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Today

Multi-class classification with:

Least-squares regression
Logistic Regression
K-NN

Classification – Bayes classifier

Estimate probability densities from data

Making decisions: Risk

Classification – Multi-dimensional Bayes classifier

Naive Bayes
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Discriminant Functions for K > 2 classes

Use K − 1 classifiers, each solving a two class problem of separating point in
a class Ck from points not in the class.

Known as 1 vs all or 1 vs the rest classifier

PROBLEM: More than one good answer!
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Discriminant Functions for K > 2 classes

Introduce K (K − 1)/2 two-way classifiers, one for each possible pair of
classes

Each point is classified according to majority vote amongst the disc. func.

Known as the 1 vs 1 classifier

PROBLEM: Two-way preferences need not be transitive
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K-Class Discriminant

We can avoid these problems by considering a single K-class discriminant
comprising K functions of the form

yk(x) = wT
k x + wk,0

and then assigning a point x to class Ck if

∀j 6= k yk(x) > yj(x)

Note that wT
k is now a vector, not the k-th coordinate

The decision boundary between class Cj and class Ck is given by
yj(x) = yk(x), and thus it’s a (D − 1) dimensional hyperplane defined as

(wk −wj)
Tx + (wk0 − wj0) = 0

What about the binary case? Is this different?

What is the shape of the overall decision boundary?
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K-Class Discriminant

The decision regions of such a discriminant are always singly connected
and convex

In Euclidean space, an object is convex if for every pair of points within the
object, every point on the straight line segment that joins the pair of points
is also within the object

Which object is convex?
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K-Class Discriminant

The decision regions of such a discriminant are always singly connected
and convex

Consider 2 points xA and xB that lie inside decision region Rk

Any convex combination x̂ of those points also will be in Rk

x̂ = λxA + (1− λ)xB
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Multi-class classification via the ”softmax”

Associate a set of weights with each class, then use a normalized
exponential output

p(Ck |x) = yk(x) =
exp(zk)∑
j exp(zj)

where the activations are given by

zk = wT
k x

For the target vector, if there are K classes we often use a 1-of-K encoding,
i.e., a vector of K target values containing a single 1 for the correct class
and zeros elsewhere

Let T ∈ {0, 1}N×K for N training examples and K classes
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Multi-class Logistic Regression

The likelihood

p(T|w1, · · · ,wk) =
N∏

n=1

K∏
k=1

p(Ck |x(n))t
(n)
k

=
N∏

n=1

K∏
k=1

y
(n)
k (x(n))t

(n)
k

with
p(Ck |x) = yk(x) =

exp(zk)∑
j exp(zj)

and zk = wT
k x + wk0

What assumptions have I used to derive the likelihood?

Derive the loss by computing the negative log-likelihood

E (w1, · · · ,wK ) = − log p(T|w1, · · · ,wK ) = −
N∑

n=1

K∑
k=1

t
(n)
k log y

(n)
k (x(n))

This is known as the cross-entropy error for multiclass classification

How do we obtain the weights?
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Training Multi-class Logistic Regression

E (w1, · · · ,wK ) = − log p(T|w1, · · · ,wK )

= −
N∑

n=1

K∑
k=1

t
(n)
k log y

(n)
k (x(n))

Do gradient descent, where the derivatives are

∂y
(n)
j

∂z
(n)
k

= δ(k, j)y
(n)
j − y

(n)
j y

(n)
k

and

∂E

∂zk

(n)

=
K∑
j=1

∂E

∂y
(n)
j

·
∂y

(n)
j

∂z
(n)
k

= y
(n)
k − t

(n)
k

∂E

∂wk,j
=

N∑
n=1

K∑
j=1

∂E

∂y
(n)
j

·
∂y

(n)
j

∂z
(n)
k

·
∂z

(n)
k

∂wk,j
=

N∑
n=1

(y
(n)
k − t

(n)
k ) · x (n)j

The derivative is the error times the input
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Softmax for 2 Classes

Let’s write the probability of one of the classes

p(C1|x) = y1(x) =
exp(z1)∑
j exp(zj)

=
exp(z1)

exp(z1) + exp(z2)

I can equivalently write this as

p(C1|x) = y1(x) =
exp(z1)

exp(z1) + exp(z2)
=

1

1 + exp (−(z1 − z2))

So the logistic is just a special case that avoids using redundant parameters

Rather than having two separate set of weights for the two classes, combine
into one

z ′ = z1 − z2 = wT
1 x−wT

2 x = wTx

The over-parameterization of the softmax is because the probabilities must
add to 1.
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Multi-class K-NN

Can directly handle multi class problems
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Generative vs Discriminative

Two approaches to classification:

Generative approach: model the distribution of inputs characteristic of the
class (Bayes classifier)

Build a model of p(x|tk)
Apply Bayes Rule

Discriminative classifiers estimate parameters of decision boundary/class
separator directly from labeled sample

learn boundary parameters directly (logistic regression), or
learn mappings from inputs to classes (least-squares, neural nets)
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Bayes Classifier

Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

Run battery of tests

Given patient’s results: x = [x1, x2, · · · , xd ]T we want to update class
probabilities using Bayes Rule:

p(C |x) =
p(x|C )p(C )

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C = 1)p(C = 1)
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Classification: Diabetes Example

Start with single input/observation per patient: white blood cell count

p(C = 1|x = 50) =
p(x = 50|C = 1)p(C = 1)

p(x = 50)

Need class-likelihoods, priors

Prior: In the absence of any observation, what do I know about the problem?

What would you use as prior?
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Diabetes Data

Which probability distribution makes sense for p(x |C )?
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MLE for Gaussians

Let’s assume that the class-conditional densities are Gaussian

How can I fit a Gaussian distribution to my data?

p(x |C ) =
1√
2πσ

exp

(
(x − µ)2

2σ2

)
with µ ∈ < and σ2 ∈ <+

Let’s try maximum likelihood estimation (MLE)

We are given a set of training examples {x (i), t(i)}i=1,···N with t(i) ∈ {0, 1}
and we want to estimate the model parameters {µ, σ} for each class

First divide the training examples into two classes according to t(i), and for
each class take all the examples and fit a Gaussian to model p(x |C )
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MLE for Gaussians II

We assume that the data points that we have are independent and
identically distributed

p(x (1), · · · , x (N)|C ) =
N∏
i=1

p(x (i)|C ) =

N∏
i=1

1√
2πσ

exp

(
− (x (i) − µ)2

2σ2

)

Now we want to maximize the likelihood, or minimize it’s negative (if you
think in terms of a loss)

`log−loss = − ln p(x (1), · · · , x (N)|C)

= − ln

(
N∏
i=1

1√
2πσ

exp

(
− (x (i) − µ)2

2σ2

))

=
N∑
i=1

ln(
√
2πσ) +

N∑
i=1

(x (i) − µ)2

2σ2
=

N

2
ln
(
2πσ2

)
+

N∑
i=1

(x (i) − µ)2

2σ2

Write
d`log−loss

dµ and
d`log−loss

dσ2 and equal it to 0 to find the parameters µ and σ2
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Computing the Mean

∂`log−loss
∂µ

=
∂
(

N
2 ln

(
2πσ2

)
+
∑N

i=1
(x (i)−µ)2

2σ2

)
∂µ

=
∂
(∑N

i=1
(x (i)−µ)2

2σ2

)
∂µ

=
−
∑N

i=1 2(x (i) − µ)

2σ2
= −

N∑
i=1

(x (i) − µ)

σ2
=

Nµ−
∑N

i=1 x
(i)

σ2

And equating to zero we have

d`log−loss
dµ

= 0 =
Nµ−

∑N
i=1 x

(i)

σ2

Thus

µ =
1

N

N∑
i=1

x (i)
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Computing the Variance

∂`log−loss
∂σ2

=
∂
(

N
2 ln
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∂σ2

=
N

2

1

2πσ2
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∑N
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N
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N
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MLE of a Gaussian

We can compute the parameters in closed form for each class by taking the
training points that belong to that class

µ =
1

N

N∑
i=1

x (i)

σ2 =
1

N

N∑
i=1

(x (i) − µ)2
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Inference: Posterior Probability

Now given a new observation and the estimated class-likelihoods and the
prior, we can obtain posterior probability for class C = 1

p(C = 1|x) =
p(x |C = 1)p(C = 1)

p(x)

=
p(x |C = 1)p(C = 1)

p(x |C = 0)p(C = 0) + p(x |C = 1)p(C = 1)
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Diabetes Example

Doctor has a prior p(C = 0) = 0.8, how?

Example x = 50, p(x = 50|C = 0) = 0.11, and p(x = 50|C = 1) = 0.42

How were p(x = 50|C = 0) and p(x = 50|C = 1) computed?

How can I compute p(C = 1)?

Which class is more likely? Do I have diabetes?
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Bayes Classifier

Use Bayes classifier to classify new patients (unseen test examples)

Simple Bayes classifier: estimate posterior probability of each class

What should the decision criterion be?
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Conditional risk of a classifier

R(y |x) =
C∑

c=1

L(y , t)p(t = c |x)

= 0 · p(t = y |x) + 1 ·
∑
c 6=y

p(t = c |x)

=
∑
c 6=y

p(t = c |x) = 1− p(t = y |x)

To minimize conditional risk given x, the classifier must decide

y = arg max
c

p(t = c |x)

This is the best possible classifier in terms of generalization, i.e., expected
misclassification rate on new examples.
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Log-odds ratio

Optimal rule y = arg maxc p(t = c |x) is equivalent to

y = c ⇔ p(t = c |x)

p(t = j |x)
≥ 1 ∀j 6= c

⇔ log
p(t = c |x)

p(t = j |x)
≥ 0 ∀j 6= c

For the binary case

y = 1 ⇔ log
p(t = 1|x)

p(t = 0|x)
≥ 0

Where have we used this rule before?
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Decision Boundary

The Bayes classifier will construct decision boundary: used to classify new
patients (unseen test examples)

Can be view as a simple linear classifier

C =

{
1 if x ≥ T

0 otherwise
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Bayes Classifier

Aim to diagnose whether patient has diabetes: classify into one of two
classes (yes C=1; no C=0)

Run battery of tests

Given patient’s results: x = [x1, x2, · · · , xd ]T we want to update class
probabilities using Bayes Rule:

p(C |x) =
p(x|C )p(C )

p(x)

More formally

posterior =
Class likelihood× prior

Evidence

How can we compute p(x) for the two class case?

p(x) = p(x|C = 0)p(C = 0) + p(x|C = 1)p(C = 1)
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Classification: Diabetes Example

Before we had a single input/observation per patient: white blood cell count

p(C = 1|x = 50) =
p(x = 50|C = 1)p(C = 1)

p(x = 50)

Add second observation: Plasma glucose value

Can construct bivariate normal (Gaussian) distribution of each class
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Gaussian Bayes Classifier

Gaussian (or normal) distribution:

p(x|t = k) =
1

(2π)d/2|Σ|1/2
exp

[
−(x− µk)TΣ−1(x− µk)

]

Each class k has associated mean vector, but typically the classes share a
single covariance matrix
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Multivariate Data

Multiple measurements (sensors)

d inputs/features/attributes

N instances/observations/examples

X =


x
(1)
1 x

(1)
2 · · · x

(1)
d

x
(2)
1 x

(2)
2 · · · x

(2)
d

...
...

. . .
...

x
(N)
1 x

(N)
2 · · · x

(N)
d
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Multivariate Parameters

Mean
E[x] = [µ1, · · · , µd ]T

Covariance

Σ = Cov(x) = E[(x− µ)T (x− µ)] =


σ2
1 σ12 · · · σ1d

σ12 σ2
2 · · · σ2d

...
...

. . .
...

σd1 σd2 · · · σ2
d



Correlation = Corr(x) is the covariance divided by the product of standard
deviation

ρij =
σij
σiσj
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a Gaussian (or normal) distribution defined as

p(x) =
1

(2π)d/2|Σ|1/2
exp

[
−(x− µk)TΣ−1(x− µk)

]

Mahalanobis distance (x− µk)TΣ−1(x− µk) measures the distance from x
to µ in terms of Σ

It normalizes for difference in variances and correlations
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Bivariate Normal
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Bivariate Normal
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Gaussian Bayes Classifier Decision Boundary

GBC decision boundary: based on class posterior

Take the class which has higher posterior probability

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −d

2
log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)Tσ−1k (x− µk) +

+ log p(tk)− log p(x)

Decision: which class has higher posterior probability
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Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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Shared Covariance Matrix
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Learning Gaussian Bayes Classifier

Learn the parameters using maximum likelihood

`(φ, µ0, µ1,Σ) = − log
N∏

n=1

p(x(n), t(n)|φ, µ0, µ1,Σ)

= − log
N∏

n=1

p(x(n)|t(n), µ0, µ1,Σ)p(t(n)|φ)

What have I assumed?
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More on MLE

Assume the prior is Bernoulli (we have two classes)

p(t|φ) = φt(1− φ)1−t

You can compute the ML estimate in closed form

φ =
1

N

N∑
n=1

1[t(n) = 1]

µ0 =

∑N
n=1 1[t(n) = 0] · x(n)∑N

n=1 1[t(n) = 0]

µ1 =

∑N
n=1 1[t(n) = 1] · x(n)∑N

n=1 1[t(n) = 1]

Σ =
1

N

N∑
n=1

(x(n) − µt(n))(x(n) − µt(n))
T
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Naive Bayes

For Gaussian Bayes Classifier, if input x is high-dimensional, then covariance
matrix has many parameters

Save some parameters by using a shared covariance for the classes

Naive Bayes is an alternative Generative model: assumes features
independent given the class

p(x|t = k) =
d∏

i=1

p(xi |t = k)

How many parameters required now? And before?
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Diagonal Covariance

variances may be 
different 
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Diagonal Covariance, isotropic

* ? 

Classification only depends on distance to the mean
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Naive Bayes Classifier

Given

prior

assuming features are conditionally independent given the class

likelihood for each xi

The decision rule

y = arg max
k

p(t = k)
d∏

i=1

p(xi |t = k)

If the assumption of conditional independence holds, NB is the optimal
classifier

If not, a heavily regularized version of generative classifier

What’s the regularization?
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Gaussian Naive Bayes

Assume

p(xi |t = k) =
1√

2πσik
exp

[
−(xi − µik)2

2σ2
ik

]

Maximum likelihood estimate of parameters

µik =

∑N
n=1 1[t(n) = k] · x (n)i∑N

n=1 1[t(n) = k]

Similar for the variance
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Gaussian Bayes Classifier (GBC) vs Logistic Regression

If you examine p(t = 1|x) under GBC, you will find that it looks like this:

p(t|x, φ, µ0, µ1,Σ) =
1

1 + exp(−w(φ, µ0, µ1,Σ)Tx)

So the decision boundary has the same form as logistic regression!

When should we prefer GBC to LR, and vice versa?
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GBC vs LR

GBC makes stronger modeling assumption: assumes class-conditional data is
multivariate Gaussian

If this is true, GBC is asymptotically efficient (best model in limit of large N)

But LR is more robust, less sensitive to incorrect modeling assumptions

Many class-conditional distributions lead to logistic classifier

When these distributions are non-Gaussian, in limit of large N, LR beats GBC
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Spam Filter Example

Naive Bayes also applies to discrete input features (or mixed
discrete/continuous)

Represent email as feature vector, length equals number of words in
vocabulary, binary feature xi is 1 iff the word i appears in email msg

Each of these binary conditional probabilities is Bernoulli, with parameter φi

When we estimate parameters by maximizing joint likelihood of data, get
sensible updates: φi|t=1 is fraction of the spam emails in which word i
appears
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Laplace Smoothing

What happens when some word appears in the test set but never in the
training set?

Counts = 0, so φi|t=1 = φi|t=0 = 0

Class posterior probabilities = 0/0

Instead use this parameter estimate:

φi|t=1 =
1

N

N∑
n=1

1[t(n) = 1 ∧ x
(n)
i = 1]

1[t(n) = 1] + αK

K is number of classes, parameter α acts like ”pseudo-count”: prior
observations of words
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