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Agenda

● Introduction to instance-level segmentation
● N. Silberman, D. Sontag, R. Fergus. Instance Segmentation of Indoor Scenes 

using a Coverage Loss. ECCV 2014.
● Z. Zhang, S. Fidler, R. Urtasun. Instance-Level Segmentation with Deep 

Densely Connected MRFs. CVPR 2016.



What is instance-level segmentation

● Assign a label to each pixel of the image.
● Labels are class-aware and instance-aware. E.g. Chair_1, Chair_2, …, Table_1, 

etc.

(Image from Silberman et al. 2014)



Difference from semantic segmentation

● One level increase in difficulty.
● More understanding on the instance individuals and reasoning about 

occlusion.
● Essential to tasks such as counting the number of objects.

(Image from Silberman et al. 2014)



Difference from 2D object detection and matting

● A detection box is a very coarse object boundary. NMS will suppress 
occluded objects or slanted objects.

(Image from Ren et al. 2015)



Instance Segmentation of Indoor 
Scenes using a Coverage Loss



Instance Segmentation of Indoor Scenes using a 
Coverage Loss

● Paper from Nathan Silberman, David Sontag, Rob Fergus, ECCV 2014.

Key contribution:

● Segmentation Tree-Cut algorithm
● High order
● A new dataset for indoor scenes: NYU v2 dataset.



Big Picture of the Pipeline
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CNN feature extractor

● For each instance in the dataset, compute a tight bounding box plus 10% 
margin, and feed it into the CNN.

● Train the CNN to predict the semantic labels of each instance.
● During inference, use the fully connected hidden layer as the features of an 

image region.

Chair



Segmentation Tree

● Motivation: to limit the search space of instance segmentation. Instead of 
arbitrarily assigning each pixel with a label, it needs to obey the tree structure.

● Completeness: Every pixel Ii is contained in at least one region of S. 
● Tree Structure: Each region si has at most one parent: P(si) ∈ {∅, sj}, j≠i 
● Strict Nesting: If P(si) = sj , then the pixels in si form a strict subset of sj

(Image from Silberman et al. 2014)



Building Segmentation Tree
i

j

W_i,j 

● Starts with a 2-D planar 
graph of H x W.

● Segmentation is equivalent 
to performing graph cuts.

● Edge weights are 
computed from boundary 
probability algorithms (gPb 
and UCM).

● Edges below thresholds are 
removed at each iteration.



Building Segmentation Tree

● Then for the next iteration, we can dig into each connected component of the 
resulting graph and perform finer cuts.

● In the end, we get a coarse-to-fine hierarchy of regions.



Biased Segmentation Tree

● Is tree a good structure in general to solve instance segmentation problems?
● Is it too limiting?
● To investivate this, the authors designed the so-called “biased segmentation 

tree”
● Cut the tree until all groundtruth instance regions can be perfectly segmented 

by all the regions.
● The performance generated from the biased segmentation tree is an upper 

bound of the proposed model.



Structured SVM Learning and Inference

Output: y = (A, C) Regions {A: A_i ∊{0, 1}, i = 1...R}, Classes {C: C_i ∊ {1...K}, i=1...R}

wreg ∙ φreg(x, y) + ∑k wsem:k ∙ φsem:k(x, y) + wpair ∙ φpair(x, y) +  φtree(y)

Four terms:

● Region (class agnostic)
● Semantic
● Pairwise
● Tree constraint



Structured SVM Learning and Inference

● Region term: Sum up feature descriptors for all proposed regions.
● Intuitively, this encodes how good a segmentation is without considering 

class.

● Semantic term: Sum up feature descriptors for all proposed regions that 
belongs to a certain class.

● This encodes how each region matches with their class label.



Structured SVM Learning and Inference

● Pair-wise term: Sum up features that describes neighbouring regions A_i and 
A_j.

● This encode how adjacent regions are compatible with each other.

● Tree constraint term: Impose very high loss term if the resulting regions do 
not form tree in the tree proposal. 

● For every path from root to leaves, there is only one region gets selected.



Structured SVM Learning and Inference

● Learning: Use structured SVM formulation.
● argmin ½ w ∙ w + λ∑ξi      s.t.  w ∙ [φ(xi, yi) - φ(xi, y)] ≥ Δ(y, yi) -  ξi  ∀i, y
● xi and yi are training images and labels
● Δ(y, yi) is the loss function between proposed segmentation and GT.
● ξi is the slack variable for each training example.
● This is saying, the true label yi should be the best possible output, and should 

have a margin of Δ(y, yi) compared to other possible output y, up to maybe a 
slack variable ξi.



Structured SVM Learning and Inference

● Inference: can be formulated as an integer linear program (ILP).
● R := number of regions. E := number of edges.
● A ∊ [0,1]^{R x 2}, C ∊ [0,1]^{R x K}, P ∊ [0,1]^{E}
● ai, 0=0 indicates a region i is inactive. ai, 1=1 indices a region i is active.
● ci, k=1 indicates the semantic class of a region.
● pi, j=1 indicates the neighbouring regions i and j are both active.



Structured SVM Learning and Inference

● Inference:
● argmaxa,c,p ∑i θr ∙ ai,1 + ∑i∑kθs

ik ∙ cik + ∑iθ
p

ij ∙ pij
● s.t.
● ai,1 + ai,0 = 1                                                  (A region is either active or inactive)
● ∑kci,k = 1                                                      (A region has one semantic label)
● ∑i∊ᴦai,1= 1                                                    (Tree constraint)
● pi,j ≤ ai,1  pi,j ≤ aj,1  ai,1+aj,1-pi,j ≤ 1  ∀i,j         (Pairwise constraint)



Structured SVM Learning and Inference

● Up to now is only on region-semantic level. It cannot merge regions to a 
instance yet. To do this, they proposed Loss Augmentation for ILP. 

● G:= number of groundtruth instances.
● A ∊ [0,1]^{R x 2}, C ∊ [0,1]^{R x K}, P ∊ [0,1]^{E}, O ∊ [0,1]^{G x R}
● O is a mapping from active region to groundtruth instance ID.

More constraints...

● og,i ≤ ai,1      ∀g, i                   (Active regions only)
● ∑i og,i ≤ 1     ∀g                    (1 region can only map to 1 GT at most)
● og,i + aj,1 ≤ 1  ∀g ∊ G, i,j ∊ R s.t. IoU(sg, sj) > IoU(sg, si)   (Maximum overlap)



Structured SVM Learning and Inference

● argmaxa,c,p ∑i θr ∙ ai,1 + ∑i∑kθs
ik ∙ cik + ∑iθ

p
ij ∙ pij - ∑g∑iθ

o
gi ∙ ogi

● θo
gi = IoU(rG

g, rS
s) - IoU(rG

g, rS
i)

● Minimize the difference between the groundtruth instance region and 
proposed instance region.

● rS
s is the surrogate labelling => maximum overlap possible with the 

groundtruth instance, given the tree structure.



Structured SVM Learning and Inference

● There is still another problem. How to get the groundtruth that corresponds to 
the pre-defined segmentation tree regions?

● Solving an ILP problem can give us the surrogate labelling:
● argmina,o ∑g∑iθ

o
gi ogi

● subj. to.
● ai,0 + ai,1 = 1 ∀ i                     (Either active or inactive)
● ∑i∊ᴦai,1= 1                              (Tree constraint)
● og,i ≤ ai,1      ∀g, i                   (Active regions only)
● ∑i og,i ≤ 1     ∀g                     (1 region can only map to 1 GT at most)
● og,i + aj,1 ≤ 1  ∀g ∊ G, i,j ∊ R s.t. IoU(sg, sj) > IoU(sg, si)   (Maximum overlap)



Weighted Coverage Loss

● We haven’t introduced the actual form of Δ(y, y_i)
● We could use Hamming Loss between the class vector C and region vector A 

since both are binary vector.

● They proposed Weighted Coverage Loss
● For each groundtruth instance, pick the maximum overlap output, and record 

the IoU between the GT and the best output
● Sum up the IoU, weighted by the area of the groundtruth instance.



Loss Surrogate Labels

● When using surrogate labels, they modified the loss function
● z := surrogate label, y := groundtruth label, y’ := model prediction.
● Δw2(z, y’) = Δw1(y, y’) - Δw1(y, z)
● Δw1(y, z) can be pre-computed.
● Compensate for the inaccuracy of surrogate labels.



Experimental results

(Image from Silberman et al. 2014)



Experimental results

● Effect of depth information (upper bound): 70.6 (RGB-D) vs. 50.7 (RGB)
● Effect of CNN features: 62.5 (CNN) vs. 61.8 (SIFT)
● Effect of pairwise terms: 62.5 (with pairwise) vs. 62.4 (without pairwise)
● Effect of biased segmentation tree: 87.4 (biased) vs. 62.5 (standard)
● Effect of weighted coverage loss: 62.5 (Wt coverage) vs. 61.4 (Hamming)



Limitations

● Tree structure assumption. Cannot merge two non-neighbouring regions 
together (happens in case of occlusion).

● Coverage loss function does not penalize false positives.
● Integer programs may be slow (NP-hard inference).
● Relies on depth information (poor performance without depth).



Instance-Level Segmentation with 
Deep Densely Connected MRFs



Instance-Level Segmentation with Deep Densely 
Connected MRFs

● Paper from Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. CVPR 2016 (To 
appear).

● A new architecture that combines patch-based CNN prediction and global 
MRF reasoning.



Big Picture

MRFCNNPatches



Patch-based CNN

● KITTI dataset, 375 x 1242
● Extract patches of different sizes: 270 x 432, 180 x 288, and 120 x 192
● Run the extracted patches to obtain local instance predictions
● There are less number of instances in the patch, so easier for CNN to assign 

instance labels.
● The instance ID is not guaranteed to be consistent across different patches.

(Image from Zhang et al. 2015)



MRF

● Undirected graphical model
● Each vertex represents a random variable
● Edge represents conditional dependence between variables
● P(x | θ) ∝ exp(-E(x | θ)) = exp (-  ∑cE(xc | θ))
● We can factor the graphical model with maximal clique (Hammersley-Clifford 

Theorem)
● C is the set of all maximal cliques in the graph.



Pairwise MRF

● P(x | θ) ∝ exp(-E(x | θ)) 
● = exp (-  ∑cE(xc | θ))
● = exp (-  ∑iE(xi | θ) -  ∑ijE(xi , xj | θ))
● Unary energy: the probability of 

individual node.
● Pairwise energy: smoothness 

assumption.



Fully connected MRF

● Pairwise message passing 
is very myopic.

● Especially very complicated 
segmentations e.g. chair, 
tree.

● It would be nice to have 
each node to be neighbours 
with all other nodes. => 
Longer range message 
passing influence.

(Image from Krahenbuhl & Koltunan 2011)



Fully connected MRF

● Learning and inference could be computationally intractable for fully 
connected models..

● But this requires that the energy function to be Gaussian.
● But if we define a dot product || ∙ ||2 for ɸ(xi) (i.e. a kernel),
● And if E(x) ∝ exp( -|| ɸ(xi) - ɸ(xj) ||

2 / 2θ2), then we can use Guassian blurring 
as a mean field approximation to the original graphical model.

● Details can be found in P. Krahenbuhl, V. Koltun. Efficient Inference in Fully 
Connected CRFs with Gaussian Edge Potentials. NIPS 2011.



MRF for instance segmentation

● Here each vertex represents the instance labelling of each pixels.
● In the paper, the authors designed three terms in the energy function.
● E(y) = Esmo(y) + Ecnn(y) + Eicc(y)
● y* = argminy E(y)
● Esmo: Smoothness. Close pixels should have similar instance labelling
● Ecnn: Local CNN prediction. Local instance boundary should be similar with 

CNN prediction.
● Eicc: Inter-connected component. Same instance should not appear in 

disconnected component.



MRF for instance segmentation

● Esmo Smoothness term
● 2 Gaussian kernels, output distance and spatial distance
● ksmo(ɸ(xi), ɸ(xj)) = exp( -||pi - pj|| 

 / 2θ2
1 - ||di - dj|| / 2θ2

2)
● pi: CNN prediction of xi
● di: Spatial position of xi
● Penalize pixels with similar positions and CNN predictions to have different 

labels.
● Esmo =  wsmoμsmo(yi, yj) ksmo(ɸ(xi), ɸ(xj))
● μsmo(yi, yj) = 1[yi ≠ yj].



MRF for instance segmentation

● Ecnn: Local CNN prediction term. 
● Ecnn(y) = ∑z ∑i,j, i<j φ

z
cnn(yi, yj)

● Sum up all local patch predictions z
● The intuition is that, if the local CNN says that yi and yj are from different 

instances, then their global configurations should respect that. 
● Locally fully connected energy function on patch level.
● Encourage asymmetry to kick off the inference, apply penalty when i < j only.
● But this asymmetry does not work as a Gaussian kernel.
● So instead, the authors proposed a series of Gaussian kernels to approximate 

this potential.



MRF for instance segmentation

● Ecnn(y) = ∑z ∑i,j, i<j ∑t φ
t
cnn(yi, yj)

● φt
cnn(yi, yj) = wcnnμcnn(yi, yj) kcnn(ht(pi), h-t(pj)) 

● μcnn(yi, yj) = -1 (i.e. encouraged configuration) if
○ yi < yj, t > 0         
○ yi > yj, t < 0
○ yi = yj, t = 0        (No shift, encourage same label)

(Image from Zhang et al. 2015)



MRF for instance segmentation

● Eicc(y) = ∑m, n m<n ∑i∊m, j∊n wiccμicc(yi, yj) 
● m and n are inter connected components
● μicc(yi, yj)  = 1 if yi = yj
● i.e. discourage same labels across disconnected components.



Experimental results

(Image from Zhang et al. 2015)



Experimental results

(Image from Zhang et al. 2015)



Limitations

● Works on single object types in the paper.
● Inter-connectedness assumption may fail. In KITTI, there is occlusions such 

as poles that “cuts” a car into two components.
● Empirically speaking, heavy occlusions and very small cars in distance is not 

working ideally.



Thanks!


