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Agenda

e Introduction to instance-level segmentation

e N. Silberman, D. Sontag, R. Fergus. Instance Segmentation of Indoor Scenes
using a Coverage Loss. ECCV 2014.

e Z.Zhang, S. Fidler, R. Urtasun. Instance-Level Segmentation with Deep
Densely Connected MRFs. CVPR 2016.




What is instance-level segmentation

e Assign a label to each pixel of the image.
e Labels are class-aware and instance-aware. E.g. Chair_1, Chair_2, ..., Table_1,
etc.

(Image from Silberman et al. 2014)



Difference from semantic segmentation

e One level increase in difficulty.

e More understanding on the instance individuals and reasoning about
occlusion.

e Essential to tasks such as counting the number of objects.
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(Image from Silberman et al. 2014




Difference from 2D object detection and matting

e A detection box is a very coarse object boundary. NMS will suppress
occluded objects or slanted objects.

(Image from Ren et al. 2015)



Instance Segmentation of Indoor
Scenes using a Coverage Loss



Instance Segmentation of Indoor Scenes using a
Coverage Loss

e Paper from Nathan Silberman, David Sontag, Rob Fergus, ECCV 2014.

Key contribution:

e Segmentation Tree-Cut algorithm
e High order
e A new dataset for indoor scenes: NYU v2 dataset.




Big Picture of the Pipeline
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CNN feature extractor

e For each instance in the dataset, compute a tight bounding box plus 10%

margin, and feed it into the CNN.
e Train the CNN to predict the semantic labels of each instance.
e During inference, use the fully connected hidden layer as the features of an

image region.
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Segmentation Tree

e Motivation: to limit the search space of instance segmentation. Instead of
arbitrarily assigning each pixel with a label, it needs to obey the tree structure.

e Completeness: Every pixel |. is contained in at least one region of S.

e Tree Structure: Each region s_has at most one parent: P(si) € {7, sj}, JZi

e Strict Nesting: If P(s) = s;, then the pixels in si form a strict subset of s

Ground Truth
Instance Annotations

A two layer
segmentation tree

(Image from Silberman et al. 2014)



Building Segmentation Tree

e Starts with a 2-D planar ‘
graph of Hx W. W_i,j
e Segmentation is equivalent
to performing graph cuts.
e Edge weights are
computed from boundary
probability algorithms (gPb
and UCM).
e Edges below thresholds are
removed at each iteration.




Building Segmentation Tree

e Then for the next iteration, we can dig into each connected component of the
resulting graph and perform finer cuts.
e Inthe end, we get a coarse-to-fine hierarchy of regions.




Biased Segmentation Tree

e |stree a good structure in general to solve instance segmentation problems?

e Isittoo limiting?

e To investivate this, the authors designed the so-called “biased segmentation
tree”

e (Cut the tree until all groundtruth instance regions can be perfectly segmented
by all the regions.

e The performance generated from the biased segmentation tree is an upper
bound of the proposed model.




Structured SVM Learning and Inference

Output: y = (A, C) Regions {A: A_i €{0, 1}, i = 1...R}, Classes {C: C_i € {1...K}, i=1...R}

wreg . ¢reg(x’ Y) + zk Wsem:k . "Psem:k(x' Y) t Wpair . (Ppair(x’ Y) + "Ptree(Y)

Four terms:

Semantic
Pairwise

Tree constraint

Xz

Region (class agnostic)

N




Structured SVM Learning and Inference

e Region term: Sum up feature descriptors for all proposed regions.
e Intuitively, this encodes how good a segmentation is without considering
class.

e Semantic term: Sum up feature descriptors for all proposed regions that
belongs to a certain class.
e This encodes how each region matches with their class label.




Structured SVM Learning and Inference

e Pair-wise term: Sum up features that describes neighbouring regions A_i and
Aj.
e This encode how adjacent regions are compatible with each other.

e Tree constraint term: Impose very high loss term if the resulting regions do
not form tree in the tree proposal.
e For every path from root to leaves, there is only one region gets selected.




Structured SVM Learning and Inference

Learning: Use structured SVM formulation.

argmin 2 w-w+A3E st w-[p(x,y)-@(x,y)l2A(y,y)- & Viy

x. and y. are training images and labels

A(y, y) is the loss function between proposed segmentation and GT.

€. is the slack variable for each training example.

This is saying, the true label y. should be the best possible output, and should
have a margin of A(y, y,) compared to other possible output y, up to maybe a
slack variable &




Structured SVM Learning and Inference

Inference: can be formulated as an integer linear program (ILP).

R := number of regions. E := number of edges.

A€[0,1{Rx 2}, C€[0,1]{R x K}, P € [0,1]{E}

a, (=0 indicates a region i is inactive. a, =1 indices a region i is active.
C. =1 indicates the semantic class of a region.

pi,j=1 indicates the neighbouring regions i and j are both active.




Structured SVM Learning and Inference

e Inference:

e argmax, 3.6 -a, +323 0% ¢, +20° p,

o S.t.

e a,+a =1 (A region is either active or inactive)
e 3¢, =1 (A region has one semantic label)

e 3. .a,=1 (Tree constraint)

® p,;sa, p;sa, a,ta -p,s1 Vij (Pairwise constraint)

i,1




Structured SVM Learning and Inference

e Upto now is only on region-semantic level. It cannot merge regions to a
instance yet. To do this, they proposed Loss Augmentation for ILP.

e G:= number of groundtruth instances.

e A€[0,1Rx2},C€[0,1]{R x K}, P €[0,1]*{E}, O € [0,1]*{G x R}

e 0O is a mapping from active region to groundtruth instance ID.

More constraints...

0, aI1 Vag,i (Active regions only)

2. 0, < Vg (1 region can only map to 1 GT at most)
e o, ,+a,s1 VgeG,ijeRsL. IoU(s s) > IoU(s s) (Maximum overlap)




Structured SVM Learning and Inference

¢ argmax, ., 2,0 - a.* 22,0% ¢t ziepij "Py- zgzieogi " Ogi

e 08° = IoU(rGg, rs) - IoU(rGg, r°)

e Minimize the difference between the groundtruth instance region and
proposed instance region.

o rss is the surrogate labelling => maximum overlap possible with the
groundtruth instance, given the tree structure.




Structured SVM Learning and Inference

e There is still another problem. How to get the groundtruth that corresponds to
the pre-defined segmentation tree regions?

e Solving an ILP problem can give us the surrogate labelling:
° argmina'o Zgzi9°gi 0,

e subj. to.

e a ta.=1Vi (Either active or inactive)

e > a.= (Tree constraint)

e o, ,sa, Vg,i (Active regions only)

LIEDY 0, < 1 Vg (1 region can only map to 1 GT at
. .

o,ta,s1 VgeQGijeRst. IoU(sg, sj) > IoU(sg, s) (Ma



Weighted Coverage Loss

e We haven't introduced the actual form of A(y, y_i)
e We could use Hamming Loss between the class vector C and region vector A
since both are binary vector.

e They proposed Weighted Coverage Loss

e For each groundtruth instance, pick the maximum overlap output, and record
the loU between the GT and the best output

Sum up the loU, weighted by the area of the groundtruth inst




Loss Surrogate Labels

When using surrogate labels, they modified the loss function

z .= surrogate label, y := groundtruth label, y' := model prediction.
Aw,(z,y') = Aw,(y, ') - Aw,(y, 2)

Aw._(y, z) can be pre-computed.

Compensate for the inaccuracy of surrogate labels.




Experimental results

(Image from Silberman et al. 2014)



Experimental results

Effect of depth information (upper bound): 70.6 (RGB-D) vs. 50.7 (RGB)
Effect of CNN features: 62.5 (CNN) vs. 61.8 (SIFT)

Effect of pairwise terms: 62.5 (with pairwise) vs. 62.4 (without pairwise)
Effect of biased segmentation tree: 87.4 (biased) vs. 62.5 (standard)
Effect of weighted coverage loss: 62.5 (Wt coverage) vs. 61.4 (Hamming)




Limitations

e Tree structure assumption. Cannot merge two non-neighbouring regions
together (happens in case of occlusion).

e Coverage loss function does not penalize false positives.

e Integer programs may be slow (NP-hard inference).

e Relies on depth information (poor performance without depth).




Instance-Level Segmentation with
Deep Densely Connected MRFs



Instance-Level Segmentation with Deep Densely
Connected MRFs

Paper from Ziyu Zhang, Sanja Fidler, and Raquel Urtasun. CVPR 2016 (To

appear).
e A new architecture that combines patch-based CNN prediction and global

MRF reasoning.




Big Picture
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Patch-based CNN

KITTI dataset, 375 x 1242

Extract patches of different sizes: 270 x 432, 180 x 288, and 120 x 192

Run the extracted patches to obtain local instance predictions

There are less number of instances in the patch, so easier for CNN to assign
instance labels.

e Theinstance ID is not guaranteed to be consistent across different patches.
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(Image from Zhang et al. 2015)




MRF
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Undirected graphical model | O AN A AN O
Each vertex represents a random variable S W

Edge represents conditional dependence between variables

P(x | 8) o< exp(-E(x | 8)) = exp (- X E(x_|86))

We can factor the graphical model with maximal clique (Hammersley-Clifford
Theorem)

C is the set of all maximal cliques in the graph.




Pairwise MRF

Observable node variables
eg. pixel intensity values

Yoy Yl

P(x | ©) oc exp(-E(x | 8))

=exp (- 2 E(x_19))

=exp (- ZE(x16) - Z,E(x,%16))
Unary energy: the probability of
individual node. |
e Pairwise energy: smoothness X=X, %, %, )
assumptlon Hidden node variables

eg. dispairty values




Fully connected MRF

Pairwise message passing
IS very myopic.

Especially very complicated
segmentations e.g. chair,

S

It would be nice to have ---

each node to be neighbours ™

with all other nodes. => e e ¥k i s
Longer range message
passing influence.

(Image from Krahenbuhl & Koltunan 2011




Fully connected MRF

e Learning and inference could be computationally intractable for fully
connected models..

e But this requires that the energy function to be Gaussian.

e Butif we define a dot product || - ||* for ¢(x) (i.e. a kernel),

o Andif E(x) o< exp(-Il §(x) - d(x) 12/ 262), then we can use Guassian blurring
as a mean field approximation to the original graphical model.

e Details can be found in P. Krahenbuhl, V. Koltun. Efficient Inference in Fully
Connected CRFs with Gaussian Edge Potentials. NIPS 2011.




MRF for instance segmentation

Here each vertex represents the instance labelling of each pixels.
In the paper, the authors designed three terms in the energy function.

E(y) = E,,(y) +E_ () + E_.(y)

y* = argminy E(y)

E,. .- Smoothness. Close pixels should have similar instance labelling

E...- Local CNN prediction. Local instance boundary should be similar with
CNN prediction.

E. .. Inter-connected component. Same instance should not appear in

disconnected component.




MRF for instance segmentation

E  Smoothness term
sSmMo

2 Gaussian kernels, output distance and spatial distance

Kmo(@ (X)), d(x))) = exp(-Ip, - pjll / 20 - ||d.- dil/ 202)

p.: CNN prediction of xi

d.: Spatial position of xi

Penalize pixels with similar positions and CNN predictions to have different
labels.

Esmo = wsmol"lsmo(yi’ yj) ksmo(q)(xi)’ ¢(xj))

HomoYs ¥) = 1y, 2 ¥




MRF for instance segmentation

E.,.- Local CNN prediction term.

Ecnn(Y) = zz zi,j, i<j ¢chn(yi’ yj)

Sum up all local patch predictions z

The intuition is that, if the local CNN says thaty. and y, are from different
instances, then their global configurations should respect that.

Locally fully connected energy function on patch level.

Encourage asymmetry to kick off the inference, apply penalty when i <j only.
But this asymmetry does not work as a Gaussian kernel.

So instead, the authors proposed a series of Gaussian kernel
this potential.




MRF for instance segmentation

Ecnn(y) = zz zi,j, i<j zt (Ptcnn(yi’ yj)
@ n Vi ¥) = W B (v Y) K, (ht(p), h-t(p))
(Yo yj) = -1 (i.e. encouraged configuration) if
o Y<Y, t>0
° ¥ >Y, t<0
o ¥ =y,t=0 (No shift, encourage same label)

Pzi I‘II'I shift,t=2 hZ(pz'E) -_I‘IIII
e —

I’z-fllllll h-f("z-f)lll‘ll_-
(Image from Zhang et al. 2015)




MRF for instance segmentation

Eicc(Y) = zm, n m<n ziEm, j€n wicc“icc(yi’ yj)

m and n are inter connected components

Vs Yy) = 1ify, =y,

i.e. discourage same labels across disconnected components.
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(Image from Zhang et al. 2015)




Experimental results

Class Eval Instance Evaluation
IoU MWCov } MUCov ‘ AvgPr \ AvgRe [ AvgFP [ AvgFN | InsPr [ InsRe [ InsF1
ConnComp [27] 771 66.7 49.1 82.0 60.3 0.465 0.903 49.1 43.0 | 458
Unary [27] 77.6 65.0 48.4 81.7 62.1 0.389 0.688 46.6 | 420 | 442
Unary+LongRange [27] 77.6 66.1 49.2 82.6 62.1 0.354 0.688 48.2 | 43.1 45.5
LocCNNPred 77.4 58.3 40.9 80.4 62.6 0.403 0.681 253 32.9 28.6
LocCNNPred+InterConnComp 76.8 65.7 50.3 79.9 63.4 0.507 | 0.618 | 358 | 464 | 404
Full 7| 69.3 50.6 80.5 507 0.451 1.076 563 | 474 51.5

With Post-processing

ConnComp [27] 772 66.8 49.2 81.8 60.3 0.465 0.903 498 | 43.0 | 46.1
Unary [27] 77.4 66.7 49.8 81.6 61.2 0.562 0.840 | 44.1 44.7 44 4
Unary+LongRange [27] 77.4 67.0 49.8 82.0 61.3 0.479 0.840 | 489 | 438 46.2
LocCNNPred 76.7 67.5 529 82.5 61.3 0.646 0.743 394 | 516 447
LocCNNPred+InterConnComp 763 68.1 539 80.7 62.2 0.708 0.701 42.1 52.2 46.6
Full 77.0 69.7 51.8 83.9 51.5 0.375 1.139 65.3 | 50.0 56.6

(Image from Zhang et al. 2015)




Limitations

e Works on single object types in the paper.

e Inter-connectedness assumption may fail. In KITTI, there is occlusions such
as poles that “cuts” a car into two components.

e Empirically speaking, heavy occlusions and very small cars in distance is not
working ideally.




Thanks!



