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3D Object Detection: Motivation

» 2D bounding boxes are not sufficient

* Lack of 3D pose, Occlusion information, and 3D location

2D recognition

30 localization

3D voxel patterns

(Figure from Felzenszwalb et al. 2010) (Figure from Xiang et al. 2015)




3D Object Detection: Challenge

* Occlusion/Truncation: Only a small portion of the surface is visible

e Leader board from KITTI website
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Easy
90.49%

90.67%
91.44%
88.31%
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Moderate
87.88%

87.51%
86.10%
85.66%
74.59%

Hard
77.10%

76.33%
76.52%
75.89%
64.11%

Easy: Max. occlusion 15%
Moderate: Max. occlusion 30%
Hard: Max. occlusion 50%
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High-level Overview

* Propose a novel object representation: 3D Voxel Pattern (3DVP)
* Appearance, 3D shape, and occlusion masks
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(Figure from Xiang et al. 2015)




High-level Overview

* Propose a novel object representation: 3D Voxel Pattern (3DVP)
* Appearance, 3D shape, and occlusion masks

* Train specialized 3DVP detectors which are capable of:
e 2D Object detection
* Segmentation mask, occlusion or truncation boundaries

* 3D localization, 3D pose
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(Figure from Xiang et al. 2015)




High-level Overview

* Propose a novel object representation: 3D Voxel Pattern (3DVP)
* Appearance, 3D shape, and occlusion masks

* Train specialized 3DVP detectors which are capable of:

* 2D Object detection
* Segmentation mask, occlusion or truncation boundaries

* 3D localization, 3D pose

* Experiments on the KITTI benchmark and the OutdoorScene dataset

* Improve the state-of-the-art results on detection and pose estimation with
notable margins (6% in difficult level of KITTI)



Motivations

* What are the key challenges in this topic?

e Occlusion/Truncation

* Train partial object detectors for visible parts of objects (Wu and Nevatia 2005; Wojek et
al. 2011; Xiang and Savarese 2013)

2D recognition

3D localization

¥
’ . - . '. (Figure from Xiang et al. 2015)

30 voxel patterns
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Motivations

* What are the key challenges in this topic?

e Occlusion/Truncation

* Shape variation: Intra-class changes should be modeled
* Discover and learn object sub-categories

Figure 6. Visualization of selected 3DVPs. We show the 3D voxel
model of the cluster center, the average RGB image, and the aver-
age gradient image of each 3DVP.

(Figure from Xiang et al. 2015)
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Motivations

* What are the key challenges in this topic?
e Occlusion/Truncation

* Shape variation: Intra-class changes should be modeled
* Viewpoint: Multiview object detection in 3D

* Built from various 2D images (Yan et al. 2007; Glasner et al. 2011)
* Constructed using CAD models (Liebelt et al. 2008)
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Technical approach

* Training: Generate 3D Voxel Exemplars
* Atriplet of 2D image of the object, its 2D segmentation, and its 3D voxel model
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Align 2D images with 3D CAD models 3D voxel exemplars

(Figures from Xiang et al. 2015)



Technical approach

* Training: Generate 3D Voxel Exemplars
e 3D CAD model association and registration
* Project 3D CAD models to the image
e Label 2D segmentation mask and 3D voxel model
* Generate a 3D voxel exemplar

SLIOJEJOUUR [

sjgpow gy de

\ depth ordering

X . £ A 1 truncated visible

projection of 3D CAD models — \ p—
- :!}I ‘ = AN .l.

depth ordering

—>»

20 mask labeling

'--.’.-_-‘- 1 1

3D CAD model

voxelization

3 voxel labeling

2D segmentation mask

self-oocluded

pecluded
wisible
30 voxel model

truncated

{a) 3D CAD model association and registration

{b) project 3D CAD models to the image

{c) Label 2D segmenation mask and 30 voxel model
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(Figures from Xiang et al. 2015)
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Technical approach

* Training: Generate 3D Voxel Exemplars
* Atriplet of 2D image of the object, its 2D segmentation, and its 3D voxel model

- @ (.

—
e -

s | =P

e NN

J.ﬂ".
-

r @

Align 2D images with 3D CAD models 3D voxel exemplars

(Figures from Xiang et al. 2015)



Technical approach

* Training: Build a representative set of 3DVPs
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(Figures from Xiang et al. 2015)
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Technical approach

* Training: Build a representative set of 3DVPs
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Figure 5. Examples of 3D clusters from the KITTI dataset.

(Figures from Xiang et al. 2015)
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Technical approach

* Training: Build a representative set of 3DVPs

« Define the 3D voxel exemplar feature vector x with dimension N3

* Encoding: 0 for empty voxels, 1 for visible voxels, 2 for self-occluded voxels, 3 for voxels
occluded by other objects, and 4 for truncated voxels.

* Define the similarity metric :
s(x1,x2) = &4 01 (et = ab) [ w(z)),

Z'S" w(i) =1,
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Technical approach

* Training: Build a representative set of 3DVPs

« Define the 3D voxel exemplar feature vector x with dimension N3

* Encoding: 0 for empty voxels, 1 for visible voxels, 2 for self-occluded voxels, 3 for voxels
occluded by other objects, and 4 for truncated voxels.

e Define the similarity metric :

. S “N° 4/ °
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» Affinity Propagation (AP) (Frey and Dueck 2007) " ¥ .
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| ITERATION 10 of 72 |

(Video from http://www.psi.toronto.edu/affinitypropagation/)
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Technical approach

* Training: Train 3DVP Detectors
* SVM-based detectors for KITTI (Malisiewicz et al. 2011)

* Boosting detector for KITTI
* Aggregated Channel Features (ACF) (Dollar et al. 2014)

3D voxel patterns Train 3D voxel pattern detectors

(Figures from Xiang et al. 2015)
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Technical approach

* Training: Train 3DVP Detectors
* SVM-based detectors for KITTI (Malisiewicz et al. 2011)

* Boosting detector for KITTI
* Aggregated Channel Features (ACF) (Dollar et al. 2014)

&ﬁii%ﬁiﬁﬂ,:& o+ e

compute channels aggregate vectorize apply boosted trees

eoe JI1]

Fig. 8. Overview of the ACF detector. Given an input image I, we compute several channels C' = (1), sum every block of pixels in C, and smooth
the resulting lower resolution channels. Features are single pixel lookups in the aggregated channels. Boosting is used to learn decision trees over
these features (pixels) to distinguish object from background. With the appropriate choice of channels and careful attention to design, ACF achieves

state-of-the-art performance in pedestrian detection.

(Images from Dollar et al. 2014)
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Technical approach

* Training: Train 3DVP Detectors
e SVM-based detectors for KITTI (Malisiewicz et al. 2011)
e Boosting detector for KITTI
» Aggregated Channel Features (ACF) (Dollar et al. 2014)

* A trick: Incorporate the appearance of the occluder
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(Figures from Xiang et al.
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Technical approach

* Testing: Get 2D detection bounding boxes

oy

nput 2D image

(Figures from Xiang et al. 2015)

2D detection
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Technical approach

* Testing: Transfer the meta-data associated with the 3DVPs

Transfer meta-data and
occlusion reasoning
2D detection 2D segmentation 3D localization

(Figures from Xiang et al. 2015)
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Technical approach

* Testing: Transfer the meta-data associated with the 3DVPs

* Energy-based conditional random field model

« m; = m! + mf+m! (visible, occluded, and truncated)
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Technical approach

* Testing: Transfer the meta-data associated with the 3DVPs
* Energy-based conditional random field model
« m; =m} + mf+m! (visible, occluded, and truncated)

* Implementation: Greedy algorithm
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Technical approach

* Testing: Transfer the meta-data associated with the 3DVPs

* Non —Maximum Suppression (NMS) (Felzenszwalb et al. 2010)
Sort the results, and pick the one with largest score
Computes the overlap between two bounding boxes by %
Greedily suppress detections that have larger than 0.5 overlap with selected ones
Noted by “NMS.5” in this paper
* Intersection over Union (loU) with 0.6 threshold
* NMS-based, but keep more occluded detection hypotheses
* Noted by “INMS.6” in this paper



Experimental evaluation

* Datasets

* KITTI:
* 7481 images (28,612 cars)
e Split the training set into training set and validation set
e OutdoorScene:
* 200 images (focus on the presence of severe occlusions)
e Only for testing



Experimental evaluation

 Evaluation metrics (threshold based metrics)
* Object detection: Average Precision (AP) (Everingham et al. 2011)

* Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)
1

A0S =17 ), maxs(i)
re{0,0.1,..,1}
(7)
TP 1 1+ cosA,”7 .
where r=gpirn S(r)= D(r)] 2 —o € [01]



Experimental evaluation

 Evaluation metrics (threshold based metrics)
* Object detection: Average Precision (AP) (Everingham et al. 2011)

* Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)
1
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Experimental evaluation

 Evaluation metrics (threshold based metrics)
* Object detection: Average Precision (AP) (Everingham et al. 2011)
* Object orientation: Average Orientation Similarity (AOS) (Geiger et al. 2012)

y o .
AQS = i Z max s(7)

T

re{0,0.1,..,1}
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e 2D segmentation: Average Segmentation Accuracy (ASA)
* 3D localization: Average Localization Precision (ALP)



Experimental evaluation

e Result: 2D clustering vs 3D clustering

2D K-means 3D K-means 2D Affinity Propagation 3D Affinity Propagation |
K Easy Moderate Hard K Easy Moderate Hard i ey iodernte e K Easy Moderate Hard
3 44.21 31.23 2542 5 41.78 31.63 28.06 137 | 46.76 35.06 32.30 ; i b 2
10 47.78 38.13 32.26 10 52.55 39.44 3276 156 | 46.12 34.44 30.35 125 | 7828 65.62 54.90
20 61.24 48.04 4027 1l 20 61.52 49.33 42.07 139 | 4497 34.88 31.53 135 | 78.13 65.44 34,79
30 67.83 51.68 43.63 30 63.29 49.46 41.55 227 | 39.66 31.67 29.62 152 | 77.96 64.45 5393
40 66.49 53.18 45.96 40 69.46 56.13 47.26 273 | 36.52 28.51 27.08 180 | 79.02 65.55 54.72
50 6665 Sl il G | 5() 70.76 58.77 50.30 335 | 27.96 2274 22.22 229 | 79.94 64.87 53.53

100 | 58.45 46.15 39.34 100 | 75.73 61.06 51.29 284 | 7991 64.04 53.10
150 | 56.74 43.84 37.75 50 1510 03.29 B 7 333 | 79.98 63.95 52,99
200 | 33.57 41.26 33.6l 200 | 78.00 64.81 54.30
250 | 53.86 39.81 33.58 Lﬁﬂ 76.85 63.48 53.93

300 | 48.81 35.53 29.10 300 | 78.10 62.11 51.99
350 | 42.68 33.55 27.35 350 | 74.78 62.00 51.81

Table 1. AP Comparison between 2D and 3D clustering with k-means and affinity propagation on our validation split. The table shows the
average precision obtained by training ACF detectors in different settings.

(Table from Xiang et al. 2015)
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Experimental evaluation

 Result: Occlusion(Energy-based) vs NMS.5 vs INMS.6
 DPM: baselines (Felzenszwalb et al. 2010)

Object Detection (AP) Orientation (AOS)
Methods Easy |Moderate| Hard Easy |Moderate| Hard
DPM [I0]NMS.5 || 5491 | 42.49 | 32793 || 33.71 | 26.30 | 20.37
'{ DPM [10]INMS.6|| 4435 | 3649 [28.87 || 2745 | 22.71 | 18.07
_{ Ours NMS.5 79.06 | 64.72 | 5038 || 77.65| 6275 | 48.57
Ours INMS.6 7828 | 65.62 | 5490 || 76.87 | 6349 | 52.57
Ours Occlusion 80.48 | 68.05 | 57.20 || 7899 | 65.73 | 54.67

Table 2. AP/AOS comparison between different detec-
tion/decoding methods on the validation set. We show the
results of 3D AP with 125 clusters for Ours.

(Table from Xiang et al. 2015)
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Experimental evaluation

e Result: 2D segmentation
* Lack of ground truth: projecting registered 3D CAD models

Method Easy | Moderate | Hard
Joint 2D Detection and Segmentation (ASA)
DPM [ 10]+box 38.09 29.42 22.65
—-[ Ours INMS.6+box 57.52 47.84 40.01
Ours Occlusion+box 59.21 49.74 41.71
Ours INMS.6+3DVP 63.88 52.57 43.82
Ours Occlusion+3DVP | 65.73 54.60 45.62

(Table from Xiang et al. 2015)




Experimental evaluation

* Result: 2D segmentation
* Qualitative result:

2D recognition color code: true positive I false alarm I Missed ground truth
3D loca ization color code: s detection E—— ground truth VCamera
L . r r o,y ‘o E ar _ . ul E
ig
0|«
-0 s
g o,
dl,

NMS (Ours)
(Images from Xiang et al. 2015)

cclusion Reasoning (Ors)
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Experimental evaluation

e Result: 3D localization

Method Easy Moderate | Hard
Joint 2D Detection and 3D Localization (ALP)
DPM [10] < 2m 40.21 29.02 22.36
Onrs INMS 6 < 2m A4 RS 49 97 41 14
Ours Occlusion < 2m 66.56 51.52 42.39
DPM [10] < Im 24 .44 18.04 14.13
Ours INMS.6 << Im 44 .47 33.25 26.93
Ours Occlusion < 1m 45.61 34.28 27.72

(Table from Xiang et al. 2015)
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Experimental evaluation

e Result: 3D localization
e Qualitative result:

(Images and videos from Xiang et al. 2015)
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Experimental evaluation

e Result: KITTI test set evaluation
* Use the whole training set to generate the 3DVPs

Object Detection (AP) Orientation (AOS)
Methods Easy |Moderate| Hard Easy |Moderate| Hard
ACF [¥] 55.89 | 54.74 | 4298 N/A N/A N/A
DPM [ 1] 71.19 | 62.16 | 45.43 67.27 | 55.77 | 43.59
DPM-VOC+VP[29] || 74.95 | 64.71 | 48.76 7228 | 61.84 | 46.54
OC-DPM [ 0] 7494 | 6595 | 53.86 7350 | 64.42 | 52.40
SubCat [27] 81.94 | 66.32 | 51.10 80.92 | 64.94 | 50.03
AOG [21] 84.36 | 71.88 | 59.27 43.81 | 38.21 | 31.53
SubCat [ 25] 84.14 | 7546 | 59.71 83.41 | 7442 | 58.83
Regionlets [ 10] 8475 | 76.45 | 59.70 N/A N/A N/A
Ours INMS.6 8481 | 73.02 | 63.22 8431 | 71.99 | 62.11
Ours Occlusion 8746 | 75.77 | 65.38 8692 | 74.59 | 64.11

able 4. APJAOS Comparison between ditferent methods on the
KITTI test set. We show the results of 3D AP with 227 clusters
for Ours. More comparisons are available at [ | 0].

(Table from Xiang et al. 2015)



Experimental evaluation

* Result: OutdoorScene dataset evaluation
* 3DVP detectors are generalizable to other scenarios

% occlusion <03 ]103—-06| >0.6
# images 66 68 66
ALM [40] 123 429 35.5
DPM [101] 75.9 58.6 44.6
SLM [ /1] 80.2 63.3 52.9
Ours NMS.5 89.7 76.3 559
Ours Occlusion 90.0 76.5 62.1

Table 5. AP of the car detection on the OutdoorScene dataset [+ 1].

(Table from Xiang et al. 2015)



Discussion

 Strength of the approach
* Estimate detailed properties of objects beyond 2D bounding boxes

* Weakness of the approach

* Running time: not mentioned in this paper
e KITTI website



Discussion

Method Setting : Code | Moderate Easy Hard Runtime Environment Compare

| SubCHN B7.88% : 90.49% : 77.10% 25 GPU @ 3.5 Ghz {Python + C/C++) i
Anonyrmous submission
2 DML . B7.51%  90.67% : 76.33% xS . GPU®@ 1.5 Ghz (Matlab + C/C++) o

3 iDapP code . B86.10% :91.44%  76.52% 3s GPU @ 2.5 Ghz (Matlab + C/C++) (@]
¥. Chen, K, Kundu, ¥. Zhu, A. Berneshawi, H. ma, 5. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object Class Detection. NIPS 2015.
4 Mono3D . B5.66% | 88.31% | 75.89% x5 | GPU@® 2.5 Ghz (Matlab+ C/C++) O
LV ] Lr L *_ o Sl 1 Y g L i = l“ﬂ - | IH A “I L : H £ nm fai¥iala et I
5. 33w  7459%  86.92%  64.11f 405 )| B8cores ®3.5Ghz (Matlab + C/C++) @
‘r‘ Xlang, W. Chei, Y. Lin and 5. Sa\rm rese! Data Driven 30 ‘-.-'oxel Patterns for Object Natesory Recogpffition. IEEE Conference on Computer Vision and P'attern Recognltlon 2015.
6,  SubCat _code  74.42% | 83.41%  58.83% OTT | 6cores @ 3.5 Ghz (Matlab + C/Cs+) | @ |
E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
7 SubCatsHSC . 73.95%  83.07% : 58.29% @ 5.55 . 2cores @2.5Ghz (Matlab+ C++) @
Anonyrmous submission
8 5 . 73.06%  83.87% : 58.38% = 0.3s |  4cores @ 2.5 Ghz (Matlab + C/C++) =
Anonymous submission
9 SubCat | 6494% 80.92% 50.03% . 0.3s  6cores 2.5 Ghz (Matlab + C/C++) | @)

E; Uhn Bar and M., Tr wedl Learmng to Detect Vehicles by CLustennE Appearance Patta ns. T-ITS 2015
E. Chn-Bar and M. Trivedi: Fast and Robust Object Detection UEII'lE Visual Subcategones Cu:tmpl.rter Vision and Pattern Recognition Workshops Mobile Vision 2014.

10, OCDPM . 64.42%  73.50%  52.40% ¢ 10s | 8 cores @ 2.5 Ghz (Matlab) @
B. Pemk M. Stark, P, Gehler and B. Schlele Occlusion Patterns for {]blect Class Detectlon IEEE CanEl ence on Computer Vision and Pattern Recognition [C‘-."PR} 2013,

(Screenshot from KITTI website: Geiger et al. 2012)
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Discussion

 Strength of the approach
* Estimate detailed properties of objects beyond 2D bounding boxes

* Weakness of the approach
* Running time: not mentioned in this paper
e KITTI website

e Future direction

* Be able to adapt to different problems using different CAD models (e.qg.,
Cyclists, Pedestrians)

42
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High-level Overview

* Propose a new object proposal approach: 3D object proposals (3DOP)
* In the context of autonomous driving
* Exploits stereo imagery to place 3D bounding boxes

 Complete the full pipeline combing 3DOP and CNN

(Images from Chen et al. 2015) 44



High-level Overview

* Propose a new object proposal approach: 3D object proposals (3DOP)

* In the context of autonomous driving
* Exploits stereo imagery to place 3D bounding boxes

* Complete the full pipeline combing 3DOP and CNN

* Experiments on KITTI benchmark
e Outperforms all existing approaches on all three categories (cars, cyclists, and
pedestrians)
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Motivation

* Why generating the proposal before object detection?
* Proposals: at least a few accurately cover the ground-truth objects

 Split the system into two phases:
* i) generate the image proposals and ii) classify each proposal

 Combine with other algorithm like R-CNN
e Challenging conditions in autonomous driving



Motivation

* Why generating the proposal before object detection?
* Proposals: at least a few accurately cover the ground-truth objects

* Split the system into two phases:
* i) generate the image proposals and ii) classify each proposal

e Combine with other algorithm like R-CNN
e Challenging conditions in autonomous driving

* Inspired by previous work

 Selective Search (Van de Sande et al. 2011)
e Contours-based method (Zitnick and Dollar 2014)
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Motivation

* Challenges
* High computational complexity of sliding windows

* Produce perfect recall with fewer proposals
* Trade-off between recall rate and precision rate

* Exploit the stereo imagery to improve the performance



Technical approach

* Proposal Generation as Energy Minimization

E(x:* y) — wlpcdqbpcd(xv }’) —I_ w;]:fsqbf‘? (X: Y) + wlf},f@ht (x? .Y) + W;:I:h.t—coﬂ,trth-t—(:@nf?‘(XJ y)

* X: point cloud
e y:tuple (x,y,2,0,c,t)
» w/: class-specific weights
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Technical approach

* Proposal Generation as Energy Minimization

E(x,y) =

wlpcd@pﬂd(xv y-)

W, hrs(X,Y) + W (x,y) +w

* Point cloud density

d)pcd (x? Y) —

_depth-F

-
c,ht—contr

cat
i

:' :‘_

ﬁbht—cont’r (X; }’)

(Image from Chen et al. 2015)
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Technical approach

* Proposal Generation as Energy Minimization

E(X': y-) — WIpCde-pcd(Xa }’) + w;]:fsqbfs (Xﬂ Y) + wlhf@ht (X? Y) + W;:I:ht—coﬂ,trtht—c{}ﬂf?‘(xi y)

* Free space

__depth-Feat

Zpegz(}r)(l — F(p))
Q(y)|

:' :‘_

(;bjﬁ (X, Y) —

(Image from Chen et al. 2015)
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Technical approach

* Proposal Generation as Energy Minimization

E(xv y-) — wIpqubPCd(Xa y-) + W'Ifsqbfs (X: Y) + wt_’fhféht (X? y-) + W;»I:ht_co’”irgbh't_contT(X} y)

* Height prior

with
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Technical approach

* Proposal Generation as Energy Minimization

E(xv y-) — wz—,pcdqb'pcd(xv y-) + w;]:fsqbfs (X: y-) + w-:—‘fht@ht (X? y-) +

T
W ht—contr th-t —contr

(x,¥5)

* Height contrast

‘;bh,t (X¢ Y)

ﬁbht—caﬂt?‘(xa y) —

Ont (X, Yﬂ — (/)ht(xr }’)
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Technical approach

* Proposal Generation as Energy Minimization

E(X': y-) — WIpCde-pcd(Xa }’) —I_ w;]:fsqbfs (Xﬂ Y) + wlhf@ht (X? Y) + W;:I:ht—coﬂ,trtht—c{}ﬂf?‘(xi y)

* |Inference

y* = argmin, E(x, y)
* Get N diverse proposals
» Sort the values of E(x,y) for all y

* Greedy inference: pick top scoring proposal, perform NMS (Felzenszwalb et al. 2010),
and iterate
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Technical approach

* Proposal Generation as Energy Minimization

E(x:* y) — wlpcdqbpcd(xv }’) —I_ w;]:fsgbf‘? (X: Y) + wlhf@ht (x? .Y) + W;l:h.t—coﬂ,trth-t—(:(}ﬂf?‘(XJ y)

* Speed up tricks
* Integral image (summed area table)
* Skipping configurations which do not overlap with the point cloud

* Place all our bounding boxes on the road plane
* Sample additional proposal boxes at large locations: Yy = V.,,4d X Groad



Technical approach

* Proposal Generation as Energy Minimization

E(X} Y) — wlpcd_qbpcd(x, }’) + W.Ifs‘;bfq (X: Y) + wlht@ht (X? Y) + W;:I:ht—contrgbh-t—ﬂmh'(X? y)

* Learn the weights w,_ using structured SVM (Tsochantaridis et al. 2004)
* Given N ground truth input-output pairs {x("),y(")}i=1 N solve the optimization
problem: o

N

1111]]{11 illw“ + =z Zfa

st: wl(p(x®,y) — ¢(x®,y®)) > &(y(”a}’) — &, VYy\y®
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Technical approach

* Object Detection and Orientation Estimation Network
* 3DOP is combined with Fast R-CNN (Girshick 2015)

: Outputs: bbox
Deep | softmax regressor
» &bl | |ConvNet _ - '

L1 il

Rol FC
pooling
e \ layer
, pmjectinr‘i\
Conv X Rol feature
feature map vector For each Rol

(Figure from Girshick 2015)
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Technical approach

* Object Detection and Orientation Estimation Network
e 3DOP is combined with Fast R-CNN (Girshick 2015)

* A context branch after the last convolutional layer
* Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

Box proposal

ROI FCs e
pooling O Softmax
Conv g classification
I
ayers | 8 FC B
o ox
ROI _\ ECs = regression
1]
oolin =g
e B -I I > O FC Orientation
= regression

Context region

(Figures from Chen et al. 2015)

Figure 1: CNN architecture used to score our proposals for object detection.



Technical approach

* Object Detection and Orientation Estimation Network
e 3DOP is combined with Fast R-CNN (Girshick 2015)

e A context branch after the last convolutional layer
* Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

e Orientation regression loss
* Jointly learn object location and orientation

* Smooth L, loss: Less sensitive to outliers than L2 loss used in R-CNN (Girshick et al. 2014)
and SPPnet (He et al. 2015)

Lie(t*,v) = ) smoothy, (t! — v;),
te{x,y,w,h}
in which

0.5z2 if @] <1

|z| — 0.5 otherwise,

smoothy, (z) = {
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Technical approach

* Object Detection and Orientation Estimation Network
e 3DOP is combined with Fast R-CNN (Girshick 2015)
e A context branch after the last convolutional layer

* Enlarging the candidate regions by a factor of 1.5 (Zhu et al. 2015)

e Orientation regression loss
* Jointly learn object location and orientation

* Smooth Lq loss: Less sensitive to outliers than L2 loss used in R-CNN (Girshick et al. 2014)
and SPPnet (He et al. 2015)

* |nitialization of weights on CNN
* Use OxfordNet (Simonyan and Zisserman 2014) trained on ImageNet
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Technical approach

* Object Detection and Orientation Estimation Network

3 ,_ a1 ol
l!- - ":..' R a ‘.-¢"& 4
- ke AL o u

Best prop. Ground truth Top 100 prop. Images

(Figures from Chen et al. 2015)
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Experimental evaluation

 Dataset: KITTI

e 7481 training images, which contains three classes: Car, Pedestrian, and
Cyclist

* Three regimes based on the occlusion levels: Easy, Moderate, and Hard

 Split the training set into training set and validation set

e Evaluation metric: Oracle recall (Van de Sande et al. 2011; Hosang et
al. 2015)

* For each ground truth (GT) object we found the proposal that overlaps the
most in Intersection over Union (loU)

* Then we say it is recalled if loU exceeds 70% for cars and 50% for pedestrians
and cyclists



Experimental evaluation

e Results: Recall as a function of the number of candidates

10?
# candidates

(a) Easy (b) Moderate
Figure 2: Proposal recall: We use 0.7 overlap threshold for Car , and 0.5 for Pedestrian and Cyclist.
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Experimental evaluation

e Results: Recall as a function of the number of candidates

1 . ; A
) |
-ee -
- , -
—en #
“hao ,
Curs
10 {"‘_ —
F
7 =
F
.
- 4
. F i) - BING
10! m::zndin lEE:n’ 10* ?u‘ m:mk msma 104 u\n‘ .D:candidl Esms 104 L S_S
1 1 1
3 - EB
08 e 08 / £ A
" ; - - MCG
— 06 05 A I
e A 7 » MCG-D
[3'0_-1 4 04 TH ] - -
B o B A e YT o | o = o Ours
o 2K g ef A, 0 e e ki, W W 5
- Y _ours — AT o
T R . 1 2 3 4
10 m:randi 10° 104 10 m:m_ 1078 ] 1 D 1 D 1 ﬂ 1 n
(a) Easy (b) Mogerate

Figure 2: Proposal recall: We use 0.7 overlap threshold for Car , and 0.5 for Pedestrian and Cyclist.

(Figures from Chen et al. 2015)
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Experimental evaluation

* Results: Recall vs loU for 500 proposals
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Figure 3: Recall vs IoU for 500 proposals. The number next to the labels indicates the average recall (AR).
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(Figures from Chen et al. 2015)
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Experimental evaluation

* Results: Running time

Method

BING

Selective Search

Edge Boxes (EB)

MCG

MCG-D

Ours |

Time (seconds)

0.01

15

1.5

100

160

2 |

Table 3: Running time of different proposal methods.

(Table from Chen et al. 2015)
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Experimental evaluation

e Results: Full object detection pipeline

Cars Pedestrians Cyclists
Easy | Moderate | Hard || Easy | Moderate | Hard || Easy | Moderate | Hard
LSVM-MDPM-sv [351[1] [ 68.02| 5648 [44.18([47.74| 3936 [3595( 35.04| 2750 [26.21
SquaresICF - - - 5733 | 4442 |40.08 - - -
DPM-CE8BI1 7433 | 6099 |47.16| 3896 29.03 |25.61|(4349| 29.04 |26.20
MDPM-un-BB [1]] 71.19 | 62.16 |4843 - - - - - -
DPM-VOC+VP [27] 7495| 6471 (4876|5948 | 4486 |40.37| 4243 | 31.08 |28.23

OC-DPM E@] 74.94 65.95 53.86 - - - - - -
AOG 84.36 71.88 59.27 - - - - - -
SubCat [28] 84.14 75.46 58.71 || 54.67 42.34 37.95 - - -
DA-DPM [40] - - - 56.36 45.51 41.08 - - -
Fusion-DPM - - . 5951 | 46.67 |42.05 - - -
R-CNN - - - 61.61 50.13 44.79 - - -
FilteredICF [43]) - - - 61.14 53.98 49.29 - - -
pAUCERsT (44 - - - 65.26 54.49 48.60 || 51.62 38.03 33.38
MV-RGBD-RF [45] 2 = = 70021 54 56 51 .25 1| 5402 30 77 34 82
3DVP 8746 | 7577 |65.38 - - - - - -
Regionlets B 1D ToaD - 1090l 7313 DLID 1 on.21 || 7021 5872 15183 (Table from Chen et al. 2015)
QOurs 93.04 88.64 79.10 || 81.78 67.47 64.70 || 78.39 68.94 61.37

Table 1: Average Precision (AP) (in %) on the test set of the KITTI Object Detection Benchmark. 67



Experimental evaluation

e Results: Full object orientation estimation pipeline

Cars Pedestrians Cyclists
Easy | Moderate | Hard || Easy | Moderate | Hard || Easy | Moderate | Hard
AOG 43.81 | 38.21 31.53 - - - - - -
DPM-C8B1 [37] 3951 5032 |3922 13108 2337 |2072| 2725 1925 |1795

LSVM-MDPM-sv [35L1]] || 67.27 | 55.77 | 43.59 ||43.58 | 3549 |3242(27.54| 22.07 |[2145
DPM-VOC+VP [27] 7228 | 6184 | 4654 ||53.55( 39.83 |35.73) 3052 23.17 |21.58

OC-DPM 73.50 | 6442 52.40 - - - - - -

SubCat [28] 83411 7442 5883 4432 1 3418 13076 - - -

3DVP 86.92 [ 74.59 64.11 - - - - - -
Ours 91. 86.10 |76.52 ||7294| 5980 |57.03( 70.13| 58.68 |52.35

Table 2: AOS scores (in %) on the test set of KITTI's Object Detection and Orentation Estimation Benchmark.

(Table from Chen et al. 2015)




Experimental evaluation

e Results: Full object orientation estimation pipeline

Method Setting  Code | Moderate Easy Hard Runtime Environment | Compare
I SubCHN 87.88%  90.49% 77.10% 2s GPU @ 3.5 Ghz (Python + C/C++)
Anonymous submission
: DML 1 90.67% 76.33% xS | GPU@ 1.5 Ghz (Matlab + C/C++) [
3 :3DOP (thIS papen);eDeeEQOI 191.44% 76.52% 3 | GPU@ 2.5 Ghz (Matlab + C/C++) [
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, I—- n".a 5. Fidler andR U|:.asun 3D Object ngosalsfm Accurate Object Class Detection. NIPS 2015.
Mono3D . 85.66% | 88.31%  75.89% x5 GPU @ 2.5 Ghz (Matlab + C/C++)
X. Chen, K. Kundu Z. Zhang H. Ma, 5. Fidler and R. Urtasun: Monocular 30 Db}et" Detection for Autonomous Driving. CVPR 2016,

5th: 3DVP (prev:eus '"r)—177e 2015;CVRR:

{ 64.11%  40s 8 cores 3.5 Ghz (Matlab + C/C++) .

Y. Xiang, W. Choi, Y. Lin and 5. Savarese: Data Driven 3D Voxel Pattarns for Object Category Recoanltlon IEEE Conference on Computer Vision and Pattern Recognition 2015.

6 SubCat code 74.42% 83.41% 58.83% 0.7s | 6 cores @ 3.5 Ghz (Matlab + C/Cs+)

E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clusterin earance Patterns. T-ITS 2015.

: SubCatsHSC . 73.95%  83.07%  58.29% @ 5.5s 2cores@2.5Ghz (Matlab+ C++) [
Anonymous submission

'8 5 . 73.06%  83.87%  58.38% 0.3s . 4cores @ 2.5 Ghz (Matlab + C/C++)

Anonymous submission

: SubCat | . 64.94%  80.92%  50.03% . 035 6 cores @ 2.5Ghz (Matlab + C/C++)

E. Ohn-Bar and M. Trivedi: Learning to Detect Vehicles by Clustering Appearance Patterns. T-ITS 2015.
E. Ohn-Bar and M. Trivedi: Fast and Robust Object Detection Using Visual Subcategories. Computer Vision and Pattern Recognition Workshops Mebile Vision 2014.

OC-DPM | . 64.42%  73.50% . 52.40% @ 105 8 cores @ 2.5 Ghz (Matlab)

B Pepik, M. Stark, P. Gehler and B. Schiele: Occlusion Patterns for Object Class Detection. IEEE Conference on Computer Vision and Pattern Recognition [CVPR} 7013,

(Screenshot from KITTI website: Geiger et al. 2012)
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Discussion

 Strength of the approach

* Generating proposals
* 3DOP achieves higher recall rate on challenging KITTI benchmark

* Full object detection/orientation estimation pipeline
* 3DOP + Fast R-CNN outperforms state-of-the-art methods on KITTI testing set

* Weakness of the approach

* Rely on stereo images
* Still not a real-time algorithm (1.2 seconds for proposals, 3 seconds for full pipeline)

* Future work
* Implement monocular 3D Object Detection
* Improve efficiency by reducing spurious false positives
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