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Motivation
Sports Field Localization: Have to figure out where the field and
players are in 3d space in order to make measurements and
generate statistics.

http://stats.nba.com/
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Motivation

a.espncdn.com
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How is this done in practice?
• There are various tracking and analytics companies
• Their solutions for field localization is based mostly on

hardware

http://www.stats.com/sportvu/sportvu-basketball-media/
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How is this done in practice?

http://www.google.com/patents/US20080192116
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How is this done in practice?
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How is this done in practice?
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How is this done in practice?

• There are various tracking and analytics companies

• Their solutions for field localization is based mostly on
hardware

http://pixellot.tv/
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How is this done in practice?

• There are various tracking and analytics companies

• Their solutions for field localization is based mostly on
hardware

http://www.catapultsports.com/
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Drawbacks

• Very expensive: e.g. Sportvue costs > $100000 per season for
a team

• Only rich teams can afford them

• Have to maintain all the hardware

• Still not bulletproof. Require workers to fix mistakes
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Simpler Solution?

Can we get rid of all these cameras/gps systems and just figure out
where the players are by looking at a broadcast image of the field?
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Simpler Solution? YES!

Goal: Given a single broadcast image of a sport game, such as
soccer, can we localize it?

• H is a 3× 3 invertible matrix with 8 d.f. Called a projective
transformation/homography
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Homography Matrix
The matrix H captures all the following transformations:

Multiple View Geometry by Hartley and Zisserman
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How to find H?

• Require 4 point correspondences

• Difficulty arises in finding the 4 corresponding points
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Related Work: Academia

• Hess et al., Improved Video Registration using Non-Distinctive
Local Image Features, 2007

• Gupta et al. Using Line and Ellipse Features for Rectification
of Broadcast Hockey Video, 2011

Gupta et al. 2011
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Related Work: Academia

• Based on Keyframes and old school computer vision
transforms (eg. SIFT)

Gupta et al. 2011

• Limitation: Depends on fixed features and also requires
manual annotation of keyframes for each game and
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Can we do better?

• Can we automatically localize the field from a broadcast
image?

• Lets come up with a learning approach

• Based on joint work with Sanja Fidler and Raquel Urtasun
submitted to CVPR
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In case of Soccer

• Large dimensions and exposed to the elements

• Different grass textures and patterns
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This Work

• Introduce a parametrization of the field

• Incorporate prior knowledge about the soccer field as
potentials in an CRF

• Find the mapping H implicitly by doing inference in the CRF

• Single Camera, No key-frame, Fast Inference
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Methodology

• Let x ∈ X be random variable corresponding to a broadcast
image of a soccer field.

• A soccer field is restricted by two long sides referred to as
touchlines and two shorter sides referred to as goallines

• We aim to infer the position of the touchlines and the
goallines in the image x . (Not all visible at the same time)
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Methodology
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Methodology: Parametrization

• It’s very important how we parametrize this problem

• What are we trying to find?

• Vanishing Points: Where parallel lines meet in the image

• Manhattan World Assumption: Existence of three
dominant orthogonal vanishing points in human-made scenes.

• In a soccer field we usually have clues for the two orthogonal
vanishing point
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Methodology: Parametrization
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Methodology: Parametrization

• Create a grid by emanating rays from the vanishing points
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Methodology: Parametrization
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Methodology: Parametrization
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Methodology: Parametrization
• We parametrize the soccer field by four rays
y = (y1, y2, y3, y4) on the grid

• State space: Y =
∏4

i=1

{
[y initi ,min, y

init
i ,max ]

}
⊂ N4
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Methodology: Parametrization
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Inference Task

Given an image x of the field, obtain the best prediction of the
touchlines and the goallines by solving the following inference task:

ŷ = arg max
y∈Y

wTφ(x , y)

• φ(x , y): feature vector

• w : weights to be learned from training data

• Note: |Y| ∝ (#rays from vpH)2(#rays from vpV )2

We find an exact solution by using branch and bound for inference.
More on that later
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Model: Features

A soccer field is made up of grass and there are white marking
corresponding to lines and circles with fixed dimensions

We incorporate these as features.
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Model: Features

• We need good features in the presence of noise

• Different weather and lighting conditions and shadows

• Methods based on heuristics are very fragile
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Model: Features - Semantic Segmentaition

Train a semantic segmentation network to classify image pixels to
either belonging to:

1. Vertical Lines

2. Horizontal Lines

3. Middle Circle

4. Side Circles

5. Grass

6. Outside
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Model: Features - Some Examples
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Model: Features - Some Examples
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Model: Features — Grass
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Model: Features — Lines

7 vertical line segments corresponding to vpV and 10 horizontal
line segments corresponding to vpH
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Model: Features — Lines

• Given y , need to construct a potential function that is large
when the projection of each line segment in the image x is
close to its ground truth.

• But given y , where does each line segment fall in the image x?

• Use Cross Ratios: Given 4 points A,B,C ,D on a line, their
cross ratio is given by:

CR(A,B,C ,D) =
|A− C | · |B − D|
|B − C | · |A− D|

• Cross ratios invariant under any projective transformation.
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Model: Features — Lines

• Use cross ratios to find the position of each line on the grid
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Model: Features — Lines

• For example for line `3:
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Model: Features — Circles

A cemicircle on each side of the field C2,C3 and a circle in the
middle:
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Model: Features — Circles

Transformed to ellipses C ′
k in x
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Model: Features — Circles

• Similar to line potentials, want potential functions that count
the fraction of supporting pixels in the image x for each
circular shape Ci given a hypothesis field y

• Unlike lines, the ellipses don’t fall on the grid.

• Ellipse detection: slow and unreliable
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Model: Features — Circles

• For each circle there are unique inscribing and
circumscribing rectangles aligned with the vanishing points.

• Similar to lines, we can find the quadrilaterals associated with
these rectangles on the grid Y.
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Model: Features — Efficient Computation

• We have positive features.

• Can use 3d accumulators to compute the potentials efficiently.

Schwing et al. 2012
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Branch and Bound Inference

• Inference task

ŷ = arg max
y∈Y

wTφ(x , y)

• Aim to do it efficiently and exactly

• Exactness comes from using branch and bound

• Efficiency comes from using integral images and tight upper
bounds in branch and bound
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Branch and Bound Inference — 3 Ingredients

Suppose Y ⊂ Y =
∏4

i=1

{
[y initi ,min, y

init
i ,max ]

}
is a subset of

parametrized fields. Branch and bound needs

• A branching mechanism that divides the set Y into two
disjoint subsets Y1 and Y2 of parametrized fields.

• A set function f̄ such that f̄ (Y ) ≥ maxy∈Y w tφ(x , y).

• A priority queue PQ which orders sets of parametrized fields
Y according to f̄ .
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Branch and Bound Inference — Optimality
In order to guarantee the optimality of the converged solution:

1. f̄ (Y ) ≥ maxy∈Y w tφ(x , y) for any arbitrary Y ∈ Y

2. f̄ (Y ) = w tφ(x , y) when Y = {y}

Schwing et al. 2012
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Branch and Bound Inference — Branching
• How to branch a set Y =

∏4
i=1 {[yi ,min, yi ,max ]} ⊂ Y into two

disjoint sets Y1 and Y2
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Branch and Bound Inference — Branching
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Branch and Bound Inference — Branching
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Branch and Bound Inference — Bounding

• Decompose φ(x , y) into potential with strictly positive weights
and those with weights that are either zero or negative:

wTφ(x , y) = wT
negφneg (x , y) + wT

posφpos(x , y)

• Construct a lower bound set function φ̄i ,neg and an upper
bound set function φ̄j ,pos such that

φ̄i ,neg (x ,Y ) ≤ φi ,neg (x , y) ∀y ∈ Y

φ̄j ,pos(x ,Y ) ≥ φj ,pos(x , y) ∀y ∈ Y
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Branch and Bound Inference — Bounding — Grass

Grass Potential:

φG (x , y) =
(# of grass pixels in Fy

total # of grass pixels
,

# of non-grass pixels in F c
y

total # of non-grass pixels

)
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Branch and Bound Inference — Bounding — Grass
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Branch and Bound Inference — Bounding — Grass

Note that for any field y ∈ Y, we have

Fy∩ ⊂ Fy ⊂ Fy∪

The above relation implies that

# of grass pixels inside Fy∩ ≤ # of grass pixels inside Fy

≤ # of grass pixels inside Fy∪
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Branch and Bound Inference — Bounding — Grass

Hence, we can define the upper bound for the grass potential as:

φ̄G ,pos(x ,Y ) = φG (x , y∪)

Similarly, a lower bound can be defined as:

φ̄G ,neg (x ,Y ) = φG (x , y∩)
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Branch and Bound Inference — Bounding — Lines
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Branch and Bound Inference — Bounding — Ellipses
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Learning — Structural SVM

• The outputs y = (y1, . . . , y4) of equation (1) are discrete
random variable with complex dependencies,

• Use SSVM

• Given a dataset of ground truth training pairs
{
x (i), y (i)

}N
i=1

we learn the parameters w by solving the following
optimization problem

min
w

1

2
‖w‖2 +

C

N

N∑
n=1

max
ŷ∈Y

(
∆(y (n), ŷ) + wTφ(x (n), ŷ)− wTφ(x (n), y (n))

)
where ∆ : Y × Y → R+ ∪ {0}
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Learning — Structural SVM — ∆

• A hypothesis field ŷ

• Tŷ be the collection of cells in the grid Y corresponding to
the region inside the quadrilateral defined by ŷ

• T c
ŷ be the complement of Tŷ in the grid Y

∆(y , ŷ) = 1−
# of GT cells in Tŷ + # of cells NGT in T c

ŷ

Total number of cells in Y
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Experiments:

Datasets:

• 395 images from 20 games from World Cup 2014

• 209 train/val from 10 games

• 186 test from the 10 other games

• 4000 images from 10 NHL games

• 2000 train/val

• 2000 test
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