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DeepFlow - Motivation

DeepFlow: Large Displacement Optical Flow with Deep Matching

Weinzaepfel et al, ICCV 2013

Challenges in �nding correct matching points in image pairs:

Distortions due to perspective changes
Distortions due to large displacements of object between image
captures
Occlusion, scale, texture, etc

DeepFlow addresses �rst two items
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DeepFlow - Comparison with SIFT

Creates descriptive feature unique to one point based on context patch

Source: Bandara @ codeproject.com
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DeepFlow - Comparison with SIFT

Left and middle - traditional SIFT matching

Based on rigid patch

Right - more optimal matching

Non rigid, deformable patch

Source: Weinzaepfel et al, ICCV 2013
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DeepFlow - Architecture

Inspired by deep convolutional neural networks

Source: Weinzaepfel et al, ICCV 2013
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DeepFlow - Architecture

Progression of image data through architecture

Source: Weinzaepfel et al, ICCV 2013
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DeepFlow - Energy optimization

Traditionally, �ow �eld is estimated by minimizing the following energy
over the image:

E (w) = Edata + αEsmoothness

data term encourages color and gradient consistency
smoothness term discourages abrupt changes in �ow �eld

DeepFlow adds one more term to encourage �ow estimation to equal
displacements from matching

E (w) = Edata + αEsmoothness + βEmatching

matching term also takes quality of matches into account
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EpicFlow

EpicFlow: Edge-Preserving Interpolation of Correspondences for
Optical Flow

Revaud et al, CVPR2015

Based in part on Deep Matching (as developed in DeepFlow)

Also incorporates knowledge about visual edges in images
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EpicFlow - Motivation

Commonly used method - coarse-to-�ne interpolation / energy
minimization

Start with smoothed or down-sampled image, estimate �ow
Use estimated �ow for a less down-sampled image for further
re�nement

Esmooth = Ψ(‖∇u‖2 + ‖∇v‖2)

Ψ is a robust penalization function
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EpicFlow - Motivation

Question:

Should smoothness in �ow �eld be uniformly encouraged?
What e�ect does this have on natural motion discontinuities in 3D?
What e�ect does this have on small but fast moving objects?

Source: KITTI
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EpicFlow - Key Insight

Motion discontinuities tend to occur at image edges

In the natural world, the same objects tend to be coherent in color
(compared to background)
Abrupt changes in true optical �ow tends to be due to 3D points not
belonging to the same rigidly moving body or abrupt changes in depth
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EpicFlow - Architecture

Run edge detection algorithm (based on Structured Forests for Fast
Edge Detection, ICCV 2013)

Run Deep Matching (same algorithm as discussed previously)

Flow �eld interpolation through edge-aware distances

This skips the coarse-to-�ne pyramid!

One level energy minimization

Source: Revaud et al, CVPR 2015
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EpicFlow - Sparse to Dense Flow Field Interpolation

Start with sparse �ow �eld from key point matching

Calculate "edge aware distance" between two pixels p and q

Then perform weighted average interpolation for �ow at pixel p

Finally smooth over �ow image using one level variational method

E (w) = Edata + αEsmoothness
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EpicFlow - KITTI

Table : KITTI Results

Inputs

Matching

Edges

Result

Source: Revaud et al, CVPR 2015
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Di�erence between Scene Flow and Optical FLow

Optical �ow reasons in 2D

Output is only �ow �eld showing 2D pixel correspondences

Scene �ow reasons in 3D

Recognizes that changes in the 2D image are due to object motion
and/or change in camera position in 3D
Optical �ow = projection of 3D scene �ow onto image
Output can include:

3D structure (depth)
3D Camera motion
3D Object motion
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Why bother with scene �ow?

Optical �ow reasons about things like matching points, edges,
interpolation, regional smoothing, etc in 2D

Can only incorporate intuition about 2D

But we know much about the world in 3D! For example, we know that
in general...

Many (most) objects are rigid
Many (most) surfaces are planar
Objects have continuous motion - no teleportation (in classical physics)

Plus some domain speci�c knowledge (eg for driving):

Most of a scene is likely static (road, trees, buildings)
Most object motion is con�ned to road plane (for now)
Camera motion is con�ned to road plane (if car is driven well)

How do we incorporate these beliefs?

Reason in 3D!
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Why bother with scene �ow?

Source: KITTI
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Why is Scene Flow Hard?

Inherent ambiguity:

Need to infer 3D information from 2D images
2D observed �ow can be due to any combination of object motion,
camera motion, depth

Similar problems as optical �ow

Sparseness of matches
Errors in matching
Occlusions, displacement, view point changes, etc
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3D to 2D Projection Review

Given a 3D point P = [X ,Y ,Z , 1]ᵀ in homogeneous coordinates

Projection into image is p = [x , y , 1]ᵀ

p = [K |0][R|~t]P (1)

For canonical camera at world center: K =

1 0 0
0 1 0
0 0 f

, R = I , ~t = 0

and thus x = f X

Z
, y = f Y

Z
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Epipolar Geometry Review

Given two images I and I' of a static scene, p' corresponding to p
must lie on epipolar line:

pᵀFp' = 0

F ⊂ R3x3 = fundamental matrix, rank = 2

Source: IMAGINE @ http://imagine.enpc.fr/
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Robust Monocular Epipolar Flow Estimation

Robust Monocular Epipolar Flow Estimation

Yamaguchi, McAllester, Urtasun, CVPR2013

Scene �ow estimation from monocular (not stereo) image pairs at
di�erent times

Assumes static scene

Based on

Epipolar �ow
Planar superpixel assumption
Smoothing
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Epipolar Flow

Optical �ow assumed to consist of two components

p and p′ are corresponding points in I and I ′

Flow u = p′ − p

u = uw(p) + uv(p) has two components:

uw(p) due to camera rotation
uv(p) due to camera translation

Idea:

Undo camera rotation �rst (by estimating F )
Treat problem as epipolar �ow
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Epipolar Flow - Recti�cation

Stereo recti�cation

Source: S. Savarese

Epipolar recti�cation

Source: Yamaguchi et al
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Epipolar Flow - Recti�cation

Epipolar expansion (or contraction)

Only valid when camera motion is purely translational!
Flow is con�ned to epipolar lines coming out of epipole
Epipole is found by right nullspace of F

Fo′ = 0

Recti�ed image pair have epipole at SAME location
Knowing F and o′ we can �nd epipolar line in I ′ on which p′ must lie

Source: Yamaguchi et al
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Epipolar Flow - Searching for Matches

Search along epipolar lines to �nd matching point pairs
Generate dense matches (�ow �eld)

Minimize matching cost using Semi Global Smoothing
(for more info: http://www.ifp.uni-stuttgart.de/
publications/phowo11/180Hirschmueller.pdf)

Source: neurology.org
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Epipolar Flow - Segmentation and Smoothing

Given motion is only translation + static scene

constant vz for all 3D points relative to camera

De�ne a ratio ωp =
vp

Zp
called the vz-index for each point p

Source: Yamaguchi et al
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Epipolar Flow - Segmentation and Smoothing

Assume each piecewise planar world - superpixels represent 3D planes
Jointly segment image into slanted plane superpixels using

Pixel appearance + location
Flow information (use the vz-index for each p)
Regularizers

Planar assumption constrains vz-ratios for all p = (u, v) belonging to
superpixel i centered at ci to disparity plane:

ωi = αi (u − civ ) + βi (v − civ ) + γi
Goal - �t one such disparity plane described by αi , βi , γi to each
superpixel

Source: Yamaguchi et al
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Question

What about scenes with moving objects?

Points in general no longer obey the same epipolar constraint

How can we estimate both world geometry AND object motion?
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3D Piecewise Rigid Scene Model

3D Scene Flow Estimation with a Piecewise Rigid Scene Model

Vogel et al, IJCV 2015

Scene �ow estimation from stereo image pairs + time series of images

Handles dynamic environment

Based on

Homographies
Piecewise planar assumption of 3D world
Single reference view energy minimization
Multi-frame motion continuity
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3D Piecewise Rigid Scene Model - Homography Review

Similar idea to epipolar geometry and fundamental matrix, but
di�erent

Fundamental Matrix:

F ⊂ R3x3, rank 2 maps point p in I to line l ′ = Fp in I ′

Valid for general 3D points in world

Homography Matrix

H ⊂ R3x3, rank 3 maps point p in I to point p′ = Hp in I ′

Valid for 3D points in world belonging to same plane nᵀP = 0
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3D Piecewise Rigid Scene Model - Homography Review

"Homography" means "similar drawing"

Source: IMAGINE @ http://imagine.enpc.fr/
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3D Piecewise Rigid Scene Model - Homography Review

Let π = π(R, t,~n) be a moving plane in 3D with 9 total degrees of
freedom

3 degrees in each of R, t, ~n

Two observing cameras l and r taking two pictures each at t = 0 and
t = 1

Camera l at t = 0 considered canonical, aka p0
l

= [K |0]P0

Camera r at t = 0 has projection matrix M, or p0
r

= [M|m]P0

Thus view of plane can be transformed between view points and time:

Source: Vogel et al
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3D Piecewise Rigid Scene Model - Technique

Method assumes scene is piecewise planar

Fits parameters to each plane by energy minimization involving:

Single reference image (2 cameras, 2 times), or more generally
Entire image sequence terms (2 cameras, consistent motion through
time)

Source: Vogel et al
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3D Piecewise Rigid Scene Model - Technique

Single reference image (2 cameras, 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = ED(P,S) + λER(P,S) + µES(P) + EV(P,S)

To initialize inference, use output of other optical / stereo / scene
�ow algorithms

Energy here essentially further re�nes �ow by adding additional priors
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3D Piecewise Rigid Scene Model - Technique

Single reference image (2 cameras, 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = ED(P,S) + λER(P,S) + µES(P) + EV(P,S)

ED(P,S) encourages view consistency of planes between cameras and time

Source: Vogel et al
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3D Piecewise Rigid Scene Model - Technique

Single reference image (2 cameras, 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = ED(P,S) + λER(P,S) + µES(P) + EV(P,S)

ER(P,S) builds in a prior favoring simpler scene geometry and motion

Source: Vogel et al
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3D Piecewise Rigid Scene Model - Technique

Single reference image (2 cameras, 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = ED(P,S) + λER(P,S) + µES(P) + EV(P,S)

ES(P) sets maximum superpixel size so that scene model doesn't become
overly simple
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3D Piecewise Rigid Scene Model - Technique

Single reference image (2 cameras, 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = ED(P,S) + λER(P,S) + µES(P) + EV(P,S)

EV(S) - based on estimation for changes in visibility of areas of image,
penalize inconsistent motion proposals
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3D Piecewise Rigid Scene Model - Technique

Extension to View-Consistent Model (2 cameras, more than 2 times)

Prior: objects don't suddenly teleport within sequence of frames

Prior: objects have non-zero mass (no instantaneous acceleration,
smooth velocity)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = EVC

D (P,S) + λEVC

R (P,S) + µEVC

S (P)
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3D Piecewise Rigid Scene Model - Technique

Extension to View-Consistent Model (2 cameras, more than 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = EVC

D (P,S) + λEVC

R (P,S) + µEVC

S (P)

EVC

D (P,S) now encourages:

View consistency between cameras + times (same as before)

Plausibility of occlusions

Fewer cases of moving out of bounds

Fewer moving plane violations
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3D Piecewise Rigid Scene Model - Technique

Extension to View-Consistent Model (2 cameras, more than 2 times)

Let P be the assignment of pixels to segments

Let S be the assignment of segments to 3D moving plane

E (P,S) = EVC

D (P,S) + λEVC

R (P,S) + µEVC

S (P)

EVC

D (P,S)

Source: Vogel et al
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3D Piecewise Rigid Scene Model - Sample Result

Source: Vogel et al
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Wrap-up

Thanks!

Questions?

Suggestions for future directions?
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