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Many of the figures are provided by Chris Bishop  
from his textbook: ”Pattern Recognition and Machine Learning” 

1 



Logis3c	
  Regression	
  



Max	
  margin	
  classifica3on	
  
Instead of fitting all the points, focus on boundary points 
Aim: learn a boundary that leads to the largest margin 

(buffer) from points on both sides 

Why: intuition; theoretical support; and works well in practice  
Subset of vectors that support (determine boundary) are 

called the support vectors 



Linear	
  SVM	
  

Max margin classifier: inputs in margin are of unknown class 



Maximizing	
  the	
  Margin	
  

First note that the w vector is orthogonal to the +1 plane 
 if u and v are two points on that plane, then wT(u-v) = 0 

Same is true for -1 plane 

Also: for point x+ on +1 plane and x- nearest point on -1 plane: 
  x+ = λw + x- 



Compu3ng	
  the	
  Margin	
  

Also: for point x+ on +1 plane and x- nearest point on -1 plane: 
  x+ = λw + x- 



Compu3ng	
  the	
  Margin	
  
Define the margin M to be the distance between the +1 and -1 

planes 

We can now express this in terms of w  
  to maximize the margin we minimize the length of w 



Learning	
  a	
  Margin-­‐Based	
  Classifier	
  
We can search for the optimal parameters (w and b) by 

finding a solution that: 
1.  Correctly classifies the training examples: {xi,yi}, i=1,..,n 
2.  Maximizes the margin (same as minimizing  wTw) 

This is the primal formulation, can optimized via gradient 
descent, EM, etc. 

Apply Lagrange multipliers: formulate equivalent problem 



Learning	
  a	
  Linear	
  SVM	
  
Convert the constrained minimization to an unconstrained 

optimization problem: represent constraints as penalty 
terms: 

For data {(xi,yi)} use the following penalty term: 

Rewrite the 
 minimization problem: 

Where {αi} are the  
   Lagrange multipliers 



Swap the ‘max’ and ‘min’: 

First minimize J() w.r.t. {w,b} for any fixed setting of the 
Lagrange multipliers: 

Then substitute back to get final optimization: 

Solu3on	
  to	
  Linear	
  SVM	
  



•  Binary and linear separable classification 
•  Linear classifier with maximal margin 
•  Training SVM by maximizing 

•  Subject to 

•  Weights: 

•  Only a small subset of αi’s will be nonzero, and the corresponding 
xi’s are the support vectors S 

•  Prediction on a new example: 

Summary of Linear SVM 



•  Introduce slack variables ξi 

      subject to constraints (for all i): 

•  Example lies on wrong side of hyperplane:  
              is upper bound on number of training errors 

•  Λ trades off training error versus model complexity 

•  This is known as the soft-margin extension 

What	
  if	
  data	
  is	
  not	
  linearly	
  separable?	
  



•  Note that both the learning objective and the decision 
function depend only on dot products between patterns 

•  How to form non-linear decision boundaries in input space? 

•  Basic idea:  

1.  Map data into feature space 

2.  Replace dot products between inputs with feature points 

3.  Find linear decision boundary in feature space 

•  Problem: what is a good feature function ϕ(x)? 

Non-­‐linear	
  decision	
  boundaries	
  



•  Kernel trick: dot-products in feature space can be 
computed as a kernel function  

•  Idea: work directly on x, avoid having to compute ϕ(x) 

•  Example: 

Kernel Trick 



Mapping to a feature space can produce problems: 
•  High computational burden due to high dimensionality 
•  Many more parameters 

SVM solves these two issues simultaneously 
•  Kernel trick produces efficient classification 
•  Dual formulation only assigns parameters to samples, not 

features 

Input transformation 



Examples of kernels (kernels measure similarity): 

1.  Polynomial 

2.  Gaussian  

3.  Sigmoid 

Each kernel computation corresponds to dot product 
calculation for particular mapping  ϕ(x): implicitly maps to 
high-dimensional space 

Why is this useful? 
1.  Rewrite training examples using more complex features 
2.  Dataset not linearly separable in original space may be 

linearly separable in higher dimensional space 

Kernels 



Non-linear SVM using kernel function K(): 

Maximize LK  w.r.t. {α}, under constraints α≥0 

Unlike linear SVM, cannot express w as linear combination of 
support vectors – now must retain the support vectors to 
classify new examples 

Final decision function: 

Classification with non-linear SVMs 



Mercer’s Theorem (1909): any reasonable kernel corresponds 
to some feature space 

Reasonable means that the Gram matrix is positive definite 

Feature space can be very large, e.g., polynomial kernel (1+xi + 
xj)d corresponds to feature space exponential in d 

Linear separators in these super high-dim spaces correspond 
to highly nonlinear decision boundaries in input space 

Kernel Functions 



Advantages: 
•  Kernels allow very flexible hypotheses 
•  Poly-time exact optimization methods rather than 

approximate methods 
•  Soft-margin extension permits mis-classified examples 
•  Variable-sized hypothesis space 
•  Excellent results (1.1% error rate on handwritten digits 

vs. LeNet’s 0.9%) 

Disadvantages: 
•  Must choose kernel parameters 
•  Very large problems computationally intractable 
•  Batch algorithm 

Summary 



A popular way to make an algorithm more powerful is to 
develop a  kernelized version of it 

•  We can rewrite a lot of algorithms to be defined only in 
terms of inner product 

•  For example: k-nearest neighbors 

Kernelizing 



Software: 
•  A list of SVM implementations can be found at 

http://www.kernel-machines.org/software.html 
•  Some implementations (such as LIBSVM) can handle 

multi-class classification 
•  SVMLight is among the earliest implementations 
•  Several Matlab toolboxes for SVM are also available 

Key points: 
•  Difference between logistic regression and SVMs 
•  Maximum margin principle 
•  Target function for SVMs 
•  Slack variables for mis-classified points 
•  Kernel trick allows non-linear generalizations 

More Summary  



•  Output is multi-dimensional, with dependencies between 
the dimensions 

•  Examples:  
•  natural language sentence  annotated parse tree 
•  Image  labeled pixels 

•  Aim: produce best structured output on test examples 

Structured Output Problems 







•  Training set of N examples 
•  Use analogous loss function to single-output SVM 

Structured Output SVM 


