CSC 411: Lecture 07: Multiclass Classification

Raquel Urtasun & Rich Zemel

University of Toronto

Oct 5, 2015
Multi-class classification with:

- Least-squares regression
- Logistic Regression
- K-NN
- Decision trees
Discriminant Functions for $K > 2$ classes

- Use $K - 1$ classifiers, each solving a two class problem of separating point in a class C_k from points not in the class.
- Known as 1 vs all or 1 vs the rest classifier

PROBLEM: More than one good answer!
Discriminant Functions for $K > 2$ classes

- Introduce $K(K - 1)/2$ two-way classifiers, one for each possible pair of classes.
- Each point is classified according to majority vote amongst the disc. func.
- Known as the **1 vs 1 classifier**

PROBLEM: Two-way preferences need not be transitive
K-Class Discriminant

- We can avoid these problems by considering a single K-class discriminant comprising K functions of the form

$$y_k(x) = w_k^T x + w_{k,0}$$

and then assigning a point x to class C_k if

$$\forall j \neq k \quad y_k(x) > y_j(x)$$

- Note that w_k^T is now a vector, not the k-th coordinate

- The decision boundary between class C_j and class C_k is given by $y_j(x) = y_k(x)$, and thus it’s a $(D - 1)$ dimensional hyperplane defined as

$$(w_k - w_j)^T x + (w_{k0} - w_{j0}) = 0$$

- What about the binary case? Is this different?

- What is the shape of the overall decision boundary?
K-Class Discriminant

- The decision regions of such a discriminant are always **singly connected** and **convex**.

- In Euclidean space, an object is **convex** if for every pair of points within the object, every point on the straight line segment that joins the pair of points is also within the object.

Which object is convex?
K-Class Discriminant

- The decision regions of such a discriminant are always **singly connected** and **convex**

- Consider 2 points x_A and x_B that lie inside decision region R_k

- Any convex combination \hat{x} of those points also will be in R_k

$$\hat{x} = \lambda x_A + (1 - \lambda) x_B$$
Proof

- A convex combination point, i.e., $\lambda \in [0, 1]$

$$\hat{x} = \lambda x_A + (1 - \lambda)x_B$$

- From the linearity of the classifier $y(x)$

$$y_k(\hat{x}) = \lambda y_k(x_A) + (1 - \lambda)y_k(x_B)$$

- Since x_A and x_B are in R_k, it follows that $y_k(x_A) > y_j(x_A)$, $y_k(x_B) > y_j(x_B)$, $\forall j \neq k$

- Since λ and $1 - \lambda$ are positive, then \hat{x} is inside R_k

- Thus R_k is singly connected and convex
Multi-class classification via the "softmax"

- Associate a set of weights with each class, then use a normalized exponential output

\[p(C_k | x) = y_k(x) = \frac{\exp(z_k)}{\sum_j \exp(z_j)} \]

where the \textbf{activations} are given by

\[z_k = w_k^T x \]

- For the target vector, if there are \(K \) classes we often use a 1-of-\(K \) encoding, i.e., a vector of \(K \) target values containing a single 1 for the correct class and zeros elsewhere

- Let \(T \in \{0, 1\}^{N \times K} \) for \(N \) training examples and \(K \) classes
The likelihood

\[p(T|w_1, \cdots, w_K) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(C_k|x^{(n)})^{t_k^{(n)}} = \prod_{n=1}^{N} \prod_{k=1}^{K} y_k^{(n)}(x^{(n)})^{t_k^{(n)}} \]

with

\[p(C_k|x) = y_k(x) = \frac{\exp(z_k)}{\sum_j \exp(z_j)} \]

and

\[z_k = w_k^T x + w_{k0} \]

What assumptions have I used to derive the likelihood?

Derive the loss by computing the negative log-likelihood

\[E(w_1, \cdots, w_K) = - \log p(T|w_1, \cdots, w_K) = - \sum_{n=1}^{N} \sum_{k=1}^{K} t_k^{(n)} \log[y_k^{(n)}(x^{(n)})] \]

This is known as the **cross-entropy** error for multiclass classification

How do we obtain the weights?
Training Multi-class Logistic Regression

\[E(w_1, \cdots, w_K) = - \log p(T \mid w_1, \cdots, w_K) = - \sum_{n=1}^{N} \sum_{k=1}^{K} t_k^{(n)} \log[y_k^{(n)}(x^{(n)})] \]

- Do gradient descent, where the derivatives are

\[\frac{\partial y_j^{(n)}}{\partial z_k^{(n)}} = \delta(k,j)y_j^{(n)} - y_j^{(n)}y_k^{(n)} \]

and

\[\frac{\partial E}{\partial z_k^{(n)}} = \sum_{j=1}^{K} \frac{\partial E}{\partial y_j^{(n)}} \cdot \frac{\partial y_j^{(n)}}{\partial z_k^{(n)}} = y_k^{(n)} - t_k^{(n)} \]

\[\frac{\partial E}{\partial w_{k,j}} = \sum_{n=1}^{N} \sum_{j=1}^{K} \frac{\partial E}{\partial y_j^{(n)}} \cdot \frac{\partial y_j^{(n)}}{\partial z_k^{(n)}} \cdot \frac{\partial z_k^{(n)}}{\partial w_{k,j}} = \sum_{n=1}^{N} (y_k^{(n)} - t_k^{(n)}) \cdot x_j^{(n)} \]

- The derivative is the error times the input
Let’s write the probability of one of the classes

\[p(C_1|x) = y_1(x) = \frac{\exp(z_1)}{\sum_j \exp(z_j)} = \frac{\exp(z_1)}{\exp(z_1) + \exp(z_2)} \]

I can equivalently write this as

\[p(C_1|x) = y_1(x) = \frac{\exp(z_1)}{\exp(z_1) + \exp(z_2)} = \frac{1}{1 + \exp(-(z_1 - z_2))} \]

So the logistic is just a special case that avoids using redundant parameters.

Rather than having two separate set of weights for the two classes, combine into one

\[z' = z_1 - z_2 = w_1^T x - w_2^T x = w^T x \]

The over-parameterization of the softmax is because the probabilities must add to 1.
Multi-class K-NN

- Can directly handle multi class problems
Multi-class Decision Trees

- Can directly handle multi class problems
- How is this decision tree constructed?