Principal Component Analysis (PCA)
CSC411/2515 Tutorial

Slides by Wenjie Luo, Ladislav Rampasek
Lagrange Multipliers

- If we want to find stationary point of a function of multiple variables $f(x)$ subject to one or more constraints $g(x) = 0$

1. Introduce Lagrangian function:

$$L(x, \lambda) \equiv f(x) + \lambda g(x)$$

2. and find it’s stationary point w.r.t. both x and λ

- If you are not familiar with it, check out Appendix E in Bishop’s book
Dimensionality Reduction

- We have some data $X \in \mathbb{R}^{N \times D}$
- D may be huge, etc.
- We would like to find a new representation $Z \in \mathbb{R}^{N \times K}$ where $K << D$.
 - For computational reasons.
 - To better understand (e.g., visualize) the data.
 - For compression.
 - ...
- We will restrict ourselves to linear transformations for the time being.
Example

- In this dataset, there are only 3 degrees of freedom: horizontal and vertical translations, and rotations.
- Yet each image contains 784 pixels, so X will be 784 elements wide.
Abstract Visualization
What is a Good Transformation?

- Goal is to find good directions u that preserves “important” aspects of the data.
- In a linear setting: $z = x^T u$
- This will turn out to be the top-K eigenvalues of the data covariance.
- Two ways to view this:
 1. Find directions of maximum variation
 2. Find projections that minimize reconstruction error
Principal Component Analysis (Maximum Variance)

maximize \(\frac{1}{2N} \sum_{n=1}^{N} (u_1^T x_n - u_1^T \bar{x}_n)^2 \)

\[= u_1^T S u_1 \]

i.e., variance of the projected data

where the sample mean and covariance are given by:

\[\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n \]

\[S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T \]
Finding u_1

• We want to maximize $u_1^T S u_1$

subject to $\|u_1\| = 1$
(since we are finding a direction)

• Use Lagrange multiplier α_1 to express this as

$$u_1^T S u_1 + \alpha_1 (1 - u_1^T u_1)$$
Finding u_1

- Take derivative and set to 0

\[
Su_1 - \alpha_1 u_1 = 0
\]

\[
Su_1 = \alpha_1 u_1
\]

- So u_1 is an eigenvector of S with eigenvalue α_1

- In fact it must be the eigenvector with maximum eigenvalue, since this maximizes the objective.
Finding u_2

maximize $u_2^T Su_2$

subject to $||u_2|| = 1$

$u_2^T u_1 = 0$

Lagrange form: $u_2^T Su_2 + \alpha_2 (1 - u_2^T u_2) - \beta u_2^T u_1$

Finding β:

$$\frac{\partial}{\partial u_2} = Su_2 - \alpha_2 u_2 - \beta u_1 = 0$$

$$\implies u_1^T Su_2 - \alpha_2 u_1^T u_2 - \beta u_1^T u_1 = 0$$

$$\implies \alpha_1 u_1^T u_2 - \alpha_2 u_1^T u_2 - \beta u_1^T u_1 = 0$$

$$\implies \alpha_1 \cdot 0 - \alpha_2 \cdot 0 - \beta \cdot 1 = 0$$

$$\implies \beta = 0$$
Finding u_2

maximize $u_2^T S u_2$

subject to $||u_2|| = 1$

$u_2^T u_1 = 0$

Lagrange form: $u_2^T S u_2 + \alpha_2 (1 - u_2^T u_2) - \beta u_2^T u_1$

Finding α_2:

$$\frac{\partial}{\partial u_2} = S u_2 - \alpha_2 u_2 = 0$$

$$\Rightarrow S u_2 = \alpha_2 u_2$$

So α_2 must be the second largest eigenvalue of S.
PCA in General

- We can compute the entire PCA solution by just computing the eigenvectors with the top-k eigenvalues.
- These can be found using the singular value decomposition of S.
How do we choose the number of components?

\[\sum_{i=1}^{M} \frac{\alpha_i}{\sum_{i=1}^{N} \alpha_i} \]

- Look at the spectrum of covariance, pick K to capture most of the variation.
- More principled: Bayesian treatment (beyond this course).
Demo

- Eigenfaces
PCA for face recognition

- **Goal:**
 Face recognition by similarity in principal subspace

- Learn the PCA projection on train set of 319x242 face images

- Reparameterize a query picture to a basis of "eigenfaces"

- Eigenvectors of the data covariance matrix can be rearranged into a 2D image --> has the appearance of a ghostly face

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Eigenfaces

Eigenfaces = principal components of a dataset of face images

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Face recognition results

- Trained on 70% of the data set with $K=25$
- Includes faces with glasses or different lighting conditions

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Proportion of covariance explained

- How much of the variation is captured by the first K principal components?
- K=10 => variance=0.363; K=25 => variance=0.566

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Eigenfaces for reconstruction

- Using $K=1$ to $K=25$ principal components

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Eigenfaces for reconstruction

- Using $K=1$ to $K=97$ principal components (with steps of 8 PC)

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Eigenfaces for reconstruction

- Removing faces with glasses from data set helps to reduce the K needed for good reconstruction
- But not as much as removing faces with different lighting conditions
- => lighting conditions create a lot of variance in the data, thus they are captured by PCs before capturing detail features of a face

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Eigenfaces for reconstruction

- Using $K=1$ to $K=25$ principal components when faces with different lighting conditions or glasses are removed from training set

adapted from http://www.cs.princeton.edu/~cdecoro/eigenfaces/
Principal Component Analysis (Minimum Reconstruction Error)

- We can also think of PCA as minimizing the reconstruction error of the compressed data.

\[
\text{minimize} = \frac{1}{2N} \sum_{n=1}^{N} \| x_n - \hat{x}_n \|^2
\]

- We will omit the details for now, but the key is that we define some K-dimensional basis such that:

\[
\hat{x} = Wx + \text{const}
\]

- The solution will turn out to be the same as the minimum variance formulation.
Reconstruction

- PCA learns to represent vectors in terms of sums of basis vectors.
- For images, e.g.,

\[
\begin{align*}
\text{image} &= a_1 + a_2 + a_3 + \ldots + a_{100} + \ldots
\end{align*}
\]
PCA for Compression

D=1
D=5
D=10

D=50
D=100
D=200

321x481 image, D is the number of basis vectors used

D in this slide is the same as K in the previous slides
Summary (1)

- PCA is a linear projection of D-dimensional \(\{x_n\} \) to \(K \leq D \) vector space given by \(\{u_k\} \) basis vectors such that it:
 - maximizes variance
 - minimizes projection error (square loss)
 - \(\{u_k\} \) are orthonormal
 - \(\{u_k\} \) turn out to be first K eigenvectors of the data covariance matrix with K larges eigenvalues
 - can be computed in \(O(KD^2) \)
Summary (2)

- PCA is good for:
 - Dimensionality reduction
 - Visualization
 - Compression (with loss)
 - Denoising (by removing small variance in the data)
 - Can be used for data whitening = decorrelation, so that features have unit covariance

- Caution! In classification task, if the class labels’ signal in the data has small variance, PCA may remove it completely
Thank You ;-)