Outline

• Multivariate Linear Regression, Demo
• Cross-Validation, Review
• k-NN Classification, Demo
Multivariate Linear Regression

• We want to predict output, such as the median house price, from multi-dimensional observations.

• Each house is a data point n, with observations indexed by j:

$$
\mathbf{x}^{(n)} = (x_1^{(n)}, \ldots, x_d^{(n)})
$$

• Simple predictor is analogue of linear classifier, producing real-valued y for input \mathbf{x} with parameters \mathbf{w} (assuming $x_0 = 1$):

$$
y = w_0 + \sum_{j=1}^{d} w_j x_j = \mathbf{w}^T \mathbf{x}
$$
Multivariate Data

- Multiple measurements (sensors)
- d inputs/features/attributes
- N instances/observations/examples

\[
X = \begin{bmatrix}
X_1^1 & X_2^1 & \cdots & X_d^1 \\
X_1^2 & X_2^2 & \cdots & X_d^2 \\
\vdots & \vdots & \ddots & \vdots \\
X_1^N & X_2^N & \cdots & X_d^N
\end{bmatrix}
\]
Multivariate Parameters

Mean: $E[x] = [\mu_1, ..., \mu_d]^T$

Covariance: $\sigma_{ij} \equiv \text{Cov}(X_i, X_j)$

Correlation: $\text{Corr}(X_i, X_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$

$\Sigma \equiv \text{Cov}(X) = E[(X - \mu)(X - \mu)^T] = \begin{bmatrix}
\sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\
\sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2
\end{bmatrix}$
Multivariate Normal Distribution

\[x \sim \mathcal{N}_d (\mu, \Sigma) \]

\[p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right] \]

- Mahalanobis distance: \((x - \mu)^T \Sigma^{-1} (x - \mu)\)
 measures the distance from \(x\) to \(\mu\) in terms of \(\Sigma\) (normalizes for difference in variances and correlations)
Bivariate Normal

\[\text{Cov}(x_1, x_2)=0, \ Var(x_1)=\text{Var}(x_2) \]

\[\text{Cov}(x_1, x_2)=0, \ Var(x_1)>\text{Var}(x_2) \]

\[\text{Cov}(x_1, x_2)>0 \]

\[\text{Cov}(x_1, x_2)<0 \]
\[\text{Cov}(x_1, x_2) = 0, \ Var(x_1) = \text{Var}(x_2) \]

\[\text{Cov}(x_1, x_2) > 0 \]

\[\text{Cov}(x_1, x_2) < 0 \]
Independent Inputs: Naive Bayes

• If x_i are independent, offdiagonals of Σ are 0, Mahalanobis distance reduces to weighted (by $1/\sigma_i$) Euclidean distance:

$$p(x) = \prod_{i=1}^{d} p_i(x_i) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_i} \exp \left[-\frac{1}{2} \sum_{i=1}^{d} \left(\frac{x_i - \mu_i}{\sigma_i} \right)^2 \right]$$

• If variances are also equal, reduces to Euclidean distance
Parametric Classification

- If $p(x | C_i) \sim N(\mu_i, \Sigma_i)$

\[
p(x | C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right]
\]

- Discriminant functions

\[
g_i(x) = \log p(x | C_i) + \log P(C_i)
= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \log P(C_i)
\]
MATLAB Demo

- Multivariate Linear Regression
Cross-Validation

• why validation?
 • performance estimation
 • model selection (e.g. hyper parameters)
• hold-out validation
 • split dataset into training set and test set
 • drawbacks: waste of dataset, estimation of error rate maybe misleading
• cross-validation
Cross-Validation

- random subsampling
- k-fold cross-validation
- leave-1-out cross-validation (k=N)
Cross-Validation

- random subsampling
- **k-fold cross-validation**
- leave-1-out cross-validation (k=N)
Cross-Validation

- random subsampling
- k-fold cross-validation
- leave-1-out cross-validation (k=N)
Cross-Validation

• how many folds do we need?
• with larger k
 • error estimation tends to be more accurate
 • but computational time will be larger
• in practice, larger dataset, smaller k
• a common choice for k-fold cross-validation is k = 10
Some Issues with Cross-Validation

• intensive use of cross-validation can overfit if you explore too many models, by tuning hyper parameters to predict the whole training set well
 • hold out an additional test set before doing any model selection. Check the best model performs well even on the additional test set
• time consuming (always if done naively)
 • there are efficient tricks that can save work over brute force
k-Nearest Neighbors

- k-NN is a simple algorithm which stores all available training examples and predict value/class of an unseen instance based on a similarity measure
 - $k = 1$
 - predict the same value/class as the nearest instance in the training set
 - $k > 1$
 - find the k closet training examples
 - predict class: majority vote
 - predict value: average weighted by inverse distance
- memory based, no explicit training or model
k-NN Classification

- Similarity measure: Euclidean distance, etc.
 - Assumption behind Euclidean distance: uncorrelated inputs with equal variances
- Predict class: majority vote
- k preferably odd to avoid ties for binary classification
- Choice of k
 - Smaller k: higher variance (less stable)
 - Larger k: higher bias (less precise)
- Cross-validation can help
- MATLAB demo