
RNN
Mengye Ren

mren@cs.toronto.edu

Agenda
● Basics
● Bag of applications
● LSTM & GRU
● Bag of tricks
● Other architecture considerations (attention, memory etc.)

Picture credits: http://colah.github.io/

http://colah.github.io/

Recurrent Neural Networks (RNN)
● A neural network with a closed loop -> Wire the output back to the input.
● Lots of sequential data around us: text, music, speech, video, etc.
● We can feed sequential data into RNN frame by frame: speech

recognition, video classification, etc.
● We can also expect RNN to emit sequential output: Language modeling,

machine translation, speech generation, video generation.

Recurrent Neural Networks (RNN)

Machine Translation
● Encoder-Decoder RNN model. Encodes the sentence using an RNN, and

decode the hidden state into another language.
● Since 2015, RNNs started to beat traditional phrase-based systems.

(Sutskever et al., 2015)

DRAW
(Gregor et al., 2015)

https://youtu.be/Zt-7MI9eKEo

https://youtu.be/Zt-7MI9eKEo
https://youtu.be/Zt-7MI9eKEo
http://www.youtube.com/watch?v=Zt-7MI9eKEo

Instance Segmentation

(Ren et al., 2016)

https://youtu.be/wJWydIqtFMM

https://youtu.be/wJWydIqtFMM
https://youtu.be/wJWydIqtFMM
http://www.youtube.com/watch?v=wJWydIqtFMM

Detecting Events and Key Actors
● Use bidirectional RNN to model

features of a moving player.

(Vignesh Ramanathan et al., 2016)

Music Generation
https://vimeo.com/192711856

(Chu et al., 2016)

https://vimeo.com/192711856
https://vimeo.com/192711856

Training RNN with BPTT
● BPTT = Backpropagation through time
● Unroll the RNN as if they are sharing weights every layer.
● Each time step generates a gradient vector towards the weights.
● Average all the gradients collected at each time step.

RNN vanishing gradients
● Vanilla RNNs suffers at vanishing gradients problems.
● The derivative the activation nonlinearities, sigmoid or tanh, is smaller

than 1.
● Therefore, the hidden transfer function should be a linear function.

LSTM
● Stands for Long Short-Term Memory (Hochreiter and Schmidhuber, 1997)
● A linear pathway for the gradient to flow effortlessly.
● Gated units: multiplicative gates controls input, forget, and output.

LSTM

GRU
● Stands for Gated Recurrent Unit (Chung et al., 2015)

Examples (Python for-loop)
dim = 256 # Hidden dimension of LSTM
batch_size = 32 # Batch size
cell = tf.nn.rnn_cell.BasicLSTMCell(dim)
state = tf.zeros([batch_size, dim * 2])
inputs = ... # List of input tensors
outputs = []
for t in range(20):
 output, state = cell(inputs[t], state)
 outputs.append(output)
 tf.get_variable_scope().reuse_variables()
loss = f(outputs, targets)

RNN Cell Object
● In TensorFlow, RNNs are usually implemented in a cell object.
● Cell is callable, which will unroll the RNN for one more iteration.
● Input: x_t, state_{t-1}
● Output: h_t, state_{t}

Padding
● For faster computation and better gradient estimates, typically make the

input into mini-batches.
● However, not all sequences have the same length.
● We need to pad the shorter sequences with zeros.
● We can also select the hidden states at specific length by the end of

computation.

Example (Dynamic RNN)
cell = tf.nn.rnn_cell.BasicLSTMCell(dim)
Sequence length of each example.
seq_len = tf.constant(np.array([1, 2, 3, 4]))
outputs, last_states = tf.nn.dynamic_rnn(
 cell=cell, dtype=tf.float32, sequence_length=seq_len,
inputs=x)

Use of DynamicRNN Function
● Handles different sequence length per batch.
● Faster graph building time, by using tf.while_loop internally.
● Syntax is stricter, have to wrap everything in the for loop inside the cell

object.

Truncated BPTT
● Many RNN training is bounded by the GPU memory.
● All the activations need to be stored at every timestep.
● For very long sequence length (>1000 steps), this is not realistic.
● We can fix the unrolling at K timesteps, upper bound memory usage by K.
● Sacrificing the quality of the gradient, or in other word, the long-range

dependency error signal.

Checkpointing
● We can sacrifice the computation time in exchange for memory space.
● Only store forward pass activation every K steps.
● Need to recompute activations during backward pass
● Takes 2 forward passes + 1 backward pass, but max(K, T/K) timesteps

memory usage.

Gradient Clipping
● Even with LSTMs, sometimes the gradient can still explode.
● When that happens, you will get a NaN after hours of training.
● Always good to add gradient clipping in your code of training RNN.

tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(
 tf.gradients(_opt_cost, tvars), 5.0)
optimizer.apply_gradients(zip(grads, tvars))

Training Generative RNN Model
● Common way of training generative RNN is to maximize the log

probability of the training sequence.
● Apply the chain rule: sumt (log p(xt+1 | x1:t))
● Common way is to always use the groundtruth sequence x1:t to warm up.

3

t-1

t.

Training Generative RNN Model
● At test time, to generate new sequences, we take the output of the RNN,

and feed it back into the input.
● May not be optimal, never trained to plan for more than 1 step.

3

t-1

t.

Beam Search
● While optimal decoding is combinatorial, we can allow keeping a

candidate list of size B (beam size).
● Keep top N most probable sequences, and expand each of them with the

next output choice, and take N top candidates.
● Similar to sequential Monte Carlo.
● End up running B forward passes.

3

t-1

t.

Scheduled Sampling
● At training stage, the network has never seen any fake sentences as input.
● At test stage, once the network generates something unlike a real

sentence, it will have less experience keep generating.
● Remedy #1: At training, at each timestep, we do a coinflip:

○ Either feed in the groundtruth input
○ Or use the network’s current output as input

But we still train the output against the groundtruth, even if the input is
already sampled from the network.

● Annealing, and eventually always using network’s output as input.
● Used in Google’s Image Captioning algorithm (Bengio et al., 2015).

Scheduled Sampling
● An inconsistent learning objective (Huszar, 2015)

I like

went

machine learningGT

went

like machine learningGT

I

to

to

shopping

Professor-Forcing
● Use a Generative Adversarial

Network idea (Goodfellow et al.
2015).

● Train RNN as usual [1], but also
sample free-runs [2]

● Send the hidden states of both
[1] and [2] to a discriminator
(also an RNN).

(Lamb et al., 2016)

Reward-Augmented ML
● Maximum likelihood may not be the best objective, certainly not when we

evaluate those generative models.
● In MT, BLEU scores and variants are widely used (non-differentiable).
● Tempting to use BLEU as the reward function and just apply RL, except it’s

very difficult to kick off training.
● Idea is that we can treat reward as unnormalized energy of true

distribution, and minimize the KL between model distribution, and data
distribution soften by the reward(y, y*).

● Returns to log likelihood, if reward(y, y*) is the delta function.

(Norouzi et al., 2016)

Recurrent Attention
● In MT, RNN can be

forgetful in long
sequences.

● Want to have a look back
mechanism while
decoding.

● Attention in the form of a
weighted sum of a bag of
items (Bahdanau et al.,
2014).

Recurrent Attention
● Can also attend on spatial

level in vision tasks.
● Initialize at uniform.
● Use the previous hidden

state to control the
attention of the next.

(Xu et al., 2015)

Neural Turing Machine
● Proposed an external memory which supports soft-read and soft-write

using attention mechanism (Graves et al., 2014).

Phased LSTM

(Neil et al., 2016)

