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How does SLAM fit in?
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Visual Odometry SLAM



How does SLAM fit in?
SLAM aims to:

● build an accurate map of the world
● localize the camera within that world

Some defining characteristics:

● The map is used over an extended period (for loop closure, a localization 
reference, for survey) as opposed to VO, which only uses it instantaneously.

● The egomotion of the vehicle is estimated as opposed to scene flow/optical 
flow, which are more concerned with the motion at each pixel.



How does SLAM fit in? - Terminology
loop closure: identifying when the camera is revisiting a previous location.

image credit: Michael Kaess



Relative Continuous-time SLAM - Motivation
We often only need a relative map—not a single privileged coordinate frame.

Can perform loop closure in constant time, not growing with the size of our map.



Relative Continuous-time SLAM - Motivation
Discrete-time estimation makes it difficult to deal with
● high-rate sensors (e.g., IMU, LIDAR)
● fusion with different-rate sensors (e.g., LIDAR + Camera)

since a discrete pose estimate must be available at each measurement time.



Relative Continuous-time SLAM - Overview
Continuous-time estimation allows us to

● interpolate between state variables (at key times) to
○ process arbitrarily-timed measurements
○ query the pose estimate at arbitrary times

● use fewer state variables (at key times) to represent the egomotion
○ smooth, predictable motion needs little adjustment from interpolation 



Relative Continuous-time SLAM - Proof of Concept
Anderson, MacTavish et al. Relative continuous-time SLAM (IJRR 2015)
An appearance-based lidar algorithm (SURF on intensity images)

Rigid RANSAC Motion-compensated RANSAC



Relative Continuous-time SLAM - Proof of Concept
Anderson, MacTavish et al. Relative continuous-time SLAM (IJRR 2015)

Use weights on cubic B-splines to represent continuous state variables

● Differentiable to the n-th degree
● Local support (only adjust local

weights during optimization)
● Implicit trajectory prior is arbitrary :(



Relative Continuous-time SLAM - Proof of Concept
Discrete assumes no distortion, to maintain a tractable number of state variables



Simultaneous Trajectory Estimation and Mapping
Anderson and Barfoot. Full STEAM Ahead: Exactly Sparse Gaussian Process Regression 
for Batch Continuous-Time Trajectory Estimation on SE(3) (IROS 2015)

Instead of cubic B-splines, use Gaussian Process (GP) regression.

● Incredibly slow for dense kernels, but careful selection can result in realistic 
sparse GP kernels that are very fast

● Interpolates between conventional state parameterizations at key times.
● The trajectory prior has physical meaning (e.g. constant velocity/acceleration)
● Uncertainty estimates even at interpolated times



Simultaneous Trajectory Estimation and Mapping

http://www.youtube.com/watch?v=SnxTszgnQ7M


Simultaneous Trajectory Estimation and Mapping

What is GP regression?

A Gaussian process is a 
distribution over continuous 
functions.

Used for regression, 
represents the posterior 
likelihood of the state, given 
the measurements.



Simultaneous Trajectory Estimation and Mapping

When applied to SE3 
(a way to represent rigid 3D 
transformations),
this parameterization can 
represent realistic 
probabilistic trajectories 
obeying nonlinear, 
nonholonomic motion 
models.



Simultaneous Trajectory Estimation and Mapping

Green - measurements are being used 
for the pose estimate

Red - no measurements are used

The interpolation is performs well, and 
the uncertainty grows the further the 
interpolation is from evidence.



Simultaneous Trajectory Estimation and Mapping
The sparse kernel, based on a realistic motion model, allows the GP regression to 
be very fast (easily real-time)



Long-term Lidar SLAM
Pomerleau, Krusi et al. Long-term 3D map maintenance in dynamic environments (ICRA 2014)

http://www.youtube.com/watch?v=cMgLyLpnsoU


Long-term Lidar SLAM

Novel contributions



Long-term Lidar SLAM
1. Estimate the sensor egomotion to align the recent scan
2. Are any points in the map dynamic objects?
3. What are the velocities of those objects?

t0 t1 step 2:
dynamic?

step 1:
odometry

step 3:
velocities



Long-term Lidar SLAM
Odometry: Use ICP to align the current scan to the previous map to estimate 
sensor egomotion (not the main focus of this paper).

t0 t1

step 1:
odometry



Long-term Lidar SLAM - Map Maintenance
Map maintenance: Figuring out which points are dynamic (and can be removed 
from the long-term map).

● Ray trace map and scan points
● Missing objects are probably dynamic

t0 t1 step 2:
dynamic?



Long-term Lidar SLAM - Map Maintenance
Aerial view of 1.3 km surveyed 
over 7 months (top) 

The static map (middle)

Annotations show the following 
dynamic scenes (bottom):

1. Construction sites
2. A large tree
3. A busy intersection



Long-term Lidar SLAM - Map Maintenance

● 9 surveys over 3 days
● classification of static (top right) 

vs dynamic points (bottom right)



Long-term Lidar SLAM - Map Maintenance
The static map stabilizes very quickly, memory requirements are bounded



Long-term Lidar SLAM - Scene Flow
Estimate velocities: for all of the dynamic points, propose assignments to dynamic 
objects from the previous scan. Iterates the following steps:

1. Project points using previous estimate (both ways)
2. Nearest k neighbours for a robust estimate
3. Use a windowed mean filter to smooth

t0 t1 step 3:
velocities



Long-term Lidar SLAM - Scene Flow



Long-term Lidar SLAM
Pomerleau, Krusi et al. Long-term 3D map maintenance in dynamic environments (ICRA 2014)

http://www.youtube.com/watch?v=cMgLyLpnsoU
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Why Dense?

Robust to scaling and rotation, 
occlusions, or motion blurs

High quality correspondence

Traditionally considered expensive
→ New ways to reduce 
computation, or compute on GPU

SIFT feature correspondence failure
Richard Newcombe. Dense Visual SLAM. Thesis 2012.



Some Background

Andrew Davison’s group at ICL:

● 2011, Use pixel SSD for VO on SE(2)
● 2013, Dense VO with autocalibration

→ Pose estimation is really possible with 
dense cost functions!

KinectFusion, ElasticFusion, dense planar VO, 
articulated models, deformable models, indoor 
environments
→ Surreal Vision acquired by Oculus

Steven Lovegrove, Andrew Davison, Javier Ibanez-
Guzman. Accurate Visual Odometry from a Rear 
Parking Camera. IV 2011.

Jacek Zienkiewicz, Robert Lukierski, Andrew 
Davison. Dense, Auto-Calibrating Visual Odometry 
from a Downward-Looking Camera. BMVC 2013.



DTAM: Dense Tracking and Mapping in Real-Time
Richard Newcombe, Steven Lovegrove, Andrew Davison - ICCV 2011

Monocular cameras

No feature extraction

Superior tracking performance than feature based methods

Oriented “for real-time scene interaction in a physics-enhanced 
augmented reality application”

[Newcombe et al.]



For each frame m in the set of 
narrow-baseline frames

Frame m

Pose m

Keyframe r

Keyframe pose

Range of sampled 
inverse depth

Set of discrete inverse 
depth samples

A projective 
photometric cost 
volume

Width

Height

Pixel coord    Inverse depth    Number of frames    Photometric error of frame Im, pixel u, depth d

[Newcombe et al.]



Project 3D point represented by keyframe pixel u, 
inverse depth d onto frame Im

Difference of image intensity 
between keyframe pixel u, and the 
corresponding pixel in frame Im

The Photometric Error

[Newcombe et al.]



Is the photometric error valid for depth estimation?

Three test cases each with a single pixel:
(a) textureless; (b) strongly textured; (c) linear repeating texture

[Newcombe et al.]



Total cost shows clear global
minimum except for textureless regions

(a) Textureless (b) Strongly textured (c) Repeating texture

Inverse depth vs cost plot ||ρr(Im, u, d)||1 for each m Cr(u, d) = ∑m||ρr(Im, u, d)||1

Really need many views to avoid local minima in the total cost.
[Newcombe et al.]



Dense Mapping: the Big Batch Optimization

Minimize the regularized energy functional:

Huber norm, to make the depth 
map smoother

Inverse depth map 
to minimize over Do not smooth edges

Regularization term

Integrate over each pixel

“Cost volume” data term

Coupling term
Enforce ξ = α as θ → 0Non-convex! Approximate it:

Auxiliary variable



Approximation

PTAM 10 frames

30 frames regularized
[Newcombe et al.]



Algorithms

● Primal-dual method optimization
● Incremental cost volume construction - O(1) for any number of frames
● Parallel per pixel optimization on GPU
● Exhaustive search over discrete inverse depth samples

○ Accelerate by showing deterministically decreasing feasible region

● Subpixel refinement

Without subpixel refinement With PTAM
[Newcombe et al.]



Dense Tracking

● Dense cost function: project the map onto a virtual camera, and compute 
photometric error between synthetic images and real images

● Must initialize within convex basin of true solution
● Coarse-to-fine iterative Lucas-Kanade, two stages:

a. Constrained inter-frame rotation estimation
b. 6DOF full pose refinement against the map

Estimating rotation first can help to avoid local minima.

[Newcombe et al.]



Results
640×480 30Hz calibrated RGB camera, Nvidia GTX 480 (1345GFlops), i7 quad-core CPU

[Newcombe et al.]

http://www.youtube.com/watch?v=Df9WhgibCQA


Caveats

● No lighting changes
● No moving objects
● Requires a lot of views to be accurate
● Can’t self-bootstrap - Initializing with feature method until a keyframe is built

Textureless regions do not perform well. Regularization removes details.
Can we do something else? [Newcombe et al.]



Semi-dense Methods

Daniel Cremers’s group at TUM:

● 2013, Semi-dense monocular VO
J. Engel, J. Sturm, D. Cremers. Semi-Dense Visual Odometry for a Monocular Camera. ICCV 2013.

● 2014, LSD-SLAM
J. Engel, T. Schöps, D. Cremers. LSD-SLAM: Large-Scale Direct Monocular SLAM. ECCV 2014.

● 2015, Stereo LSD-SLAM
J. Engel, J. Stueckler, D. Cremers. Large-Scale Direct SLAM with Stereo Cameras. IROS 2015.

● 2015, Omnidirectional LSD-SLAM
D. Caruso, J. Engel, D. Cremers. Large-Scale Direct SLAM for Omnidirectional Cameras. IROS 2015.

● 2016, Semi-dense visual-inertial odometry
V. Usenko, J. Engel, J. Stueckler, D. Cremers. Direct Visual-Inertial Odometry with Stereo Cameras. ICRA 2016.

Daniel CremersJakob Engel



Semi-dense VO
J. Engel, J. Sturm, D. Cremers. Semi-Dense Visual Odometry for a Monocular Camera. ICCV 2013.

● Do not track “low gradient” pixels (the semi- part)
● Probabilistic depth map representation (not in DTAM)
● Dense tracking

→ Real-time on CPU!

[Engel et al.]



Semi-dense Depth Estimation

● Estimate a depth map for the current image
○ DTAM: Estimate the depth map for the previous keyframe

● Propagate and refine the depth map from frame to frame (filtering like)
○ DTAM: (Incremental) batch optimization over several frames

● One depth hypothesis (Gaussian) per pixel in the current image

Stereo-based algorithm:

1. Use uncertainty criteria to select “good” pixels
2. Select adaptively a reference frame for each pixel
3. Do disparity search on the epipolar line



Error Modeling: Geometric
L: Epipolar line segment, derived from estimated motion
εl: Position error of L caused by errors in motion estimation and calibration
     (isotropic Gaussian, translation-only)
ελ: Error in estimated disparity
Isolines: lines of pixels with equal intensity
g: Direction of the gradient
l: Direction of the epipolar line

Epipolar line parallel to gradient: good
Unique match on the epipolar line

Small ελ

Epipolar line perpendicular to gradient: bad
All same pixels on the epipolar line

Large ελ

[Engel et al.]



Error Modeling: Photometric

Intensity

Error of Intensity

εi: Error in image intensity
ελ: Error in estimated disparity
Ip: Image intensity along the epipolar line

Large gradient: small ελ Small gradient: large ελ

[Engel et al.]



Error Modeling: “pixel to inverse depth conversion”

Observation variance of 
the inverse depth

Searched inverse depth range

Searched epipolar line length

Geometric Photometric

Depth estimation step 1: 3 pixel selection criteria

● Low geometric disparity error
→ The epipolar line being parallel to the image gradient

● Low photometric disparity error
→ High gradient along the epipolar line

● Pixel to inverse depth ratio α



Trade-off Between Multiple Baselines

[Engel et al.]



Depth Estimation Step 2: Adaptive Baseline

For each pixel:

1. Select the oldest frame
2. Do the disparity search
3. If the search fails:

Increase the pixel age

[Engel et al.]



Depth Estimation Step 3: Stereo Matching

● Exhaustive search along the epipolar line
● Sub-pixel refinement
● Limit the search range using the uncertainty estimates

Otherwise search the full range



Probabilistic Depth Map Filtering

● Update step (“Kalman filter”) of a depth estimate:
Given the prior and current observation of the depth distribution
Produce a posterior distribution (all Gaussians)

● Predict step:
Given the motion estimate of a new frame
Project the posterior onto the new frame as its prior

● Pixel contention: two depth hypotheses may be projected onto one pixel
If similar, treat independently
Otherwise, discard the farther one

● Regularization: edge-preserving smoothing using the uncertainty estimates, 
outlier removal



(Semi-)Dense Tracking

Pose to
optimize

SSD photometric error

Estimated variance 
of the inverse depth

Robust weighting

Solve with a coarse-to-fine iterative reweighted Gauss-Newton algorithm.

For all good 
pixels

[Engel et al.]



Recap of the Pipeline

1. Get a new frame
2. Estimate motion with coarse-to-fine iterative optimization against the map
3. Predict the next depth estimate with the motion estimate
4. Select “high gradient” good pixels
5. Do disparity search with the largest baseline and within the prior
6. Sub-pixel refinement to produce depth estimate
7. Update depth estimate posterior
8. Go to 1



Implementation

● “Parallel tracking and mapping”: tracking @ 30Hz, mapping @ 15Hz
● i7 quad-core CPU, a calibrated camera
● Adaptive baseline buffer: 100 frames
● Use a feature-based method to obtain initial motion, then self-sufficient

Still work without the initialization (?!)
DTAM: feature-based stereo until the depth map is built



Results

[Engel et al.]



LSD-SLAM: Large-Scale Direct Monocular SLAM
Jakob Engel, Thomas Schöps, Daniel Cremers. ECCV 2014.



What’s New?

New from semi-dense VO:

● Keyframe based pose graph map
● Scale-aware image alignment
● No initialization required



Why Filter?

[I]n most modern applications 
keyframe optimisation gives the most 
accuracy per unit of computing time.

[I]n order to increase the accuracy of 
monocular SLAM it is more profitable to 
increase the number of features than the 
number of frames.

[F]ilter-based SLAM frameworks might be 
beneficial if a small processing budget is 
available, but that BA optimisation is 
superior elsewhere. 

Real-time Monocular SLAM: Why Filter?
Hauke Strasdat, J. M. M. Montiel, Andrew J. 
Davison. ICRA 2010.

“

”



LSD-SLAM: Keyframe Depth Estimation

● Keyframe selection
If too far away from the map (scale relative), create a new keyframe

● Depth creation of the keyframe
Project previous keyframes onto the new keyframe
Scale the depth map to have a mean of one

● Depth refinement of the keyframe

→ Optimize the keyframe depth map, not the new frame
→ The same dense tracking for the new frame, though



Pose Graph Construction 

Direct tracking on sim(3)

Loop closure detection:
Search within 10 closest frames and appearance-based candidates
Reciprocal tracking check

Improve convergence radius for large loop closures:
Initial guess with keypoints
Efficient Second Order Minimization
Coarse-to-fine

Variance-normalized 
photometric error

Variance-normalized photometric 
error of the inverse depth map

Huber norm

Required to constrain 
the scale



Then Optimize the Pose Graph

With g2o.

Loop closure found Before loop closure
[Engel et al.]



Evaluation
Semi-dense VO (ICCV’13)

PTAM (ISMAR’07)

Dense RGBD VSLAM (IROS’13)

RGBDSLAM (ICRA’12)

Absolute trajectory RMSE (cm)

[Engel et al.]

http://www.youtube.com/watch?v=GnuQzP3gty4


LSD-SLAM vs KinectFusion
Comparative Design Space Exploration of Dense and Semi-Dense SLAM.
M. Zeeshan Zia, Luigi Nardi, Andrew Jack, Emanuele Vespa, Bruno Bodin, Paul H.J. Kelly, Andrew J. 
Davison. ICRA 2016.



Runtime Profiling of LSD-SLAM
Zeeshan Zia et al.

A lot of slow image processing - room for acceleration



Large-Scale Direct SLAM with Stereo Cameras
Jakob Engel, Jorg Stueckler, Daniel Cremers. IROS 2015.

● Couple temporal stereo from monocular with static stereo
● Get depth from static stereo, recover scale
● Model illumination changes during direct image alignment
● Systematic evaluation

[Engel et al.]



Depth Estimation

● Use static stereo for keyframe depth estimation
● Use temporal stereo to refine keyframe depth

Larger baseline than static stereo
● Modify the photometric error to include affine lighting correction



Affine Lighting Correction

Model the photometric error with additional affine parameters a, b

Iteratively optimize over all of ξ, a, b.

a and b can be estimated by robust linear least-squares.

Scatter plot of old vs 
new image intensity on 
matched pixels

Robust fit
Total fit

[Engel et al.]



Evaluation
KITTI Visual Odometry / SLAM Evaluation 2012 (only showing stereo)

Submitted on
Sep 26, 2015

Submitted after
S-LSD-SLAM

Problems:
Test sequences 00-10 have moving objects, can’t handle them
Dataset framerate is too low (10Hz at 80km/h) for direct methods



Performance Analysis

154x46 resolution:
Error 2.5% (SLAM) 3.5% (VO)
Runtime 15x (SLAM) 40x (VO) real-time

Feature-based methods will not work under such low resolution.

[Engel et al.]



Limitations

● No moving objects (yet) → rigid body motion segmentation
● No reflection
● No models for surfaces (can’t use for collision avoidance)
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