Principal Component Analysis

(PCA)
CSC411/2515 Tutorial

Slides by Wenjie Luo, Ladislav Rampasek




Lagrange Multipliers

® |f we want to find stationary point of a function of
multiple variables f(x) subject to one or more
constraints g(x) =0

1. Introduce Lagrangian function:
L(x,\) = f(x) + Ag(x)

2. and find it’s stationary point w.r.t. both xand \

® |[f you are not familiar with it, check out Appendix E
In Bishop’s book




Dimensionality Reduction

We have some data X  RV*P
D may be huge, etc.

We would like to find a new representation , - pNxK
where K << D.

® For computational reasons.

® Jo better understand (e.g., visualize) the data.
® For compression.
[

We will restrict ourselves to linear transformations
for the time being.



Example

® |n this dataset, there are only 3 degrees of
freedom: horizontal and vertical translations, and

rotations.

®* Yet each image contains 784 pixels, so X will be
/84 elements wide.
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Abstract Visualization
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What i1s a Good
Transformation?

® Goal is to find good directions u ’ /m
that preserves “important” aspects of *2
the data. Xn

® |n alinear setting: z = rlu e

® This will turn out to be the
top-K eigenvalues of the
data covariance.

® Two ways to view this: —

1. Find directions of maximum variation

2. Find projections that
minimize reconstruction error




Principal Component Analysis
(Maximum Variance)
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where the sample mean and covariance are given by:
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Finding ul
e We want to maximize ui Su;

subject to |ui]| =1
(since we are finding a direction)

e Use Lagrange multiplier a; to express this as

ui Sup + a1 (1 — uiug)




Finding ul
® Take derivative and setto O

Su1 — X1Uq =0

S”U,l =1Uq

® So u1 is an eigenvector of S with eigenvalue o1

® |n fact it must be the eigenvector with maximum
eigenvalue, since this maximizes the objective.




Finding u?

maximize ua Sus

subject to ||us|| =1
us u; =0
Lagrange form: ugSug + 042(1 — ugUQ) — Bugul
| 0
Finding B: —— =Suys — aoug — Bul =0
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Finding u?

maximize ua Sus

subject to ||us|| =1
us u; =0 0
Lagrange form: ugSug + 042(1 — ugug) — é/lj%lv
0
Finding a: Oy =5uz — agup =0

— Sus = aoun

So a, must be the second largest eigevalue o
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PCA In General

® We can compute the entire PCA solution by just

computing the eigenvectors with the top-k
eigenvalues.

® These can be found using the singular value
decomposition of S.




® How do we choose the number of components?
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Number of eigenvectors

® Look at the spectrum of covariance, pick K to capture most of
the variation.

~® More principled: Bayesian treatment (beyond this course).




Demo

® Eigenfaces

—




PCA for face recognition

* @Goal:
Face recognition by similarity in principal subspace

® Learn the PCA projection on train set of 319x242
face images

¢ Reparameterize a query picture to a basis of
"eigenfaces”

® Eigenvectors of the data covariance matrix can be
rearrainged into a 2D image --> has the appearance
of a ghostly face




Eigenfaces

Eigenfaces = principal components of a dataset of face images




Face recognition results

Trained on 709, of the data set with K=25

0

Includes faces with glasses or different lighting conditions
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Proportion of covariance explained

¢ How much of the variation is captured by the first K
principal components?

© K=10 => variance=0.363; K=25 => variance=0.566
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Eigenfaces for reconstruction

¢ Using K=1 to K=25 principal components




Eigenfaces for reconstruction

Using K=1 to K=97 principal components
(with steps of 8 PC)
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Eigenfaces for reconstruction

¢ Removing faces with glasses from data set helps to
reduce the K needed for good reconstruction

¢ But not as much as removing faces with different
lighting conditions

¢ => lighting conditions create a lot of variance in
the data, thus they are captured by PCs before
capturing detail features of a face




Eigenfaces for reconstruction

Using K=1 to K=25 principal components
when faces with different lighting conditions or
glasses are removed from training set




Principal Component Analysis
(Minimum Reconstruction Error)

® We can also think of PCA as minimizing the
reconstruction error of the compressed data.

N
nimize = -3z —
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e We will omit the details for now, but the key is that we
define some K-dimensional basis such that:

= Wax 4+ const

® The solution will turn out to be the same as the
minimum variance formulation.




Reconstruction

PCA learns to represent vectors in terms of sums
of basis vectors.

For images, e.g.,
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PCA for Compression

321x481 image, D is the number of basis vectors used

D in this slide is the same as K in the previous slides



Summary (1)

® PCA is a linear projection of D-dimensional {x, }to
K<D vector space given by {ug} basis vectors such

that it:
® maximizes variance

® minimizes projection error (square loss)

e {ui} are orthonormal

e {ui} turn out to be first K eigenvectors of the data
covariance matrix with K larges eigenvalues

® can be computed in O(K D?)




Summary (2)

e PCA is good for:
® Dimensionality reduction
® V\isualization
® Compression (with loss)
® Denoising (by removing small variance in the data)

® Can be used for data whitening = decorrelation, so
that features have unit covariance
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® Caution! In classification task, if the class labels
signal in the data has small variance, PCA may

remove it completely




Thank You ;-)
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