Instance-Level Segmentation

Mengye Ren

March 15, 2016

Agenda

- Introduction to instance-level segmentation
- N. Silberman, D. Sontag, R. Fergus. Instance Segmentation of Indoor Scenes using a Coverage Loss. ECCV 2014.
- Z. Zhang, S. Fidler, R. Urtasun. Instance-Level Segmentation with Deep Densely Connected MRFs. CVPR 2016.

What is instance-level segmentation

- Assign a label to each pixel of the image.
- Labels are class-aware and instance-aware. E.g. Chair_1, Chair_2, ..., Table_1, etc.

(Image from Silberman et al. 2014)

Difference from semantic segmentation

- One level increase in difficulty.
- More understanding on the instance individuals and reasoning about occlusion.
- Essential to tasks such as counting the number of objects.

(Image from Silberman et al. 2014)

Difference from 2D object detection and matting

 A detection box is a very coarse object boundary. NMS will suppress occluded objects or slanted objects.

(Image from Ren et al. 2015)

Instance Segmentation of Indoor Scenes using a Coverage Loss

Instance Segmentation of Indoor Scenes using a Coverage Loss

Paper from Nathan Silberman, David Sontag, Rob Fergus, ECCV 2014.

Key contribution:

- Segmentation Tree-Cut algorithm
- High order
- A new dataset for indoor scenes: NYU v2 dataset.

Big Picture of the Pipeline

CNN feature extractor

- For each instance in the dataset, compute a tight bounding box plus 10% margin, and feed it into the CNN.
- Train the CNN to predict the semantic labels of each instance.

• During inference, use the fully connected hidden layer as the features of an

Segmentation Tree

- Motivation: to limit the search space of instance segmentation. Instead of arbitrarily assigning each pixel with a label, it needs to obey the tree structure.
- Completeness: Every pixel I_i is contained in at least one region of S.
- Tree Structure: Each region s_i has at most one parent: $P(si) \in \{\emptyset, s_i\}$, $j \neq i$
- Strict Nesting: If $P(s_i) = s_j$, then the pixels in si form a strict subset of s_j

(Image from Silberman et al. 2014)

Building Segmentation Tree

- Starts with a 2-D planar graph of H x W.
- Segmentation is equivalent to performing graph cuts.
- Edge weights are computed from boundary probability algorithms (gPb and UCM).
- Edges below thresholds are removed at each iteration.

Building Segmentation Tree

- Then for the next iteration, we can dig into each connected component of the resulting graph and perform finer cuts.
- In the end, we get a coarse-to-fine hierarchy of regions.

Biased Segmentation Tree

- Is tree a good structure in general to solve instance segmentation problems?
- Is it too limiting?
- To investivate this, the authors designed the so-called "biased segmentation tree"
- Cut the tree until all groundtruth instance regions can be perfectly segmented by all the regions.
- The performance generated from the biased segmentation tree is an upper bound of the proposed model.

Output: y = (A, C) Regions $\{A: A_i \in \{0, 1\}, i = 1...R\}$, Classes $\{C: C_i \in \{1...K\}, i=1...R\}$

$$W_{reg} \cdot \phi_{reg}(x, y) + \sum_{k} W_{sem:k} \cdot \phi_{sem:k}(x, y) + W_{pair} \cdot \phi_{pair}(x, y) + \phi_{tree}(y)$$

Four terms:

- Region (class agnostic)
- Semantic
- Pairwise
- Tree constraint

- Region term: Sum up feature descriptors for all proposed regions.
- Intuitively, this encodes how good a segmentation is without considering class.

- Semantic term: Sum up feature descriptors for all proposed regions that belongs to a certain class.
- This encodes how each region matches with their class label.

- Pair-wise term: Sum up features that describes neighbouring regions A_i and A_j.
- This encode how adjacent regions are compatible with each other.

- **Tree constraint term:** Impose very high loss term if the resulting regions do not form tree in the tree proposal.
- For every path from root to leaves, there is only one region gets selected.

- Learning: Use structured SVM formulation.
- argmin $\frac{1}{2}$ w · w + $\lambda \sum \xi_i$ s.t. w · $[\phi(x_i, y_i) \phi(x_i, y)] \ge \Delta(y, y_i) \xi_i \forall i, y$
- x_i and y_i are training images and labels
- $\Delta(y, y_i)$ is the loss function between proposed segmentation and GT.
- ξ_i is the slack variable for each training example.
- This is saying, the true label y_i should be the best possible output, and should have a margin of $\Delta(y, y_i)$ compared to other possible output y, up to maybe a slack variable ξ_i .

- Inference: can be formulated as an integer linear program (ILP).
- R := number of regions. E := number of edges.
- $A \in [0,1]^{R} \times 2$, $C \in [0,1]^{R} \times K$, $P \in [0,1]^{E}$
- a_{i, 0}=0 indicates a region i is inactive. a_{i, 1}=1 indices a region i is active.
- **c**_{i k}=1 indicates the semantic class of a region.
- p_{i, i}=1 indicates the neighbouring regions i and j are both active.

- Inference:
- $\operatorname{argmax}_{a,c,p} \sum_{i} \theta_{r} \cdot a_{i,1} + \sum_{i} \sum_{k} \theta_{ik}^{s} \cdot c_{ik} + \sum_{i} \theta_{ij}^{p} \cdot p_{ij}$
- s.t.
- $a_{i,1} + a_{i,0} = 1$
- $\sum_{k} c_{i,k} = 1$
- $\sum_{i \in \Gamma} a_{i,1} = 1$
- $p_{i,j} \le a_{i,1}$ $p_{i,j} \le a_{i,1}$ $a_{i,1} + a_{i,1} p_{i,j} \le 1$ $\forall i,j$

(A region is either active or inactive)

(A region has one semantic label)

(Tree constraint)

(Pairwise constraint)

- Up to now is only on region-semantic level. It cannot merge regions to a instance yet. To do this, they proposed Loss Augmentation for ILP.
- G:= number of groundtruth instances.
- $A \in [0,1]^{R} \times 2$, $C \in [0,1]^{R} \times K$, $P \in [0,1]^{E}$, $O \in [0,1]^{G} \times R$
- O is a mapping from active region to groundtruth instance ID.

More constraints...

- $o_{g,i} + a_{i,1} \le 1 \quad \forall g \in G, i,j \in R \text{ s.t. } loU(s_g, s_i) > loU(s_g, s_i) \quad (Maximum overlap)$

- $\begin{aligned} & \quad \text{argmax}_{a,c,p} \sum_{i} \theta_{r} \cdot a_{i,1} + \sum_{i} \sum_{k} \theta_{ik}^{s} \cdot c_{ik} + \sum_{i} \theta_{ij}^{p} \cdot p_{ij} \sum_{g} \sum_{i} \theta_{gi}^{o} \cdot o_{gi} \\ & \quad \theta_{gi}^{o} = \text{IoU}(r_{g}^{G}, r_{s}^{S}) \text{IoU}(r_{g}^{G}, r_{i}^{S}) \end{aligned}$
- Minimize the difference between the groundtruth instance region and proposed instance region.
- r^s is the **surrogate** labelling => maximum overlap possible with the groundtruth instance, given the tree structure.

- There is still another problem. How to get the groundtruth that corresponds to the pre-defined segmentation tree regions?
- Solving an ILP problem can give us the surrogate labelling:
- $\operatorname{argmin}_{a,o} \sum_{g} \sum_{i} \theta^{o}_{gi} o_{gi}$
- subj. to.
- $a_{i,0} + a_{i,1} = 1 \forall i$ (Either active or inactive)
- $\sum_{i \in r} a_{i,1} = 1$ (Tree constraint)
- $o_{g,i} \le a_{i,1} \quad \forall g, i$ (Active regions only)
- $\sum_{i} o_{q,i} \le 1 \quad \forall g$ (1 region can only map to 1 GT at most)
- $o_{g,i} + a_{j,1} \le 1 \quad \forall g \in G, i,j \in R \text{ s.t. } IoU(s_g, s_j) > IoU(s_g, s_i) \quad (Maximum overlap)$

Weighted Coverage Loss

- We haven't introduced the actual form of $\Delta(y, y_i)$
- We could use Hamming Loss between the class vector C and region vector A since both are binary vector.

- They proposed Weighted Coverage Loss
- For each groundtruth instance, pick the maximum overlap output, and record the IoU between the GT and the best output
- Sum up the IoU, weighted by the area of the groundtruth instance.

Loss Surrogate Labels

- When using surrogate labels, they modified the loss function
- z := surrogate label, y := groundtruth label, y' := model prediction.
- $\Delta w_1(y, z)$ can be pre-computed.
- Compensate for the inaccuracy of surrogate labels.

Experimental results

(Image from Silberman et al. 2014)

Experimental results

- Effect of depth information (upper bound): 70.6 (RGB-D) vs. 50.7 (RGB)
- Effect of CNN features: **62.5** (CNN) vs. **61.8** (SIFT)
- Effect of pairwise terms: 62.5 (with pairwise) vs. 62.4 (without pairwise)
- Effect of biased segmentation tree: **87.4** (biased) vs. **62.5** (standard)
- Effect of weighted coverage loss: 62.5 (Wt coverage) vs. 61.4 (Hamming)

Limitations

- Tree structure assumption. Cannot merge two non-neighbouring regions together (happens in case of occlusion).
- Coverage loss function does not penalize false positives.
- Integer programs may be slow (NP-hard inference).
- Relies on depth information (poor performance without depth).

Instance-Level Segmentation with Deep Densely Connected MRFs

Instance-Level Segmentation with Deep Densely Connected MRFs

- Paper from Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. CVPR 2016 (To appear).
- A new architecture that combines patch-based CNN prediction and global MRF reasoning.

Big Picture

Patch-based CNN

- KITTI dataset, 375 x 1242
- Extract patches of different sizes: 270 x 432, 180 x 288, and 120 x 192
- Run the extracted patches to obtain local instance predictions
- There are less number of instances in the patch, so easier for CNN to assign instance labels.
- The instance ID is not guaranteed to be consistent across different patches.

(Image from Zhang et al. 2015)

MRF

- Undirected graphical model
- Each vertex represents a random variable
- Edge represents conditional dependence between variables
- $P(x \mid \theta) \propto exp(-E(x \mid \theta)) = exp(-\sum_{c} E(x_{c} \mid \theta))$
- We can factor the graphical model with maximal clique (Hammersley-Clifford Theorem)
- C is the set of all maximal cliques in the graph.

Pairwise MRF

- $P(x \mid \theta) \propto \exp(-E(x \mid \theta))$
- = exp $(-\sum_{c} E(x_{c} | \theta))$
- = exp $(-\sum_{i} E(x_{i} | \theta) \sum_{ij} E(x_{i}, x_{j} | \theta))$
- Unary energy: the probability of individual node.
- Pairwise energy: smoothness assumption.

Observable node variables eg. pixel intensity values

Hidden node variables eg. dispairty values

Fully connected MRF

- Pairwise message passing is very myopic.
- Especially very complicated segmentations e.g. chair, tree.
- It would be nice to have each node to be neighbours with all other nodes. => Longer range message passing influence.

(Image from Krahenbuhl & Koltunan 2011)

Fully connected MRF

- Learning and inference could be computationally intractable for fully connected models..
- But this requires that the energy function to be Gaussian.
- But if we define a dot product $||\cdot||^2$ for $\phi(x_i)$ (i.e. a kernel),
- And if $E(x) \propto \exp(-||\phi(x_i) \phi(x_j)||^2 / 2\theta^2)$, then we can use Guassian blurring as a mean field approximation to the original graphical model.
- Details can be found in P. Krahenbuhl, V. Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials. NIPS 2011.

- Here each vertex represents the instance labelling of each pixels.
- In the paper, the authors designed three terms in the energy function.
- $E(y) = E_{smo}(y) + E_{cnn}(y) + E_{icc}(y)$
- y* = argmin_y E(y)
- \mathbf{E}_{smo} : Smoothness. Close pixels should have similar instance labelling
- **E**_{cnn}: Local CNN prediction. Local instance boundary should be similar with CNN prediction.
- **E**_{icc}: Inter-connected component. Same instance should not appear in disconnected component.

- E_{smo} Smoothness term
- 2 Gaussian kernels, output distance and spatial distance
- $k_{smo}(\phi(x_i), \phi(x_j)) = exp(-||p_i p_j|| / 2\theta_1^2 ||d_i d_j|| / 2\theta_2^2)$
- p_i: CNN prediction of xi
- d_i: Spatial position of xi
- Penalize pixels with similar positions and CNN predictions to have different labels.
- $E_{smo} = W_{smo} \mu_{smo} (y_i, y_j) k_{smo} (\phi(x_i), \phi(x_j))$
- $\mu_{smo}(y_i, y_i) = 1[y_i \neq y_i].$

- E_{cnn}: Local CNN prediction term.
- $E_{cnn}(y) = \sum_{z} \sum_{i,j,i < j} \phi_{cnn}^{z}(y_i, y_j)$
- Sum up all local patch predictions z
- The intuition is that, if the local CNN says that y_i and y_j are from different instances, then their global configurations should respect that.
- Locally fully connected energy function on patch level.
- Encourage asymmetry to kick off the inference, apply penalty when i < j only.
- But this asymmetry does not work as a Gaussian kernel.
- So instead, the authors proposed a series of Gaussian kernels to approximate this potential.

- $E_{cnn}(y) = \sum_{z} \sum_{i,j, i < j} \sum_{t} \phi^{t}_{cnn}(y_{i}, y_{j})$ $\phi^{t}_{cnn}(y_{i}, y_{j}) = w_{cnn} \mu_{cnn}(y_{i}, y_{j}) k_{cnn}(ht(p_{i}), h-t(p_{j}))$ $\mu_{cnn}(y_{i}, y_{j}) = -1$ (i.e. encouraged configuration) if
- - $\circ y_i < y_i, t > 0$
 - $\circ y_i > y_i, t < 0$
 - $o y_i = y_i, t = 0$ (No shift, encourage same label)

(Image from Zhang et al. 2015)

- $E_{icc}(y) = \sum_{m, n \text{ m} < n} \sum_{i \in m, j \in n} w_{icc} \mu_{icc}(y_i, y_j)$
- m and n are inter connected components
- $\mu_{icc}(y_i, y_j) = 1 \text{ if } y_i = y_j$
- i.e. discourage same labels across disconnected components.

Experimental results

Experimental results

	Class Eval	Instance Evaluation								
	IoU	MWCov	MUCov	AvgPr	AvgRe	AvgFP	AvgFN	InsPr	InsRe	InsF1
ConnComp [27]	77.1	66.7	49.1	82.0	60.3	0.465	0.903	49.1	43.0	45.8
Unary [27]	77.6	65.0	48.4	81.7	62.1	0.389	0.688	46.6	42.0	44.2
Unary+LongRange [27]	77.6	66.1	49.2	82.6	62.1	0.354	0.688	48.2	43.1	45.5
LocCNNPred	77.4	58.3	40.9	80.4	62.6	0.403	0.681	25.3	32.9	28.6
LocCNNPred+InterConnComp	76.8	65.7	50.3	79.9	63.4	0.507	0.618	35.8	46.4	40.4
Full	77.1	69.3	50.6	80.5	57.7	0.451	1.076	56.3	47.4	51.5
	With Post-processing									
ConnComp [27]	77.2	66.8	49.2	81.8	60.3	0.465	0.903	49.8	43.0	46.1
Unary [27]	77.4	66.7	49.8	81.6	61.2	0.562	0.840	44.1	44.7	44.4
Unary+LongRange [27]	77.4	67.0	49.8	82.0	61.3	0.479	0.840	48.9	43.8	46.2
LocCNNPred	76.7	67.5	52.9	82.5	61.3	0.646	0.743	39.4	51.6	44.7
LocCNNPred+InterConnComp	76.3	68.1	53.9	80.7	62.2	0.708	0.701	42.1	52.2	46.6
Full	77.0	69.7	51.8	83.9	57.5	0.375	1.139	65.3	50.0	56.6

(Image from Zhang et al. 2015)

Limitations

- Works on single object types in the paper.
- Inter-connectedness assumption may fail. In KITTI, there is occlusions such as poles that "cuts" a car into two components.
- Empirically speaking, heavy occlusions and very small cars in distance is not working ideally.

Thanks!