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Motivation
Sports Field Localization: Have to figure out where the field and
players are in 3d space in order to make measurements and
generate statistics.
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How is this done in practice?

e There are various tracking and analytics companies
e Their solutions for field localization is based mostly on
hardware
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How is this done in practice?
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How is this done in practice?
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How is this done in practice?
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How is this done in practice?

e There are various tracking and analytics companies

e Their solutions for field localization is based mostly on
hardware
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How is this done in practice?

e There are various tracking and analytics companies

e Their solutions for field localization is based mostly on
hardware
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Drawbacks

Very expensive: e.g. Sportvue costs > $100000 per season for
a team

Only rich teams can afford them

Have to maintain all the hardware

Still not bulletproof. Require workers to fix mistakes
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Simpler Solution?

Can we get rid of all these cameras/gps systems and just figure out
where the players are by looking at a broadcast image of the field?
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Simpler Solution? YES!

Goal: Given a single broadcast image of a sport game, such as
soccer, can we localize it?

e His a 3 x 3 invertible matrix with 8 d.f. Called a projective
transformation/homography
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Homography Matrix

The matrix H captures all the following transformations:

Group Matrix Distortion Invariant properties
' Concurrency, collinearity, order of contact:
Protectiv hii hiz his Q intersection (1 pt contact); tangency (2 pt con-
Br:j)_]?(.n\re hat  hes  has tact); inflections
Q ha1 haz  has /H'l (3 pt contact with line); tangent discontinuities
d and cusps. cross ratio (ratio of ratio of lengths).
a a b Parallelism, ratio of areas, ratio of lengths on
Affine a-“ alllz tz collinear or parallel lines (e.g. midpoints), lin-
6 dof 61 62 1”' ear combinations of vectors (e.g. centroids).
D The line at infinity, L.
Similarity o e j"’ O Ratio of lengths, angle. The circular points, I, J
4 dof 021 [}“ 1”' :l (see section 2.7.3).
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Multiple View Geometry by Hartley and Zisserman
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How to find H?

e Require 4 point correspondences

e Difficulty arises in finding the 4 corresponding points
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Related Work: Academia

e Hess et al., Improved Video Registration using Non-Distinctive
Local Image Features, 2007

e Gupta et al. Using Line and Ellipse Features for Rectification
of Broadcast Hockey Video, 2011

Key-frame 1 Key-frame 3 Key-frame 5

Gupta et al. 2011
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Related Work: Academia

e Based on Keyframes and old school computer vision
transforms (eg. SIFT)

Key-frame 1 Key-frame 3 Key-frame 5

Gupta et al. 2011

e Limitation: Depends on fixed features and also requires
manual annotation of keyframes for each game and
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Can we do better?

e Can we automatically localize the field from a broadcast
image?

e Lets come up with a learning approach

e Based on joint work with Sanja Fidler and Raquel Urtasun
submitted to CVPR
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In case of Soccer

e Large dimensions and exposed to the elements
e Different grass textures and patterns
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This Work

Introduce a parametrization of the field

Incorporate prior knowledge about the soccer field as
potentials in an CRF

Find the mapping H implicitly by doing inference in the CRF

Single Camera, No key-frame, Fast Inference
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Methodology

e Let x € X be random variable corresponding to a broadcast
image of a soccer field.

e A soccer field is restricted by two long sides referred to as
touchlines and two shorter sides referred to as goallines

e We aim to infer the position of the touchlines and the
goallines in the image x. (Not all visible at the same time)
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Methodology
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Methodology: Parametrization

It's very important how we parametrize this problem

What are we trying to find?

Vanishing Points: Where parallel lines meet in the image

Manhattan World Assumption: Existence of three

dominant orthogonal vanishing points in human-made scenes.

e In a soccer field we usually have clues for the two orthogonal
vanishing point



Methodology: Parametrization

vPH
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Methodology: Parametrization

e Create a grid by emanating rays from the vanishing points
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Methodology: Parametrization
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Methodology: Parametrization
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Methodology: Parametrization

e We parametrize the soccer field by four rays
y = (Y1;Y2>}/3,}/4) on the g”d
o State space: Y = [[}_, {[yf”it- fnit } CN*

unun’)qﬂnax

UpH
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Methodology: Parametrization
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Inference Task

Given an image x of the field, obtain the best prediction of the

touchlines and the goallines by solving the following inference task:

~ T
= argmaxw ' ¢(x,
y = argmax o(x,y)

e ¢(x,y): feature vector
e w: weights to be learned from training data

o Note: |)| o (#rays from vpp)?(#rays from vpy)?

We find an exact solution by using branch and bound for inference.

More on that later



Model: Features

A soccer field is made up of grass and there are white marking
corresponding to lines and circles with fixed dimensions

We incorporate these as features.
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Model: Features

e We need good features in the presence of noise
o Different weather and lighting conditions and shadows

e Methods based on heuristics are very fragile
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Model: Features - Semantic Segmentaition

Train a semantic segmentation network to classify image pixels to
either belonging to:

Vertical Lines
Horizontal Lines
Middle Circle
Side Circles
Grass

Outside

ok W=
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Model: Features - Some Examples

33/1



Model: Features - Some Examples
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Model: Features - Some Examples
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Model: Features — Grass
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Model: Features — Lines

7 vertical line segments corresponding to vpy and 10 horizontal
line segments corresponding to vpy

mi
m2 m6
m3 m7
b 2/ 13 14 5| 16 17
m4 m8
m5 m9

mi0
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Model: Features — Lines

Given y, need to construct a potential function that is large
when the projection of each line segment in the image x is
close to its ground truth.

But given y, where does each line segment fall in the image x?

Use Cross Ratios: Given 4 points A, B, C, D on a line, their
cross ratio is given by:

|A—C|-|B—D|
CR(A,B,C,D) =
—e . - >
A B c D

Cross ratios invariant under any projective transformation.



Model: Features — Lines

e Use cross ratios to find the position of each line on the grid

Mo

l3

ms.

A=—-x B C D



Model: Features — Lines

e For example for line ¢3:

Y3
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Model: Features — Circles

A cemicircle on each side of the field G, C3 and a circle in the
middle:
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Model: Features — Circles

Transformed to ellipses C; in x
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Model: Features — Circles

e Similar to line potentials, want potential functions that count
the fraction of supporting pixels in the image x for each
circular shape C; given a hypothesis field y

e Unlike lines, the ellipses don't fall on the grid.

e Ellipse detection: slow and unreliable
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Model: Features — Circles

e For each circle there are unique inscribing and
circumscribing rectangles aligned with the vanishing points.

e Similar to lines, we can find the quadrilaterals associated with
these rectangles on the grid ).

mmm Quter Quadrilateral
mmm [nner Quadrilateral
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Model: Features — Efficient Computation

e We have positive features.

e Can use 3d accumulators to compute the potentials efficiently.

Schwing et al. 2012
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Branch and Bound Inference

Inference task

~ T
=argmaxw ' ¢(x,
y = argmax (x,y)

Aim to do it efficiently and exactly

Exactness comes from using branch and bound

Efficiency comes from using integral images and tight upper
bounds in branch and bound
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Branch and Bound Inference — 3 Ingredients

Suppose Y € ¥ =[]t {[yf”it- v } is a subset of

1,min’

parametrized fields. Branch and bound needs

e A branching mechanism that divides the set Y into two
disjoint subsets Y7 and Y5 of parametrized fields.

o A set function f such that f(Y) > max,cy wid(x,y).

e A priority queue PQ which orders sets of parametrized fields
Y according to f.
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Branch and Bound Inference — Optimality

In order to guarantee the optimality of the converged solution:

1. £(Y) > maxyey wio(x, y) for any arbitrary Y €

2. f(Y) = w'p(x,y) when Y = {y}

Algorithm 1 branch and bound (BB) inference

put pair (f(y) Y) into queue and set y=Y)
repeat

split Y= x y2 with Y1 N Y = ()

put pair (f(yl) y1) into queue

put pair (f(yg) V) into queue

retrieve having highest score
until |y =1
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Branch and Bound Inference — Branching

e How to branch a set Y = HLI {li,min, Yi.max]} C Y into two
disjoint sets Y7 and Y>

vpv
Y1,min
Y1, mazx
UPH
Y2, min
Y3 min
Y3, mazx Y2,maz
Y4, min

y4ﬂnam
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Branch and Bound Inference — Branching

Ysmin Y3 maz Y4,min Ya,mazx

Y1,min

Y1, mazx

Y2.min

Y2 mazx

Ysmin Y3 maz Yamin Ydmaz Y3,min Y3 maz Yamin Ydmaz
Y1,min I Y1, min
Y1,maz T Y1,maz
y?,min I ”2,min
|

Y2,max Y2,max



Branch and Bound Inference — Branching

Y3, min Y3.mazx Y4, min Y4, max

Y1,min _—

Y1, mazx

Y2, min

Y2, mazx

Y3min Y3 maz Ya,min Y4, maz Y3min Y3 maz Y4, min Y4.maz
Y1,min I Y1,min
Y1, maz I N maz
Y2,min I Y2,min
|

Y2,max Y2,max



Branch and Bound Inference — Bounding

e Decompose ¢(x, y) into potential with strictly positive weights
and those with weights that are either zero or negative:

WT¢(X7y) = Wrz;g¢neg(X,Y) + Wp7;s¢pos(xa)/)

e Construct a lower bound set function q_S,-,,,eg and an upper
bound set function ¢; ,0s such that

ggi,neg(xv Y) S (bi,neg(xay) Vy € Y
ij,pos(xv Y) > ¢j,pos(XaY) v)/ ey
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Branch and Bound Inference — Bounding — Grass

Grass Potential:

# of grass pixels in F, # of non-grass pixels in Fy

dc(x,y) = (

total # of grass pixels’ total # of non-grass pixels

)
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Branch and Bound Inference — Bounding — Grass

Y3,min Y3, max Y4, min Ya.max
Y1, min
Y1, max
Fyﬁ Fyu
Y2.min
Fy

Y2 mazx



Branch and Bound Inference — Bounding — Grass

Note that for any field y € ), we have
Fy. CF, CFy,
The above relation implies that

# of grass pixels inside F,, < # of grass pixels inside F,
< # of grass pixels inside Fy,
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Branch and Bound Inference — Bounding — Grass

Hence, we can define the upper bound for the grass potential as:

96 pos(x, Y) = 6 (x, 1)

Similarly, a lower bound can be defined as:

QEG,neg(Xa Y) = ¢G(Xa)/ﬂ)
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Branch and Bound Inference — Bounding — Lines

@ Shortest Possible Line ¢
(@ Longest Possible Line ¢

y4,min y4,max
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Branch and Bound Inference — Bounding — Ellipses

mm Max/Min Outer Quadrilateral
B Min/Max Inner Quadrilateral




Learning — Structural SVM

e The outputs y = (yi,...,ya) of equation (1) are discrete
random variable with complex dependencies,

e Use SSVM

. . : N (N
e Given a dataset of ground truth training pairs {x(’),y(’)}i:l
we learn the parameters w by solving the following
optimization problem

N
. 1 C n A n A n n
min = wl® + 5 > max (A, 9) +wTo(x(, 9) — wTo(x(7, (M)
n=1

where A : Y x Y — R U {0}
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Learning — Structural SVM — A

e A hypothesis field y

e Ty be the collection of cells in the grid ) corresponding to
the region inside the quadrilateral defined by y

. Tyc be the complement of Ty in the grid J

of GT cellsin Ty, + # of cells NGT in TS
Ay ) =1-7 A ;

Total number of cells in Y
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Experiments:

Datasets:

e 395 images from 20 games from World Cup 2014
209 train/val from 10 games
186 test from the 10 other games

4000 images from 10 NHL games
2000 train/val
2000 test
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