
CSC 411 / CSC 2515
Introduction to Machine Learning

ASSIGNMENT # 1
Due at NOON on:

Oct. 19 (CSC 411) / Oct. 20 (CSC 2515)

1 Logistic Regression (40 points)

1.1 (10 points) Bayes’ Rule

Suppose you have a D-dimensional data vector x = (x1, . . . , xD)
T and an associated class variable

y ∈ {0, 1}which is Bernoulli with parameter α (i.e. p(y = 1) = α and p(y = 0) = 1−α). Assume that
the dimensions of x are conditionally independent given y, and that the conditional likelihood of
each xi is Gaussian with µi0 and µi1 as the means of the two classes and σi as their shared standard
deviation.

Use Bayes’ rule to show that p(y = 1|x) takes the form of a logistic function:

p(y = 1|x) = σ(wTx+ b) =
1

1 + exp
(
−
∑D

i=1wixi − b
)

Derive expressions for the weights w = (w1, . . . , wD)
T and the bias b in terms of the parameters of

the class likelihoods and priors (i.e., µi0, µi1, σi and α).

1.2 (15 points) Maximum Likelihood Estimation

Now suppose you are given a training set D = {(x(1), y(1)), . . . , (x(N), y(N))}. Consider a binary
logistic regression classifier of the same form as before:

p(y = 1|x(n),w, b) = σ(wTx(n) + b) =
1

1 + exp
(
−
∑D

i=1wix
(n)
i − b

)
Derive an expression for E(w, b), the negative log-likelihood of y(1), . . . , y(N) given x(1), . . . ,x(N)

and the model parameters, under the i.i.d. assumption. Then derive expressions for the derivatives
of E with respect to each of the model parameters.

1.3 (15 points) L2 Regularization

Now assume that a Gaussian prior is placed on each element of w, and b such that p(wi) = N (wi|0, 1/λ)
and p(b) = N (b|0, 1/λ). Derive an expression that is proportional to p(w, b|D), the posterior distri-
bution of w and b, based on this prior and the likelihood defined above. The expression you derive
must contain all terms that depend on w and b.

Define L(w, b) to be the negative logarithm of the expression you derive. Show that L(w, b) takes
the following form:

L(w, b) = E(w, b) +
λ

2

D∑
i=1

w2
i +

λ

2
b2 + C(λ)

where C(λ) is a term that depends on λ but not on either w or b. What are the derivatives of L with
respect to each of the model parameters?

2 Digit Classification (60 points)

In this section, you will compare the performance and characteristics of different classifiers, namely
k-nearest neighbours, logistic regression, and naive Bayes. You will extend the provided code and
experiment with these extensions. Note that you should understand the code first instead of using
it as a black box.

Both Matlab and Python1 versions of the code have been provided. You are free to work with
whichever you wish.

The data you will be working with are hand-written digits, 4s and 9s, represented as 28x28 pixel
arrays. There are two training sets: mnist train, which contains 80 examples of each class,
and mnist train small, which contains 5 examples of each class. There is also a validation set
mnist valid that you should use for model selection, and a test set mnist test.

Code for visualizing the datasets has been included in plot digits.

2.1 (10 points) k-Nearest Neighbours

Use the supplied kNN implementation to predict labels for mnist valid, using mnist train as
the training set.

Write a script that runs kNN for different values of k ∈ {1, 3, 5, 7, 9} and plots the classification rate
on the validation set (number of correctly predicted cases, divided by total number of data points)
as a function of k.

Comment on the performance of the classifier and argue which value of k you would choose. What
is the classification rate for k∗, your chosen value of k? Also compute the rate for k∗ + 2 and k∗ − 2.
Does the test performance for these values of k correspond to the validation performance?2 Why or
why not?

2.2 (10 points) Logistic regression

1If you choose to work with Python, you should use Python 2.7 with both the Numpy and Matplotlib packages
installed.

2In general you shouldn’t peek at the test set multiple times, but for the purposes of this question it can be an illustra-
tive exercise.

Look through the code in logistic regression template and logistic. Complete the im-
plementation of logistic regression by providing the missing part of logistic. Use checkgrad to
make sure that your gradients are correct.

Run the code on both mnist train and mnist train small. You will need to experiment with
the hyperparameters for the learning rate, the number of iterations (if you have a smaller learning
rate, your model will take longer to converge), and the way in which you initialize the weights. If
you get Nan/Inf errors, you may try to reduce your learning rate or initialize with smaller weights.

Report which hyperparameter settings you found worked the best and the final cross entropy and
classification error on the training, validation and test sets. Note that you should only compute the
test error once you have selected your best hyperparameter settings using the validation set.

Next look at how the cross entropy changes as training progresses. Submit 2 plots, one for each of
mnist train and mnist train small. In each plot show two curves: one for the training set
and one for the validation set. Run your code several times and observe if the results change. If
they do, how would you choose the best parameter settings?

2.3 (10 points) Penalized logistic regression

Implement the penalized logistic regression model you derived in 1.3 by modifying logistic to
include a regularizer. Call the new function logistic pen. You should only penalize the weights
and not the bias term, as it only controls the height of the function but not its complexity. Note that
you can omit the C(λ) term in your error computation, since its derivative is 0 w.r.t. the weights
and bias. Use checkgrad to verify the gradients of your new logistic pen function.

Repeat part 2.2, but now with different values of the penalty parameter λ. Try λ ∈ {0.001, 0.01, 0.1, 1.0}.
At this stage you should not be evaluating on the test set as you will do so once you have chosen
your best λ.

To do the comparison systematically, you should write a script that includes a loop to evaluate
different values of λ automatically. You should also re-run logistic regression at least 10 times for
each value of λ.

So you will need two nested loops: The outer loop is over values of λ. The inner loop is over
multiple re-runs. Average the evaluation metrics (cross entropy and classification error) over the
different re-runs. In the end, plot the average cross entropy and classification error against λ. So for
each of mnist train and mnist train small you will have 2 plots: one plot for cross entropy
and another plot for classification error. Each plot will have two curves: one for training and one
for validation.

How do the cross entropy and classification error change when you increase λ? Do they go up,
down, first up and then down, or down and then up? Explain why you think they behave this way.
Which is the best value of λ, based on your experiments? Report the test error for the best value of
λ.

Compare the results with and without penalty. Which one performed better for which data set?
Why do you think this is the case?

2.4 (15 points) Naive Bayes

In this question you will experiment with a binary naive Bayes classifier. In a naive Bayes classifier,
the conditional distribution for example x ∈ Rd to take on class c (out of K different classes) is
defined by

p(c|x) = p(x|c)p(c)∑K
k=1 p(x|k)p(k)

where p(x|c) =
∏d

i=1 p(xi|c) according to the naive Bayes assumption. In this question, we model
p(xi|c) as a Gaussian for each i as

p(xi|c) = N (xi|µic, σ2ic) =
1√
2πσ2ic

exp

(
−(xi − µic)2

2σ2ic

)

The prior distribution p(c) and parameters µc = (µ1c, ..., µdc)
>, σ2c = (σ21c, ..., σ

2
dc)
> for all c are

learned on a training set using maximum likelihood estimation.

Code for training this binary naive Bayes classifier is included. The main components are:

MATLAB

• train nb.m: trains a naive Bayes classifier given some data.

• test nb.m: tests a trained naive Bayes classifier on some test digits.

Python

• nb.py: includes code to train and test naive Bayes classifiers.

You are required to fill in run nb.m in MATLAB or the main method of nb.py in Python to com-
plete the pipeline of training, testing a naive Bayes classifier and visualize learned models. The
code you need to fill in should be less than 10 lines.

Report the training and test accuracy using the naive Bayes model, and show the visualization of
the mean and variance vectors µc and σ2c for both classes. Briefly comment on the visualization
results.

2.5 (15 points) Compare k-NN, Logistic Regression, and Naive Bayes

Compare the results of k-NN on the digit classification task with those you got using logistic regres-
sion and naive Bayes. Briefly comment on the differences between these classifiers.

Write up

Hand in answers to all the questions in the parts above. The goal of your write-up is to document
the experiments you’ve done and your main findings. So be sure to explain the results.

The answers to your questions should be in pdf form and turned in along with your code. Package
your code and a copy of the write-up pdf document into a zip or tar.gz file called

A1-*your-student-id*.[zip|tar.gz]. Only include functions and scripts that you modi-
fied. Submit this file on MarkUs. Do not turn in a hard copy of the write-up.

