
 - If we do it right, the program works for new cases as well as the ones we trained it on.
1. **Classification**: Determine which discrete category the example is
Examples of Classification

What digit is this?
Examples of Classification

Is this a dog?
Examples of Classification

what about this one?

what about this one?
Examples of Classification

Am I going to pass the exam?
Examples of Classification

Do I have diabetes?
Learning algorithms are useful in many tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
Examples of Recognizing patterns

Figure: Siri: https://www.youtube.com/watch?v=8ciagGASro0
Examples of Recognizing patterns

Figure: Photomath: https://photomath.net/
1. **Classification:** Determine which discrete category the example is
2. **Recognizing patterns:** Speech Recognition, facial identity, etc
3. **Recommender Systems:** Noisy data, commercial pay-off (e.g., Amazon, Netflix).
Examples of Recommendation systems

Despicable Me

Villainous Gru hatches a plan to steal the moon from the sky. But he has a tough time staying on task after three orphans land in his care.

Starring: Steve Carell, Jason Segel, Russell Brand
Genres: Children & Family Movies, Movies for ages 5 to 7, Movies for ages 8 to 10
This movie is: Goofy

Steve Carell, Jason Segel, Russell Brand and Kristen Wiig lend their voices to this animated box office hit.
Examples of Recommendation systems

Homeland

2013 | TV-MA | 3 Seasons

In this riveting Emmy-winning drama, a CIA agent suspects that a Marine who just returned after years in captivity has been turned into a terrorist.

Starring: Claire Danes, Mandy Patinkin, Damian Lewis
Genres: TV Shows, TV Action & Adventure, TV Dramas
This show is: Suspenseful

Claire Danes and Damian Lewis both won Emmys and Golden Globes for their performances in this intense series.
Examples of Recommendation systems

Titles related to I, Robot
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
Examples of Information Retrieval

[PDF] CSC 411 MACHINE LEARNING and DATA MINING ...
CSC 411. MACHINE LEARNING and DATA MINING. Lectures: Monday, Wednesday 12-1 (section 1), 3-4 (section 2). Lecture Room: MP 134 (section 1); Bahen ...

Professor Richard Zemel - Department of Computer Science
www.cs.toronto.edu/~zemel/
Course Offerings - Research Interests - Students & Post Docs - Contact Info

UofT Machine Learning | Course
learning.cs.toronto.edu/courses
CSC 411, Machine Learning and Data Mining (Raquel Urtasun and Richard Zemel); STA 4513, Statistical models of networks, graphs, and other relational ...

CSC 411: Machine Learning and Data Mining
www.cs.utoronto.ca/~radford/csc411.F06/
CSC 411: Machine Learning and Data Mining (Sept-Dec 2006). Note: The test on December 8 at 3pm will be held in BA B024, not the usual lecture/tutorial room.

Worth taking CSC321 before CSC411? : UofT - Reddit
Jul 11, 2014 - However, CSC411 doesn't have CSC321 as a prerequisite, and it is not even... Also, if I were to go straight for CSC411/412 without completing...
Examples of Information Retrieval

'Artificial Intelligence is as dangerous as NUCLEAR ...
www.dailymail.co.uk/...
Jul 17, 2015
Artificial intelligence has the potential to be as dangerous to mankind as nuclear weapons, a leading pioneer ...

Rise of Future Technology | Artificial Intelligence - New ...
www.youtube.com/watch?v=YUvDBGYk17Y
Dec 6, 2014 - Uploaded by Incredible Documentaries

Why You Shouldn't Fear Artificial Intelligence - YouTube
www.youtube.com/watch?v=uEWGjQ0nTm4
Jan 19, 2015 - Uploaded by DNews
Stephen Hawking and Elon Musk have warned us of the dangers of Artificial Intelligence, but is AI really ...

Artificial Intelligence - YouTube
www.youtube.com/watch?v=9TRv0cXUVQw
Aug 17, 2015 - Uploaded by The School of Life
Should we be scared of artificial intelligence and all it will bring us? Not so long as we remember to make sure ...
Examples of Information Retrieval

About 32,400 results (0.42 seconds)

Artificial Intelligence: A Modern Approach
https://books.google.ca/books?id=0136042597
Stuart Jonathan Russell, Peter Norvig - 2010 - Snippet view - More editions
The revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence.

Artificial Intelligence: A Modern Approach
https://books.google.ca/books?id=1292024208
Stuart Jonathan Russell, Peter Norvig - 2013 - No preview - More editions
In this third edition, the authors have updated the treatment of all major areas.

Artificial Intelligence: A Modern Approach
https://books.google.ca/books?id=1405824824
Stuart J. Russell, Peter Norvig, John Canny - 2005 - No preview - More editions

Artificial Intelligence for Games
https://books.google.ca/books?id=0123747317
Ian Millington, John Funge - 2009 - Preview - More editions
Creating robust artificial intelligence is one of the greatest challenges for game developers, yet the commercial success of a game is often dependent...
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
Figure: Kinect: https://www.youtube.com/watch?v=op82fDRRqSY
Computer Vision

[Gatys, Ecker, Bethge. A Neural Algorithm of Artistic Style. Arxiv'15.]
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
6. **Robotics**: perception, planning, etc
Autonomous Driving

[Images of autonomous driving cars with various companies' logos such as Google, Volkswagen, and Red Bull.]
Flying Robots

Figure: Video: https://www.youtube.com/watch?v=YQIMGV5vtd4
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
6. **Robotics**: perception, planning, etc
7. **Learning to play games**
Playing Games: Atari

Figure: Video: https://www.youtube.com/watch?v=V1eYniJ0Rnk
Playing Games: Super Mario

Figure: Video: https://www.youtube.com/watch?v=wfL4L_14U9A
Playing Games: Alpha Go
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
6. **Robotics**: perception, planning, etc
7. **Learning to play games**
8. **Recognizing anomalies**: Unusual sequences of credit card transactions, panic situation at an airport
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
6. **Robotics**: perception, planning, etc
7. **Learning to play games**
8. **Recognizing anomalies**: Unusual sequences of credit card transactions, panic situation at an airport
9. **Spam filtering, fraud detection**: The enemy adapts so we must adapt too
Learning algorithms are useful in other tasks

1. **Classification**: Determine which discrete category the example is
2. **Recognizing patterns**: Speech Recognition, facial identity, etc
3. **Recommender Systems**: Noisy data, commercial pay-off (e.g., Amazon, Netflix).
4. **Information retrieval**: Find documents or images with similar content
5. **Computer vision**: detection, segmentation, depth estimation, optical flow, etc
6. **Robotics**: perception, planning, etc
7. **Learning to play games**
8. **Recognizing anomalies**: Unusual sequences of credit card transactions, panic situation at an airport
9. **Spam filtering, fraud detection**: The enemy adapts so we must adapt too
10. **Many more!**
Can you pick out the tufas?
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - Regression: real-valued output (predicting market prices, customer rating)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?

- **Reinforcement learning**
 - Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
- **Unsupervised learning**: Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
- **Reinforcement learning**: Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?

- **Reinforcement learning**
 - Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - **Regression**: real-valued output (predicting market prices, customer rating)
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - **Regression**: real-valued output (predicting market prices, customer rating)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data

Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - **Regression**: real-valued output (predicting market prices, customer rating)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - **Regression**: real-valued output (predicting market prices, customer rating)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?
Types of learning tasks

- **Supervised**: correct output known for each training example
 - Learn to predict output when given an input vector
 - **Classification**: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - **Regression**: real-valued output (predicting market prices, customer rating)

- **Unsupervised learning**
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?

- **Reinforcement learning**
 - Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed
Data-mining: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples.
Machine Learning vs Data Mining

- **Data-mining**: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples.

- Previously used in a negative sense:
 - misguided statistical procedure of looking for all kinds of relationships in the data until finally find one.
Machine Learning vs Data Mining

- **Data-mining**: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples.

- Previously used in a negative sense
 - misguided statistical procedure of looking for all kinds of relationships in the data until finally find one

- Now lines are blurred: many ML problems involve tons of data
Data-mining: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples.

Previously used in a negative sense:
- misguided statistical procedure of looking for all kinds of relationships in the data until finally find one

Now lines are blurred: many ML problems involve tons of data.

But problems with AI flavor (e.g., recognition, robot navigation) still domain of ML.
ML uses statistical theory to build models
Machine Learning vs Statistics

- ML uses *statistical theory* to build models
- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology

Can view ML as applying computational techniques to statistical problems. But go beyond typical statistics problems, with different aims (speed vs. accuracy).
Machine Learning vs Statistics

- ML uses statistical theory to build models
- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology
- But the emphasis is very different:
 - **Good piece of statistics:** Clever proof that relatively simple estimation procedure is asymptotically unbiased.
Machine Learning vs Statistics

- ML uses **statistical theory** to build models
- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology
- But the emphasis is very different:
 - **Good piece of statistics:** Clever proof that relatively simple estimation procedure is asymptotically unbiased.
 - **Good piece of ML:** Demo that a complicated algorithm produces impressive results on a specific task.
Machine Learning vs Statistics

- ML uses **statistical theory** to build models

- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology

- But the emphasis is very different:
 - **Good piece of statistics:** Clever proof that relatively simple estimation procedure is asymptotically unbiased.
 - **Good piece of ML:** Demo that a complicated algorithm produces impressive results on a specific task.

- Can view ML as applying computational techniques to statistical problems. But go beyond typical statistics problems, with different aims (speed vs. accuracy).
Cultural gap (Tibshirani)

MACHINE LEARNING
- weights
- learning
- generalization
- supervised learning
- unsupervised learning
- large grant: $1,000,000
- conference location: Snowbird, French Alps

STATISTICS
- parameters
- fitting
- test set performance
- regression/classification
- density estimation, clustering
- large grant: $50,000
- conference location: Las Vegas in August
Course Survey

Please complete the following survey this week:

https://docs.google.com/forms/d/e/1FAIpQLScd5JwTrh55gW-O-5UKXLidFPvvH-XhVxr36AqfQzsrdDNxGQ/viewform?usp=send_form
Initial Case Study

- What grade will I get in this course?
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
- Choose form of model: linear regression
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
- Choose form of model: linear regression
- Decide how to evaluate the system’s performance: objective function
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
- Choose form of model: linear regression
- Decide how to evaluate the system’s performance: objective function
- Set model parameters to optimize performance
Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from this and previous years
- Process the data
 - Split into training set; and test set
 - Determine representation of input;
 - Determine the representation of the output;
- Choose form of model: linear regression
- Decide how to evaluate the system’s performance: objective function
- Set model parameters to optimize performance
- Evaluate on test set: generalization