Object Detection

CSC2541, 2017 Winter
Bin Yang
6 Feb. 2017

“If I have seen further it is by standing on the shoulders of giants.” - Isaac Newton

slides adopted from Ross Girshick, Chris McIntosh, Sanja Fidler, Mubarak Shah and many others
Object detection

• Introduction
• Pre-CNN time
 • HOG detector
 • Deformable Part-based Model
• CNN time
 • Region-CNN
 • Fast versions of R-CNN
 • YOLO/SSD
• 3D object detection
• Devil’s in the details
Object detection

• Introduction
 • Pre-CNN time
 ▪ HOG detector
 ▪ Deformable Part-based Model
 • CNN time
 ▪ Region-CNN
 ▪ Fast versions of R-CNN
 ▪ YOLO/SSD
• 3D object detection
• Devil’s in the details
Image understanding

Snack time in the lab
What objects are where?

robot: “I see a table with twinkies, pretzels, fruit, and some mysterious chocolate things...”
Formalizing the object detection task

Many possible ways, this one is popular:
Formalizing the object detection task

Many possible ways, this one is popular:

Input

Desired output

Performance summary:

Average Precision (AP)
0 is worst 1 is perfect

slide credit: Ross Girshick
Example 1: Find Waldo!

slide credit: Chris McIntosh
1. Make the template as a filter

slide credit: Chris McIntosh
2. Result of normalized cross-correlation
3. Find the highest peak

slide credit: Chris McIntosh
4. Put a bounding box (the size of template) at the point

slide credit: Chris McIntosh
Example 2: Find all persons?
Example 2: Find all persons?

A template for all instances?

slide credit: Chris McIntosh
Example 2: Find all persons?

A template for all instances?

We need features!

slide credit: Chris McIntosh
Object detection

• Introduction
• Pre-CNN time
 • HOG detector
 • Deformable Part-based Model
• CNN time
 • Region CNN
 • Fast versions of RCNN
 • YOLO/SSD
• 3D object detection
• Devil’s in the details
The HOG Detector

N. Dalal and B. Triggs

Histograms of oriented gradients for human detection

CVPR, 2005

cited by 17,502
HOG detector: pipeline

1. Scan image(s) at all scales and locations
2. Extract features over windows
3. Run linear SVM classifier on all locations
4. Fuse multiple detections in 3-D position & scale space
5. Object detections with bounding boxes

Slide credit: Sanja Fidler
I. Sliding window

1. Scan image(s) at all scales and locations
2. Extract features over windows
3. Run linear SVM classifier on all locations
4. Fuse multiple detections in 3-D position & scale space
5. Object detections with bounding boxes

Slide credit: Sanja Fidler
II. Histograms of Oriented Gradients

1. Scan image(s) at all scales and locations
2. Extract features over windows
3. Run linear SVM classifier on all locations
4. Fuse multiple detections in 3-D position & scale space
5. Compute gradients
6. Weighted vote into spatial & orientation cells
7. Contrast normalize over overlapping spatial blocks

Slide credit: Sanja Fidler
II. Histograms of Oriented Gradients

1. **Scan image(s) at all scales and locations**
2. **Extract features over windows**
3. **Run linear SVM classifier on all locations**
4. **Fuse multiple detections in 3-D position & scale space**
5. **Object detections with bounding boxes**

- **Compute gradients**
- **Weighted vote into spatial & orientation cells**
- **Contrast normalize over overlapping spatial blocks**
II. Histograms of Oriented Gradients

Scan image(s) at all scales and locations

Extract features over windows

Run linear SVM classifier on all locations

Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Compute gradients

Weighted vote into spatial & orientation cells

Contrast normalize over overlapping spatial blocks

9-dim feature vector
II. Histograms of Oriented Gradients

Scan image(s) at all scales and locations

Extract features over windows

Run linear SVM classifier on all locations

Fuse multiple detections in 3-D position & scale space

Object detections with bounding boxes

Feature vector $f = [\ldots, \ldots, \ldots]$

L2 normalization in each block:

$$f = \frac{f}{\sqrt{||f||^2 + \epsilon^2}}$$
III. SVM classifier

Training:
- Train a classifier (e.g., person vs no person)

Detection:
- Use the trained classifier to predict presence/absence of object class in each window in the image
III. SVM classifier - training

Learning phase

1. Input: Annotations on training images
2. Create fixed-resolution normalised training image data set
3. Encode images into feature spaces
4. Learn binary classifier

Train classifier

Predict presence/absence of object class in each image window

Slide credit: Sanja Fidler

- All image crops **are scaled to the same size** (for this example (15x8) x (7x8) pixels), where 8 is the width/height of each HOG cell in pixels
- **Cool trick**: take a bigger region than each annotated object to also capture **context** (works better!)
III. SVM classifier - training

Learning phase

Input: Annotations on training images

Create fixed-resolution normalised training image data set

Encode images into feature spaces

Learn binary classifier

Train classifier

Predict presence/absence of object class in each image window

positive training examples

negative training examples

*** These are just feature visualizations. Each "picture" is really a 15x7x31 feature matrix.

Before training a classifier, we vectorize each of these examples: f=f(·)
III. SVM classifier - training

Learning phase

Input: Annotations on training images

Create fixed-resolution normalised training image data set

Encode images into feature spaces

Learn binary classifier

Train classifier

Predict presence/absence of object class in each image window

Train classifier. SVM (Support Vector Machines) is typically used.

Slide credit: Sanja Fidler
III. SVM classifier - detection

- Computing the score $\mathbf{w}^T \cdot \mathbf{x} + b$ in every location is the same as performing cross-correlation with template \mathbf{w} (and add b to result).

Detection Phase

$score(l, p) = \mathbf{w} \cdot \phi(l, p)$

Object detections with bounding boxes

Scan image(s) at all scales and locations

Extract features over windows

Run linear SVM classifier on all locations

Fuse multiple detections in 3-D position & scale space

Predict presence/absence of object class in each image window

Slide credit: Sanja Fidler
IV. Non-Maxima Suppression (NMS)

Scan image(s) at all scales and locations
Extract features over windows
Run linear SVM classifier on all locations
Fuse multiple detections in 3-D position & scale space
Object detections with bounding boxes

Non-maxima suppression (NMS)

\[
\text{overlap} = \frac{\text{area}(\text{box}_1 \cup \text{box}_2)}{\text{area}(\text{box}_1 \cap \text{box}_2)} > 0.5
\]

- Remove all boxes that overlap more than XX (typically 50%) with the chosen box

Slide credit: Sanja Fidler
IV. Non-Maxima Suppression (NMS)

- Scan image(s) at all scales and locations
- Extract features over windows
- Run linear SVM classifier on all locations
- Fuse multiple detections in 3-D position & scale space
- Object detections with bounding boxes

Non-maxima suppression (NMS)
- Greedy algorithm.
- At each iteration pick the highest scoring box.
- Remove all boxes that overlap more than XX (typically 50%) with the chosen box

Slide credit: Sanja Fidler
HOG detector: summary

Dalal & Triggs ’05
- Histogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick
Example 3: How can we deal with this guy?

Dalal & Triggs ’05
- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

Slide credit: Sanja Fidler, Ross Girshick
HOG detector: limitations

Dalal & Triggs ’05
- Histrogram of Oriented Gradients (HOG)
- SVM training
- Sliding window detection

We need flexible models!

Fischler & Elschlager ’73
Felzenszwalb & Huttenlocher ’00
- Pictorial structures
- Weak appearance models
- Non-discriminative training

Slide credit: Sanja Fidler, Ross Girshick
The DPM Detector

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan

Object Detection with Discriminatively Trained Part Based Models

T-PAMI, 2010

Code: http://www.cs.berkeley.edu/~rbg/latent/

cited by 5,084
Deformable Part Model (DPM): key idea

Port the success of Dalal & Triggs into a part-based model

DPM

D&T

PS

AP 12% 2005
 27% 2008
 36% 2009
 45% 2010
 49% 2011

Slide credit: Ross Girshick
DPM: Model representation

- A model has a root filter F_0 and n part models (F_i, v_i, d_i)
 - F_i: i-th part filter
 - v_i: anchor position of i-th part relative to the root
 - d_i: deformation parameters for i-th part

Slide credit: Mubarak Shah, Ross Girshick
DPM: Object Hypothesis

- In HOG feature pyramid
 - root filter - coarser scale
 - part filters - finer scale

\[z = (p_0, \ldots, p_n) \]

- \(p_0 \): location of root
- \(p_1, \ldots, p_n \): location of parts

Score is sum of filter scores minus deformation costs

Image pyramid

HOG feature pyramid

Slide credit: Mubarak Shah
DPM: Score of a Hypothesis

\[
\text{score}(p_0, ..., p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot \phi_d(dx_i, dy_i) + b
\]

Score of a hypothesis \(z \) is

\[
\text{score}(z) = \beta \cdot \psi(H, z)
\]

where

\[
\beta = (F_0, ..., F_n, d_1, ..., d_n, b)
\]

\[
\psi(H, z) = (\phi(H, p_0), ..., \phi(H, p_n), -\phi_d(dx_1, dy_1), ..., -\phi_d(dx_n, dy_n), 1)
\]

Slide credit: Mubarak Shah
DPM: Score of a Hypothesis

\[
\text{score}(p_0, \ldots, p_n) = \sum_{i=0}^{n} F_i \cdot \phi(H, p_i) - \sum_{i=1}^{n} d_i \cdot \phi_d(dx_i, dy_i) + b
\]

- **Data term**
- **Spatial prior**
- **Bias**

- Filters
- Feature of subwindow at location \(p_i \)
- Deformation parameters
- Displacement of part \(i \) relative to its anchor position

Initial Value (to be learned)

\[
d_i = (0, 0, 1, 1)
\]

Deformation models

Slide credit: Mubarak Shah
DPM: Detection

- The overall score of a root location is computed according to the best possible placement of the parts
 \[
 \text{score}(p_0) = \max_{p_1, \ldots, p_n} \text{score}(p_0, \ldots, p_n)
 \]
- High-scoring root locations define detections
- Sliding-window approach
- Efficient computation (O(nk)): dynamic programming + generalized distance transforms
DPM: Detection

• Distance transform
 • Response of the i-th part filter in the l-th level of the feature pyramid
 \[R_{i,l}(x, y) = F_i \cdot \phi(H, (x, y, l)) \]
 • Transformed response, given root is at (x,y)
 \[D_{i,l}(x, y) = \max_{dx,dy} (R_{i,l}(x + dx, y + dy) - d_i \cdot \phi_d(dx, dy)) \]

\[\phi_d(dx, dy) = (dx, dy, dx^2, dy^2) \]
\[d_i = (0, 0, 1, 1) \]
DPM: Detection
DPM: Training

• Positive training examples are labeled with bounding boxes
• No part location is available during training (latent)
• Aim: learn model parameters $\beta = (F_0, \ldots, F_n, d_1, \ldots, d_n, b)$
DPM: Latent Variables

- The positions of the parts are not given in both the training and the testing images.
- The variables that exist but not known in training samples are called latent variables.
- The learning algorithm must be able to find/discover the optimal values for the latent variables, namely the position of the parts.
DPM: Training

- The classifier scores an example x by

 $f_\beta(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z)$

- β: the model parameters
- z: latent values
- $Z(x)$: the possible latent values for example x
DPM: Training

- Minimize the objective function

\[L_D(\beta) = \frac{1}{2} \| \beta \|^2 + C \sum_{i=1}^{n} \max(0, 1 - y_i f_\beta(x_i)) \]

- Labeled training examples \(D = (\langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle) \)
- \(y_i \in \{-1, 1\} \)
DPM: Latent SVM

• A latent SVM is semi-convex

 • \(f_\beta(x) = \max_{z \in Z(x)} \beta \cdot \Phi(x, z) \) is convex in \(\beta \)

 • For negative examples \((y_i = -1) \), the hinge loss is convex
 \[
 \max \left(0, 1 - y_i f_\beta(x_i) \right) = \max(0, 1 + f_\beta(x_i))
 \]
 (the maximum of two convex functions)

 • For positive examples \((y_i = 1) \), the hinge loss is not convex
 \[
 \max \left(0, 1 - y_i f_\beta(x_i) \right) = \max(0, 1 - f_\beta(x_i))
 \]
 (the maximum of a convex function and a concave function)

 • If the latent value for positive examples are fixed, the hinge loss is convex
DPM: Latent SVM

- Initialize β using standard SVM by assuming the same parts locations for all the positive examples
- Iterative optimization:
 - Relabel positive examples: fix β, find the best z for each positive example (exactly the same with detection!)
 - Optimize β: fix z, optimize β by solving the convex problem
DPM: Mixture model

- A mixture model consists of m components
- Captures extreme intra-class variation
- Split the positive bounding boxes into m groups by aspect ratio

Mixture Model Example - Person

Mixture Model Example - Bicycle

Slide credit: Mubarak Shah
DPM on PASCAL VOC

Slide credit: Ross Girshick

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20(07,08,09,10,11,12)/results/index.html]

Ross Girshick

Lifetime Achievement Award by PASCAL VOC
Object detection

• Introduction
• Pre-CNN time
 • HOG detector
 • Deformable Part-based Model
• CNN time
 • Region CNN
 • Fast versions of RCNN
 • YOLO/SSD
• 3D object detection
• Devil’s in the details
Object detection renaissance (2013-present)

Slide credit: Renjie Liao
Deep object detection

Object Detection

Published: 09 Oct 2015 Category: deep_learning

Jump to...
- Leaderboard
- Papers
 - R-CNN
 - MultiBox
 - SPP-Net
 - DeepID-Net
 - NoC
 - Fast R-CNN
 - DeepBox
 - MR-CNN
 - Faster R-CNN
 - YOLO
 - AttentionNet
 - DenseBox
- SSD
 - Inside-Outside Net (ION)
 - G-CNN
 - HyperNet
 - MultiPathNet
 - CRAFT
 - OHEM
 - R-FCN
 - MS-CNN
 - PVANET
 - GBD-Net
 - StuffNet
 - Feature Pyramid Network (FPN)
 - YOLOv2
 - DSSD

Slide credit: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

Training

1. Pre-train CNN for **image classification**

large auxiliary dataset (ImageNet)
1. Pre-train CNN for **image classification**

 - train CNN
 - large auxiliary dataset (ImageNet)

2. Fine-tune CNN on **target dataset** and **task**

 - fine-tune CNN
 - small target dataset (PASCAL VOC)

 (optional)
Training

1. Pre-train CNN for **image classification**

large auxiliary dataset (ImageNet)

2. Fine-tune CNN on **target dataset and task**

fine-tune CNN

small target dataset (PASCAL VOC)

(conditional)

3. Train linear predictor for **detection**

region proposals

small target dataset (PASCAL VOC)

~2000 warped windows / image

CNN features

per class SVM training labels

Slide credit: Ross Girshick
R-CNN Results

<table>
<thead>
<tr>
<th>Method</th>
<th>VOC2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM v5 (Girshick et al. 2011)</td>
<td>33.7%</td>
</tr>
<tr>
<td>Regionlets (Wang et al. 2013)</td>
<td>41.7%</td>
</tr>
<tr>
<td>R-CNN (AlexNet)</td>
<td>54.2%</td>
</tr>
<tr>
<td>R-CNN (AlexNet) + BB</td>
<td>58.5%</td>
</tr>
<tr>
<td>R-CNN (VGGNet)</td>
<td>62.2%</td>
</tr>
<tr>
<td>R-CNN (VGGNet) + BB</td>
<td>66.0%</td>
</tr>
</tbody>
</table>
R-CNN Results

<table>
<thead>
<tr>
<th>Method</th>
<th>VOC2007</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM v5 (Girshick et al. 2011)</td>
<td>33.7%</td>
<td></td>
</tr>
<tr>
<td>Regionlets (Wang et al. 2013)</td>
<td>41.7%</td>
<td></td>
</tr>
<tr>
<td>R-CNN (AlexNet)</td>
<td>54.2%</td>
<td>Train 84 hours</td>
</tr>
<tr>
<td>R-CNN (AlexNet) + BB</td>
<td>58.5%</td>
<td>Test 47 s/im</td>
</tr>
<tr>
<td>R-CNN (VGGNet)</td>
<td>62.2%</td>
<td></td>
</tr>
<tr>
<td>R-CNN (VGGNet) + BB</td>
<td>66.0%</td>
<td></td>
</tr>
</tbody>
</table>
Slow R-CNN

- Apply bounding-box regressors
- Classify regions with SVMs
- Forward each region through ConvNet
- Warped image regions
- Regions of Interest (ROI) from a proposal method (~2k)

Slide credit: Ross Girshick
Object Detection System

Getting Proposals Feature Extraction Classifier
Object Detection System

Getting Proposals → Feature Extraction → Classifier

- aeroplane? no.
- person? yes.
- tvmonitor? no.
Spatial Pyramid Pooling

Spatial Pyramid Pooling

SPP-net

Trainable (3 layers)

Bbox reg SVMs

FCs

Frozen (13 layers)

ConvNet

Slide credit: Ross Girshick
SPP-net Results

<table>
<thead>
<tr>
<th></th>
<th>VOC2007</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-CNN (ZFNet)</td>
<td>59.2%</td>
<td>14.5 s/im</td>
</tr>
<tr>
<td>R-CNN (VGGNet)</td>
<td>66.0%</td>
<td>47.0 s/im</td>
</tr>
<tr>
<td>SPP (ZFNet)</td>
<td>59.2%</td>
<td>0.38 s/im</td>
</tr>
<tr>
<td>SPP (VGGNet)</td>
<td>63.1%</td>
<td>2.3 s/im</td>
</tr>
</tbody>
</table>
Object Detection System

Getting Proposals → Feature Extraction → Classifier

SPP
Object Detection System

- Getting Proposals
- Feature Extraction
- Classifier

Diagram showing the process flow of an object detection system.
Fast R-CNN

Totally end-to-end!

Log loss + smooth L1 loss
Linear + softmax
Linear
FCs
Multi-task loss
Trainable
ConvNet

Slide credit: Ross Girshick
Fast R-CNN Results

<table>
<thead>
<tr>
<th>Model</th>
<th>VOC2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPPNet BB</td>
<td>63.1%</td>
</tr>
<tr>
<td>R-CNN BB</td>
<td>66.0%</td>
</tr>
<tr>
<td>Fast RCNN</td>
<td>66.9%</td>
</tr>
<tr>
<td>Fast RCNN (07+12)</td>
<td>70.0%</td>
</tr>
</tbody>
</table>
Object Detection System

Getting Proposals → Feature Extraction → Classifier

Fast R-CNN
Object Detection System

Getting Proposals -> Feature Extraction -> Classifier

(e.g. selective search)
Faster R-CNN

Region Proposal Network

- Sliding window style
- Multi-scale predictions on fix-sized window for efficiency (take advantage of the large receptive field of CNN features)
- Same loss as R-CNN (cls+bbox)
Figure 2: Recall vs. IoU overlap ratio on the PASCAL VOC 2007 test set.
Faster R-CNN Results

• Fewer and better proposals not only bring speed-up, but also detection performance boost.

<table>
<thead>
<tr>
<th>method</th>
<th># proposals</th>
<th>data</th>
<th>mAP (%)</th>
<th>time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>2k</td>
<td>07</td>
<td>66.9</td>
<td>1830</td>
</tr>
<tr>
<td>SS</td>
<td>2k</td>
<td>07+12</td>
<td>70.0</td>
<td>1830</td>
</tr>
<tr>
<td>RPN+VGG, unshared</td>
<td>300</td>
<td>07</td>
<td>68.5</td>
<td>342</td>
</tr>
<tr>
<td>RPN+VGG, shared</td>
<td>300</td>
<td>07</td>
<td>69.9</td>
<td>196</td>
</tr>
<tr>
<td>RPN+VGG, shared</td>
<td>300</td>
<td>07+12</td>
<td>73.2</td>
<td>196</td>
</tr>
</tbody>
</table>
Object Detection System

Getting Proposals Feature Extraction Classifier

Faster R-CNN
Efficient Object Detection System

Getting Proposals
- Faster R-CNN

Feature Extraction
- SPP

Classifier
- Fast R-CNN

66.0% → 73.2%
47 s/im → 0.2 s/im
Example 4: Driving car

<table>
<thead>
<tr>
<th></th>
<th>Pascal 2007 mAP</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM v5</td>
<td>33.7</td>
<td>.07 FPS</td>
</tr>
<tr>
<td>R-CNN</td>
<td>66.0</td>
<td>.05 FPS</td>
</tr>
</tbody>
</table>

\(\frac{1}{3}\) Mile, 1760 feet

Slide credit: Joseph Chet Redmon
Example 4: Driving car

<table>
<thead>
<tr>
<th>Method</th>
<th>Pascal 2007 mAP</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM v5</td>
<td>33.7</td>
<td>.07 FPS</td>
</tr>
<tr>
<td>R-CNN</td>
<td>66.0</td>
<td>.05 FPS</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>70.0</td>
<td>.5 FPS</td>
</tr>
</tbody>
</table>

176 feet

Slide credit: Joseph Chet Redmon
Example 4: Driving car

<table>
<thead>
<tr>
<th></th>
<th>Pascal 2007 mAP</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPM v5</td>
<td>33.7</td>
<td>.07 FPS</td>
</tr>
<tr>
<td>R-CNN</td>
<td>66.0</td>
<td>.05 FPS</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>70.0</td>
<td>.5 FPS</td>
</tr>
<tr>
<td>Faster R-CNN</td>
<td>73.2</td>
<td>7 FPS</td>
</tr>
</tbody>
</table>

Slide credit: Joseph Chet Redmon
Real-time object detectors?

- **VOC2007 test mAP**
 - **R-CNN, Girshick 2014**
 - 66% mAP / 0.02 fps
 - **Fast R-CNN, Girshick 2015**
 - 70% mAP / 0.4 fps
 - **Faster R-CNN, Ren 2015**
 - 73% mAP / 7 fps
 - **YOLO, Redmon 2016**
 - 66% mAP / 21 fps
 - **SSD300**
 - 77% mAP / 46 fps
 - **SSD512**
 - 80% mAP / 19 fps

Slide credit: Wei Liu
YOLO: You Only Look Once

YOLO: output parameterization

Each cell predicts:

- For each bounding box:
 - 4 coordinates \((x, y, w, h)\)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

\[7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30\] tensor = **1470 outputs**

YOLO: limitations

- Small objects
- Objects with different shapes/sizes
- Occluded objects
SSD: Single Shot MultiBox Detector

SSD: YOLO + default box shape + multi-scale

(a) Image with GT boxes (b) 8 × 8 feature map (c) 4 × 4 feature map

SSD: YOLO + default box shape + multi-scale

Object detection

• Introduction
• Pre-CNN time
 • HOG detector
 • Deformable Part-based Model
• CNN time
 • Region CNN
 • Fast versions of RCNN
 • YOLO/SSD
• 3D object detection
• Devil’s in the details
3D object detection: camera model

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix}
= \begin{bmatrix}
 f_x & 0 & c_x \\
 0 & f_y & c_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_1 \\
 r_{21} & r_{22} & r_{23} & t_2 \\
 r_{31} & r_{32} & r_{33} & t_3 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]

\[
w \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
= [X \ Y \ Z \ 1] P
\]

\[
P = \begin{bmatrix}
 R \\
 t
\end{bmatrix}
K
\]

- Scale factor
- Image points
- World points
- Camera matrix
- Extrinsic matrix
- Intrinsic matrix
- Rotation and translation
3D object detection: pipeline

3D object detection: demo

Object detection

- Introduction
- Pre-CNN time
 - HOG detector
 - Deformable Part-based Model
- CNN time
 - Region CNN
 - Fast versions of RCNN
 - YOLO/SSD
- 3D object detection
- Devil’s in the details
Trick: Pre-trained model

<table>
<thead>
<tr>
<th>Faster R-CNN baseline</th>
<th>mAP@.5</th>
<th>mAP@.5:.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG-16</td>
<td>41.5</td>
<td>21.5</td>
</tr>
<tr>
<td>ResNet-101</td>
<td>48.4</td>
<td>27.2</td>
</tr>
</tbody>
</table>

COCO detection results
(ResNet has 28% relative gain)

Trick: Sampling

1. Use ‘ignore’ labels:

 Difficulties are defined as follows:
 - Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15%
 - Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30%
 - Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50%

2. Use hard-example mining:
 - Heuristics
 - Offline
 - Online[1]

Trick: Multi-region ensemble

Trick: Multi-scale feature fusion

Trick: Iterative localization

- Iterative bounding box regression
- Voting NMS

Object detection

• Introduction
• Pre-CNN time
 • HOG detector
 • Deformable Part-based Model
• CNN time
 • Region-CNN
 • Fast versions of R-CNN
 • YOLO/SSD
• 3D object detection
• Devil’s in the details

we need features!
we need better features!
we want to be fast!
we want to be real-time!
we like 3D!
we hack!
Q&A

“The only stupid question is the one you never asked.” - Rich Sutton