# Sports Field Localization

Namdar Homayounfar

February 5, 2017

## Motivation

Sports Field Localization: Have to figure out where the field and players are in 3d space in order to make measurements and generate statistics.

| <u> </u> N | BA              |          | Gam      | es       | Тор     | Stories    | Vid      | eo                   | Standir | ngs    | Stats   | Playe    | rs T     | Teams    |              |            |                              |                                          | ≓ Store      | 2 TICK           | ×<br>etts         |
|------------|-----------------|----------|----------|----------|---------|------------|----------|----------------------|---------|--------|---------|----------|----------|----------|--------------|------------|------------------------------|------------------------------------------|--------------|------------------|-------------------|
| Stats Ho   | me / I          | Box S    | core /   | GSW      | vs S#   | ĸc         |          |                      |         |        |         |          |          |          |              |            |                              |                                          |              |                  |                   |
| ≡ (        | Menu            |          | \$       | Stats    | Horr    | ie Play    | ers      | Tea                  | ms      | Score  | ns S    | Schedule | Sta      | ndings   |              |            |                              |                                          | SEARCH FOR A | PLAYER OR TEAM   | Q                 |
|            | (               | 301      | .DE      | N S      | TA      | TE WA      | RRIC     | DRS<br>43-8<br>VEUPS | (       |        | 10      | 6        |          | FINAL    |              | 109        |                              | SACRAMEN<br>20-31<br>LINEUPS             | ITO KINGS    |                  |                   |
| FEB 4, 2   | Q1              | 02       | 03       | Q4       | OT1     | Final      | PITP     | 2ND P                | IS FUPS | BIG LD | TM RED  | TM TOY   | 101 104  | TOV PTS  | LEAD CHANGES | TIMES TIED | GAMETIME:                    | 2:36                                     |              | WATCH HIGH       | LIGHTS            |
| GSW<br>SAC | <b>31</b><br>27 | 25<br>29 | 26<br>26 | 16<br>16 | 8<br>11 | 106<br>109 | 34<br>56 | 5                    | 21<br>5 | 7      | 12<br>6 | 1<br>3   | 18<br>19 | 20<br>28 | 14           | 9          | OFFICIALS: 0<br>Matt Boland, | E: 17,608<br>Hil Spooner,<br>Jacyn Goble |              | NBA LEAGI<br>GAN | JE PASS<br>AEBOOK |

#### Box Score Player Tracking

|                       |       |      |      |      |      |     |      |       |      |      |      |      |      |     |      | 5    | LARE ON: | E 🗶  | http://or | .nba.cor | n/2j( |
|-----------------------|-------|------|------|------|------|-----|------|-------|------|------|------|------|------|-----|------|------|----------|------|-----------|----------|-------|
| Golden State Warriors |       |      |      |      |      |     |      |       |      |      |      |      |      |     |      |      |          |      |           |          |       |
| PLAYER                | MN    | DIST | SPD  | TCHS | PASS | AST | SAST | FTAST | DFGM | DFGA | DFG% | 0880 | DRBC | RBC | FG%  | CFGM | CFGA     | CFG% | UFGM      | UFGA     | UFG%  |
| James Michael McAdoo  | 10:09 | 0.72 | 4.26 | 15   | 13   | 0   | 1    | 0     | 0    | 1    | 0.0  | 3    | 0    | 3   | 50.0 | 1    | 2        | 50.0 | 0         | 0        | 0.0   |
| Shaun Livingston      | 17:05 | 1.20 | 4.22 | 36   | 29   | 0   | 0    | 0     | 0    | 0    | 0.0  | 2    | 3    | 5   | 75.0 | 2    | 3        | 66.7 | 1         | 1        | 100   |
| Patrick McCaw         | 8:55  | 0.65 | 4.38 | 13   | 10   | 1   | 1    | 0     | 0    | 0    | 0.0  | 0    | 1    | 1   | 0.0  | 0    | 1        | 0.0  | 0         | 1        | 0.0   |

http://stats.nba.com/

# Motivation



a.espncdn.com

- There are various tracking and analytics companies
- Their solutions for field localization is based mostly on hardware



http://www.stats.com/sportvu/sportvu-basketball-media/

#### Real-Time Objects Tracking and Motion Capture in Sports Events

US 20080192116 A1

#### ABSTRACT

Non-intrusive peripheral systems and methods to track, identify various acting entities and capture the full motion of these entities in a sports event. The entities preferably include players belonging to beams. The motion capture of more than one player is implemented in real-time with image processing methods. Captured player body organ or joints location data can be used to generate a three-dimensional display of the real sporting event using computer games graphics.

| Publication number<br>Publication type<br>Application number<br>PCT number<br>Publication date<br>Filing date<br>Priority date ⑦ | US20080192116 A1<br>Application<br>US 11/800,080<br>PCT/IL2006/000388<br>Aug 14, 2008<br>Mar 29, 2006<br>Mar 29, 2005 |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Also published as                                                                                                                | EP1864505A2, EP1864505A4,<br>WO2006103662A2, WO2006103662A3                                                           |  |  |  |  |  |  |  |
| Inventors                                                                                                                        | Michael Tamir, Gal Oz                                                                                                 |  |  |  |  |  |  |  |
| Original Assignee                                                                                                                | Sportvu Ltd.                                                                                                          |  |  |  |  |  |  |  |
| Export Citation                                                                                                                  | BiBTeX, EndNote, RefMan                                                                                               |  |  |  |  |  |  |  |
| Patent Citations (13), Referenced by (96), Classifications (8),<br>Legal Events (1)                                              |                                                                                                                       |  |  |  |  |  |  |  |
| External Links: USPTO, USPTO Assignment, Espacenet                                                                               |                                                                                                                       |  |  |  |  |  |  |  |

#### **IMAGES** (16)



http://www.google.com/patents/US20080192116



FIG. 7a

http://www.google.com/patents/US20080192116



http://www.google.com/patents/US20080192116

- There are various tracking and analytics companies
- Their solutions for field localization is based mostly on hardware



http://pixellot.tv/

- There are various tracking and analytics companies
- Their solutions for field localization is based mostly on hardware



http://www.catapultsports.com/

#### Drawbacks

- Very expensive: e.g. Sportvue costs > \$100000 per season for a team
- Only rich teams can afford them
- Have to maintain all the hardware
- Still not bulletproof. Require workers to fix mistakes

# Simpler Solution?

Can we get rid of all these cameras/gps systems and just figure out where the players are by looking at a broadcast image of the field?



# Simpler Solution? YES!

Goal: Given a single broadcast image of a sport game, such as soccer, can we localize it?



• *H* is a 3 × 3 invertible matrix with 8 d.f. Called a projective transformation/homography

# Homography Matrix

The matrix H captures all the following transformations:

| Group               | Matrix                                                                                                                         | Distortion | Invariant properties                                                                                                                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Projective<br>8 dof | $\left[\begin{array}{ccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$ |            | Concurrency, collinearity, <b>order of contact</b> :<br>intersection (1 pt contact); tangency (2 pt con-<br>tact); inflections<br>(3 pt contact with line); tangent discontinuities<br>and cusps. cross ratio (ratio of ratio of lengths). |
| Affine<br>6 dof     | $\left[\begin{array}{ccc} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$                      |            | Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, $l_{\infty}$ .                                                       |
| Similarity<br>4 dof | $\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$                  |            | Ratio of lengths, angle. The circular points, I, J (see section 2.7.3).                                                                                                                                                                    |
| Euclidean<br>3 dof  | $\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$                      | $\Diamond$ | Length, area                                                                                                                                                                                                                               |

Multiple View Geometry by Hartley and Zisserman

# How to find *H*?

• Require 4 point correspondences



• Difficulty arises in finding the 4 corresponding points

## Related Work: Academia

- Hess et al., Improved Video Registration using Non-Distinctive Local Image Features, 2007
- Gupta et al. Using Line and Ellipse Features for Rectification of Broadcast Hockey Video, 2011



Key-frame 1



Key-frame 3



Key-frame 5

Gupta et al. 2011

# Related Work: Academia

 Based on Keyframes and old school computer vision transforms (eg. SIFT)



Gupta et al. 2011

• Limitation: Depends on fixed features and also requires manual annotation of keyframes for each game and

# Can we do better?

• Can we automatically localize the field from a broadcast image?



- Lets come up with a learning approach
- Based on joint work with Sanja Fidler and Raquel Urtasun submitted to CVPR

# In case of Soccer

- Large dimensions and exposed to the elements
- Different grass textures and patterns





# This Work

- Introduce a parametrization of the field
- Incorporate prior knowledge about the soccer field as potentials in an CRF
- Find the mapping H implicitly by doing inference in the CRF
- Single Camera, No key-frame, Fast Inference

# Methodology

- Let x ∈ X be random variable corresponding to a broadcast image of a soccer field.
- A soccer field is restricted by two long sides referred to as **touchlines** and two shorter sides referred to as **goallines**



• We aim to infer the position of the touchlines and the goallines in the image x. (Not all visible at the same time)

# Methodology



- It's very important how we parametrize this problem
- What are we trying to find?
- Vanishing Points: Where parallel lines meet in the image
- Manhattan World Assumption: Existence of three dominant orthogonal vanishing points in human-made scenes.
- In a soccer field we usually have clues for the two orthogonal vanishing point



• Create a grid by emanating rays from the vanishing points







- We parametrize the soccer field by four rays  $y = (y_1, y_2, y_3, y_4)$  on the grid
- State space:  $\mathcal{Y} = \prod_{i=1}^{4} \left\{ [y_{i,\min}^{init}, y_{i,\max}^{init}] \right\} \subset \mathbb{N}^{4}$





# Inference Task

Given an image x of the field, obtain the best prediction of the touchlines and the goallines by solving the following inference task:

$$\hat{y} = \arg \max_{y \in \mathcal{Y}} w^T \phi(x, y)$$

- $\phi(x, y)$ : feature vector
- w: weights to be learned from training data
- Note:  $|\mathcal{Y}| \propto (\#$ rays from  $vp_H)^2 (\#$ rays from  $vp_V)^2$

We find an exact solution by using branch and bound for inference. More on that later

# Model: Features

A soccer field is made up of grass and there are white marking corresponding to lines and circles with fixed dimensions



We incorporate these as features.

- We need good features in the presence of noise
- Different weather and lighting conditions and shadows
- Methods based on heuristics are very fragile

# Model: Features - Semantic Segmentaition

Train a semantic segmentation network to classify image pixels to either belonging to:

- 1. Vertical Lines
- 2. Horizontal Lines
- 3. Middle Circle
- 4. Side Circles
- 5. Grass
- 6. Outside

## Model: Features - Some Examples





## Model: Features - Some Examples





## Model: Features - Some Examples





#### Model: Features — Grass



7 vertical line segments corresponding to  $vp_V$  and 10 horizontal line segments corresponding to  $vp_H$ 



- Given y, need to construct a potential function that is large when the projection of each line segment in the image x is close to its ground truth.
- But given y, where does each line segment fall in the image x?
- Use **Cross Ratios:** Given 4 points *A*, *B*, *C*, *D* on a line, their cross ratio is given by:

$$CR(A, B, C, D) = \frac{|A - C| \cdot |B - D|}{|B - C| \cdot |A - D|}$$

• Cross ratios invariant under any projective transformation.

• Use cross ratios to find the position of each line on the grid



• For example for line  $\ell_3$ :



A cemicircle on each side of the field  $C_2$ ,  $C_3$  and a circle in the middle:



Transformed to ellipses  $C'_k$  in x



- Similar to line potentials, want potential functions that count the fraction of supporting pixels in the image x for each circular shape C<sub>i</sub> given a hypothesis field y
- Unlike lines, the ellipses don't fall on the grid.
- Ellipse detection: slow and unreliable

- For each circle there are unique inscribing and circumscribing rectangles aligned with the vanishing points.
- Similar to lines, we can find the quadrilaterals associated with these rectangles on the grid  $\mathcal{Y}$ .



## Model: Features — Efficient Computation

- We have positive features.
- Can use 3d accumulators to compute the potentials efficiently.



Schwing et al. 2012

## Branch and Bound Inference

Inference task

$$\hat{y} = \arg \max_{y \in \mathcal{Y}} w^T \phi(x, y)$$

- Aim to do it efficiently and exactly
- Exactness comes from using branch and bound
- Efficiency comes from using integral images and tight upper bounds in branch and bound

## Branch and Bound Inference — 3 Ingredients

Suppose  $Y \subset \mathcal{Y} = \prod_{i=1}^{4} \left\{ [y_{i,\min}^{init}, y_{i,\max}^{init}] \right\}$  is a subset of parametrized fields. Branch and bound needs

- A branching mechanism that divides the set Y into two disjoint subsets Y<sub>1</sub> and Y<sub>2</sub> of parametrized fields.
- A set function  $\overline{f}$  such that  $\overline{f}(Y) \ge \max_{y \in Y} w^t \phi(x, y)$ .
- A priority queue PQ which orders sets of parametrized fields Y according to  $\bar{f}$ .

#### Branch and Bound Inference — Optimality

In order to guarantee the optimality of the converged solution:

1. 
$$\bar{f}(Y) \ge \max_{y \in Y} w^t \phi(x, y)$$
 for any arbitrary  $Y \in \mathcal{Y}$ 

2. 
$$\overline{f}(Y) = w^t \phi(x, y)$$
 when  $Y = \{y\}$ 

Algorithm 1 branch and bound (BB) inference put pair  $(\bar{f}(\mathcal{Y}), \mathcal{Y})$  into queue and set  $\hat{\mathcal{Y}} = \mathcal{Y}$ repeat split  $\hat{\mathcal{Y}} = \hat{\mathcal{Y}}_1 \times \hat{\mathcal{Y}}_2$  with  $\hat{\mathcal{Y}}_1 \cap \hat{\mathcal{Y}}_2 = \emptyset$ put pair  $(\bar{f}(\hat{\mathcal{Y}}_1), \hat{\mathcal{Y}}_1)$  into queue put pair  $(\bar{f}(\hat{\mathcal{Y}}_2), \hat{\mathcal{Y}}_2)$  into queue retrieve  $\hat{\mathcal{Y}}$  having highest score until  $|\hat{\mathcal{Y}}| = 1$ 

# Branch and Bound Inference — Branching

• How to branch a set  $Y = \prod_{i=1}^4 \{[y_{i,min}, y_{i,max}]\} \subset \mathcal{Y}$  into two disjoint sets  $Y_1$  and  $Y_2$ 



# Branch and Bound Inference — Branching



# Branch and Bound Inference — Branching



 Decompose \(\phi(x, y)\) into potential with strictly positive weights and those with weights that are either zero or negative:

$$w^{T}\phi(x,y) = w_{neg}^{T}\phi_{neg}(x,y) + w_{pos}^{T}\phi_{pos}(x,y)$$

Construct a lower bound set function \$\overline{\phi\_{i,neg}}\$ and an upper bound set function \$\overline{\phi\_{i,pos}}\$ such that

$$ar{\phi}_{i,neg}(x,Y) \leq \phi_{i,neg}(x,y) \qquad orall y \in Y \ ar{\phi}_{j,pos}(x,Y) \geq \phi_{j,pos}(x,y) \qquad orall y \in Y$$

Grass Potential:

$$\phi_G(x, y) = \left(\frac{\# \text{ of grass pixels in } F_y}{\text{total } \# \text{ of grass pixels}}, \frac{\# \text{ of non-grass pixels in } F_y^c}{\text{total } \# \text{ of non-grass pixels}}\right)$$



Note that for any field  $y \in \mathcal{Y}$ , we have

$$F_{y_{\cap}} \subset F_y \subset F_{y_{\cup}}$$

The above relation implies that

# of grass pixels inside  $F_{y_{\cap}} \leq \#$  of grass pixels inside  $F_y \leq \#$  of grass pixels inside  $F_{y_{\cup}}$ 

Hence, we can define the upper bound for the grass potential as:

$$\bar{\phi}_{G,pos}(x,Y) = \phi_G(x,y_{\cup})$$

Similarly, a lower bound can be defined as:

$$\bar{\phi}_{G,neg}(x,Y) = \phi_G(x,y_{\cap})$$





# Learning — Structural SVM

• The outputs  $y = (y_1, ..., y_4)$  of equation (1) are discrete random variable with complex dependencies,

- Use SSVM
- Given a dataset of ground truth training pairs {x<sup>(i)</sup>, y<sup>(i)</sup>}<sup>N</sup><sub>i=1</sub> we learn the parameters w by solving the following optimization problem

$$\min_{w} \frac{1}{2} \|w\|^{2} + \frac{C}{N} \sum_{n=1}^{N} \max_{\hat{y} \in \mathcal{Y}} \left( \Delta(y^{(n)}, \hat{y}) + w^{T} \phi(x^{(n)}, \hat{y}) - w^{T} \phi(x^{(n)}, y^{(n)}) \right)$$

where  $\Delta : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+ \cup \{0\}$ 

Learning — Structural SVM —  $\Delta$ 

- A hypothesis field  $\hat{y}$
- $T_{\hat{y}}$  be the collection of cells in the grid  $\mathcal{Y}$  corresponding to the region inside the quadrilateral defined by  $\hat{y}$
- $T^{c}_{\hat{y}}$  be the complement of  $T_{\hat{y}}$  in the grid  $\mathcal{Y}$

$$\Delta(y, \hat{y}) = 1 - rac{\# ext{ of GT cells in } \mathcal{T}_{\hat{y}} + \# ext{ of cells NGT in } \mathcal{T}_{\hat{y}}^c}{ ext{Total number of cells in } \mathcal{Y}}$$

## **Experiments**:

Datasets:

- 395 images from 20 games from World Cup 2014
- 209 train/val from 10 games
- 186 test from the 10 other games
- 4000 images from 10 NHL games
- 2000 train/val
- 2000 test