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@ Classification as regression

@ Decision boundary
@ Loss functions
@ Logistic Regression
@ Regularization

@ Nearest Neighbors
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Classification vs Regression

@ We are interested in mapping the input x € X to a label t € Y
@ In regression typically Y =R
@ Now its a category

@ Examples?
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Examples of Classification

What digit is this?
How can | predict this? What are my input features?
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Examples of Classification

Is this a dog?
How can | predict this? What are my input features?
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Examples of Classification
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Examples of Classification

Am | going to pass the exam?
How can | predict this? What are my input features?
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Examples of Classification

Do | have diabetes?
How can | predict this? What are my input features?
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Discriminative vs Generative

@ Generative approach: Model the distribution of inputs characteristic of the
class (Bayes classifier)

e build a model of p(x|t = k) for every class
e apply Bayes rule to predict the class

o Discriminative approach: estimate parameters of decision boundary/class
separator directly from labeled examples

e learn boundary parameters directly (e.g., logistic regression)
o learn mappings from inputs to classes x — t (e.g., neural nets)
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Classification as Regression

@ Can we do this task using what we have learned in the previous lecture?
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Classification as Regression

@ Can we do this task using what we have learned in the previous lecture?
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y = f(x,w) =w'x
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Classification as Regression
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@ Assuming the standard model used for regression
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Classification as Regression

@ Can we do this task using what we have learned in the previous lecture?
@ Simple hack: Ignore that the input is categorical!

@ Suppose we have a binary problem, t € {-1,1}

@ Assuming the standard model used for regression

y = f(x,w) =w'x

How can we obtain w?

Use least squares, w = (X7 X)"1XTt. How is X computed? and t?
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Classification as Regression

Can we do this task using what we have learned in the previous lecture?
Simple hack: Ignore that the input is categorical!

Suppose we have a binary problem, t € {-1,1}

Assuming the standard model used for regression

y = f(x,w) =w'x

@ How can we obtain w?

@ Use least squares, w = (X7 X)71XTt. How is X computed? and t?

@ Which loss are we minimizing? Does it make sense?

gsquare w, t N Z
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Classification as Regression

Can we do this task using what we have learned in the previous lecture?
Simple hack: Ignore that the input is categorical!

Suppose we have a binary problem, t € {-1,1}

Assuming the standard model used for regression

y = f(x,w) =w'x

@ How can we obtain w?
@ Use least squares, w = (X7 X)71XTt. How is X computed? and t?

@ Which loss are we minimizing? Does it make sense?
gsquare w, t N Z

@ How do | compute a label for a new example? Let's see an example
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Classification as Regression
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Classification as Regression
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Decision Rules

1|o e ce0e o

@ Our classifier has the form

f(x,w) = w, +w'x
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Decision Rules

@ Our classifier has the form

f(x,w) = w, +w'x

@ A reasonable decision rule is

)1 if f(x,w) >0
y= —1 otherwise
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Decision Rules

1|o e ce0e o

@ Our classifier has the form

f(x,w) = w, +w'x

@ A reasonable decision rule is

)1 if f(x,w) >0
y= —1 otherwise

@ How can | mathematically write this rule?

y = sign(wp + w’x)
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Decision Rules

1|o e ce0e o

@ Our classifier has the form

f(x,w) = w, +w'x

@ A reasonable decision rule is

)1 if f(x,w) >0
y= —1 otherwise

@ How can | mathematically write this rule?
y = sign(wp + w’x)

@ How does this function look like?
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Decision Rules

@ How can | mathematically write this rule?
— o T
y =sign(wp +w'x)
@ This specifies a linear classifier: it has a linear boundary (hyperplane)
wo+w'x=0

which separates the space into two "half-spaces”
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Example in 1D

i B 00 |eo 000 o R

@ The linear classifier has a linear boundary (hyperplane)
wo+w'x=0

which separates the space into two "half-spaces”
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Example in 1D

i B 00 |eo 000 o R

@ The linear classifier has a linear boundary (hyperplane)
wo+w'x=0

which separates the space into two "half-spaces”

@ In 1D this is simply a threshold
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Example in 2D
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@ The linear classifier has a linear boundary (hyperplane)
wo+w'x=0

which separates the space into two "half-spaces”

Urtasun & Zemel (UofT) CSC 2515 Jan 19, 2015 11 / 48



Example in 2D

g
" U
U
EEEE

DED

@ The linear classifier has a linear boundary (hyperplane)
wo+w'x=0
which separates the space into two "half-spaces”
@ In 2D this is a line
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Example in 3D

@ The linear classifier has a linear boundary (hyperplane)
wo + wix=0

which separates the space into two "half-spaces”
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Example in 3D

@ The linear classifier has a linear boundary (hyperplane)
wo + wix=0
which separates the space into two "half-spaces”

@ In 3D this is a plane
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Example in 3D

@ The linear classifier has a linear boundary (hyperplane)
wo + wix=0
which separates the space into two "half-spaces”

@ In 3D this is a plane

@ What about higher-dimensional spaces?
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w'x = 0 a line passing though the origin and orthogonal to w

w'x 4+ wy = 0 shifts it by wg
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Figure from G. Shakhnarovich
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
@ We need to find w (direction) and wy (location) of the boundary

@ What does "good” mean?
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
@ We need to find w (direction) and wy (location) of the boundary
@ What does "good” mean?

@ Is this boundary good?
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
@ We need to find w (direction) and wy (location) of the boundary
@ What does "good” mean?

@ Is this boundary good?
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
@ We need to find w (direction) and wy (location) of the boundary
@ What does "good” mean?

@ Is this boundary good?
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@ We need a criteria that tell us how to select the parameters
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Learning Linear Classifiers

@ Learning consists in estimating a "good” decision boundary
@ We need to find w (direction) and wy (location) of the boundary
@ What does "good” mean?

@ Is this boundary good?
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@ We need a criteria that tell us how to select the parameters

@ Do you know any?
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Loss functions

@ Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(wo +w'x)
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Loss functions

@ Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(wo +w'x)

@ What is the cost of being wrong?
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Loss functions

@ Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(wo +w'x)

@ What is the cost of being wrong?

@ Loss function: L(y,t) is the loss incurred for predicting y when correct
answer is t
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Loss functions

@ Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(wo +w'x)

@ What is the cost of being wrong?

@ Loss function: L(y,t) is the loss incurred for predicting y when correct
answer is t

@ For medical diagnosis: For a diabetes screening test is it better to have false
positives or false negatives?
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Loss functions

@ Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(wo +w'x)

@ What is the cost of being wrong?

@ Loss function: L(y,t) is the loss incurred for predicting y when correct
answer is t

@ For medical diagnosis: For a diabetes screening test is it better to have false
positives or false negatives?

@ For movie ratings: The "truth” is that Alice thinks E.T. is worthy of a 4.
How bad is it to predict a 57 How about a 27
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Loss functions

@ A possible loss to minimize is the zero/one loss

0 ify(x)=t

Ly(x). £) = {1 if y(x) £ t
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Loss functions

@ A possible loss to minimize is the zero/one loss

0 ify(x)=t

Ly(x). £) = {1 if y(x) £ t

@ Is this minimization easy to do? why?
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Other Loss functions

@ Zero/one loss for a classifier

Loa(y(x), 1) = {0 Ty
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Other Loss functions

@ Zero/one loss for a classifier

{0 if y(x)

@ Asymmetric Binary Loss

LABL(}/(X)a f) =< p if y(X) =0At=1
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Other Loss functions

@ Zero/one loss for a classifier

Lo-1(y(0). 1) = {‘1’ o

@ Asymmetric Binary Loss

Lagi(y(x),t) = B

@ Squared (quadratic) loss
squared( (X), ) = (t - y(X))2
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Other Loss functions

@ Zero/one loss for a classifier

_Jo ify(x)=t
Lo-1(y(x). £) = {1 if y(x) £t
@ Asymmetric Binary Loss
a ify(x)=1At=0
LABL(y(X)7 f) =< p if y(X) =0At=1
0 ify(x)=

@ Squared (quadratic) loss
squared( (X), ) = (t - y(X))2

@ Absolute Error
Lquadratic(y(x)v t) = |t - y(X)l
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More complex Loss Functions

@ What if the movie predictions are used for rankings? Now the predicted
ratings don't matter, just the order that they imply.
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More complex Loss Functions

@ What if the movie predictions are used for rankings? Now the predicted
ratings don't matter, just the order that they imply.

@ In what order does Alice prefer E.T., Amelie and Titanic?
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More complex Loss Functions

@ What if the movie predictions are used for rankings? Now the predicted
ratings don't matter, just the order that they imply.

@ In what order does Alice prefer E.T., Amelie and Titanic?
@ Possibilities:

o 0-1 loss on the winner
o Permutation distance
o Accuracy of top K movies.
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Can we always separate the classes?
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Can we always separate the classes?

How can we obtain a non-linear decision boundary?
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Can we always separate the classes?

Causes of non perfect separation
@ Model is too simple
@ Noise in the inputs (i.e., data attributes)
@ Simple features that do not account for all variations

@ Errors in data targets (miss labelings)
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Can we always separate the classes?

Causes of non perfect separation
@ Model is too simple
@ Noise in the inputs (i.e., data attributes)
@ Simple features that do not account for all variations
@ Errors in data targets (miss labelings)

Should we make the model complex enough to have perfect separation in the
training data?
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Linear Classifier

@ The classifier we have looked at is

y(x) = sign(wo + w'x)
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Linear Classifier

@ The classifier we have looked at is

y(x) = sign(wo + w'x)

@ It was difficult to optimize any loss on ¢(y, t) due to the form of y(x)
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Linear Classifier

@ The classifier we have looked at is

y(x) = sign(wo + w'x)

@ It was difficult to optimize any loss on ¢(y, t) due to the form of y(x)

@ Can we have a smoother function such that things become easier to
optimize?
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Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function
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Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=0 (wa + Wo)
where the sigmoid is defined as
1
o(z)

T Tvexw(-2)
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Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=0 (wa + Wo)

where the sigmoid is defined as

1
) = T ee(2)
1
0.5—
Y
0 : —
0 z
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Logistic Regression

@ An alternative: replace the sign(-) with the sigmoid or logistic function

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=0 (wa + Wo)

where the sigmoid is defined as

1
) = T ee(2)
1
0.5—
Y
0 : —
0 z

@ The output is a smooth function of the inputs and the weights
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as

1

o(z) = 1+ exp(—2)

o One parameter per data dimension (feature)
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as

1

o(z) = 1+ exp(—2)

o One parameter per data dimension (feature)
o Features can be discrete or continuous
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as

1

o(z) = 1+ exp(—2)

o One parameter per data dimension (feature)
o Features can be discrete or continuous
e Output of the model: value y € [0,1]
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Logistic Regression

@ We assumed a particular functional form: sigmoid applied to a linear
function of the data
y(x)=o (wa + WO)

where the sigmoid is defined as

1

o(z) = 1+ exp(—2)

o One parameter per data dimension (feature)

o Features can be discrete or continuous

e Output of the model: value y € [0,1]

e This allows for gradient-based learning of the parameters: smoothed
version of the sign(-)
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Shape of the Logistic Function

@ Let's look at how modifying w changes the function shape
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Shape of the Logistic Function

@ Let's look at how modifying w changes the function shape

@ 1D example:
y =0 (wix + wp)
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Shape of the Logistic Function

@ Let's look at how modifying w changes the function shape

@ 1D example:

y = o (wix + wp)
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1

p(C=0lx) =o(w'x+wp) with o(z)= 1+exp(—2)
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1
p(C = O‘X) = O'(WTX + WQ) Wlth O'(Z) = H—Tp(—z)
@ Substituting we have

1

P(C = 0x) = 1+exp(—wTx— wp)
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1
p(C = O‘X) = O'(WTX + WQ) Wlth O'(Z) = H—Tp(—z)
@ Substituting we have

1

P(C = 0x) = 1+exp(—wTx— wp)

@ Supposed we have two classes, how can | compute p(C = 1|x)?
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Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1
p(C = O‘X) = O'(WTX + WQ) Wlth O'(Z) = H—Tp(—z)
@ Substituting we have

1

P(C = 0x) = 1+exp(—wTx— wp)

@ Supposed we have two classes, how can | compute p(C = 1|x)?
@ Use the marginalization property of probability
p(C=1Jx) +p(C =0Jx) =1

Urtasun & Zemel (UofT) CSC 2515 Jan 19, 2015 25 / 48



Probabilistic Interpretation

@ If we have a value between 0 and 1, let's use it to model the posterior
1

p(C=0lx) =o(w'x+wp) with o(z)= 1+exp(—2)

Substituting we have
1

P(C = 0x) = 1+exp(—wTx— wp)

@ Supposed we have two classes, how can | compute p(C = 1|x)?
@ Use the marginalization property of probability

p(C =1Jx)+ p(C =0[x) =1
@ Thus (show matlab)

1 —wTx—
p(C=1lx)=1— _ exp(—w'x — wp)
1+exp(—wix—wp) 1+exp(—wTx— wp)
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed N

p(t® o M@ L (V)Y = Hp(t(i)|x(’))
i=1
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed N

p(t® o M@ L (V)Y = Hp(t(i)|x(’))
i=1
@ We can write each probability as

p(tDxD) = p(C = 1xD) p(C = o]xD )"
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed N

p(t(l), . ,t(N)|X(1), . ..X(N)) - Hp(t(i)|x(i))
i=1
@ We can write each probability as
hING iy e 1l
p(tDxD) = p(C = 1) p(C = 0x D)1t

D )
(1= p(c=0xM) p(C = oxM)r-

)

(i)
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed

N
p(t® o M@ L (V)Y = Hp(t(i)\x(’))
i=1
@ We can write each probability as
)1 (i i)yt i)y1—t
p(tDxD) = p(C = 1) p(C = 0x D)1t
£

(i)

(1-p(C=0x))  p(C =0lx)

@ We might want to learn the model, by maximizing the conditional likelihood

N
max H p(tD[x™)
i=1
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Conditional likelihood

@ Assume t € {0,1}, we can write the probability distribution of each of our
training points p(t™), .. t(V)|x(1) ... x(N))

@ Assuming that the training examples are sampled |ID: independent and
identically distributed N

p(t(l), . ,t(N)|X(1), . ..X(N)) - Hp(t(i)\x(i))
i=1
@ We can write each probability as
hING iy e 1l
p(tDxD) = p(C = 1) p(C = 0x D)1t

D )
(1= p(c=0xM) p(C = oxM)r-

)

(i)

@ We might want to learn the model, by maximizing the conditional likelihood
N
mapr(t(’)|x(’))
i=1

@ Convert this into a minimization so that we can write the loss function
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p(t(l)’ SN t(N)lx(l) ..

Urtasun & Zemel (UofT)

)

.X(N))

N
[T p(91x)

i

—

£0)

N .
II (1 —p(C =0|x" )) p(C = 0xM)1-t"

=

—

CSC 2515 Jan 19, 2015 27 / 48



N
p(t(l), 7t—(N)lx(l)7...x(N)) = Hp t( |X

i

—

£0)

N .
II (1 —p(C =0|x" )) p(C = 0xM)1-t"

i=1

@ It's convenient to take the logarithm and convert the maximization into
minimization by changing the sign

N N
Liog(W) = Zt log(1—p(C = 0|x\), w) Z (1—tD) log p(C = 0[x), w)
i=1 i=1
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p(t(l), 7t—(N)lx(l)7...x(N)) = Hp t( |X

i

—

N 9 '
II (1 —p(C =0|x" ))t( p(C = 0xM)1-t"

i=1

@ It's convenient to take the logarithm and convert the maximization into
minimization by changing the sign

N N
Liog(W) = Zt log(1—p(C = 0|x\), w) Z (1—tD) log p(C = 0[x), w)
i=1 i=1

@ Why is this equivalent to maximize the conditional likelihood?
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N
p(tD, - M@ My =TT p(eDx?)

i

—

N 9 '
= 11 (1 —p(C =0|x" ))t( p(C = 0xM)1-t"

i=1

@ It's convenient to take the logarithm and convert the maximization into
minimization by changing the sign

N N
Liog(W) = Zt log(1—p(C = 0|x\), w) Z (1—tD) log p(C = 0[x), w)
i=1 i=1

@ Why is this equivalent to maximize the conditional likelihood?

@ Is there a closed form solution?
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N
p(tD, ... M50

cexMy = Hpt( x())

i

—

£0)

N .
II (1 —p(C =0|x" )) p(C = 0xM)1-t"

=

—

@ It's convenient to take the logarithm and convert the maximization into
minimization by changing the sign

N N
Liog(W) = Zt log(1—p(C = 0|x\), w) Z (1—tD) log p(C = 0[x), w)
i=1 i=1

@ Why is this equivalent to maximize the conditional likelihood?
@ Is there a closed form solution?
@ It's a convex function of w. Can we get the global optimum?
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1
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Gradient Descent

N N
min £(w) = min { Z t log(1 — p(C = 0[x”, w)) — Z(l — tDYlog p(C = 0x7, w)}

i=1 i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size o

WD 0 aw
j j ow;
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size o

WD 0 aw
j j ow;

@ But where is w?

p(C =0|x) =

1+ exp(—wTx — wp)
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size o

WD 0 aw
j j ow;

@ But where is w?
p(C =0|x) =

1 p(C = 1[x) = exp(—wTx — wp)
1+ exp(—w'x — wp) 1+ exp(—wTx — wp)
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size o

WD 0 aw
j j ow;

@ But where is w?

p(C =0|x) =

1 exp(—wTx — wp)

=1
1+ exp(—w'x — wp) p(C = 1) = 1+ exp(—wTx — wp)

@ You can write this in vector form

al(w) ar(w)] "

R

vi(w) =

GW() ’ aWk
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Gradient Descent

mvjn Lw) = mvjn { Z D log(1 — p(C = 0|x”, w) Z(l — tD)log p(C = 0[x1”, )}

i=1

@ Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size o

Wj(t+1) - ij(t) B QM

@ But where is w?

p(C =0|x) =

1 exp(—wTx — wp)

1+ exp(—w'x — wp) "1 +exp(—wTx — wp)

@ You can write this in vector form

al(w) ar(w)] "

R

vi(w) = , and A (w) = —a vy (w)

GW() ’ aWk
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Let's look at the updates

@ The log likelihood is

N N
glogfloss(w) = - Z t(i) |Og p(C = 1|x(l)7w)_Z(1_t(l)) |Og P(C = O|X(i),w)

i=1 i=1

Urtasun & Zemel (UofT) CSC 2515 Jan 19, 2015 29 / 48



Let's look at the updates

@ The log likelihood is

N N
glogfloss(w) = - Z t(i) |Og p(C = 1|x(l)7w)_Z(1_t(l)) |Og P(C = O|X(i),w)

i=1 i=1
where the probabilities are

1 exp(—2)

l—l-exip(—z) p(C =1x,w) =

p(C = 0|X, W) = - 1 + exp(—z)
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Let's look at the updates

@ The log likelihood is

N N
glogfloss(w) = - Z t(i) |Og p(C = 1|x(l)7w)_Z(1_t(l)) |Og P(C = O|X(i),w)

i=1 i=1
where the probabilities are
1 exp(—2)

l—l-exip(—z) p(C =1x,w) =

p(C = 0|X, W) = - 1 + exp(—z)

and z=w"x+ w
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Let's look at the updates

@ The log likelihood is

N N

Liog—loss(W) = — Z t0) log p(C = 1|x(i),w)—Z(1—t(i)) log p(C = 0[x\), w)

i=1 i=1
where the probabilities are

1 exp(—2z)

MC:N&W%:fjgajg P(C = 1x,w) = 1+ exp(—2z)

and z=w'x+ wy
@ We can simplify

lw) = Z ) log(1 4 exp(—z)) + Z D Z0) 4 Z(l — t0)) log(1 4 exp(—z())

i
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Let's look at the updates

@ The log likelihood is

N N

Liog—loss(W) = — Z t0) log p(C = 1|x(i),w)—Z(1—t(i)) log p(C = 0[x\), w)

i=1 i=1
where the probabilities are

1 exp(—2z)

MC:N&W%:fjgajg P(C = 1x,w) = 1+ exp(—2z)

and z=w'x+ wy

@ We can simplify

5701+ expl—2) + 37020 + 301~ €) g1+ exp(—2)
Zlog 1+ exp(—zU +Zt 20

£(w)
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Let's look at the updates

@ The log likelihood is

N N

Liog—loss(W) = — Z t0) log p(C = 1|x(i),w)—Z(1—t(i)) log p(C = O|x(i),w)

i=1 i=1
where the probabilities are

1 exp(—2z)

p(C:OIX,W):HTp(_Z) P(C = 1x,w) = 1+ exp(—2z)

and z=w'x+ wy

@ We can simplify

Z ) log(1 4 exp(—z)) + Z 020 4371 — t) log(1 + exp(—z"))
ZloglJrexp( 20 +Zt 20

£(w)

@ Now it's easy to take derivatives
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Uw) = > t020 + 3 log(1 + exp(—2z("))

i i

@ Now it's easy to take derivatives
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Uw) = > t020 + 3 log(1 + exp(—2z("))

i i

@ Now it's easy to take derivatives

@ Remember z =w”x+ w
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(w) = >t 13 log(1 + exp(—2z"))
@ Now it's easy to take derivatives
@ Remember z =w”x+ w

ob(w) Oy Gy exp(=2)
ow; Zt SRR + exp(—z()

1
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(w) = >t 13 log(1 + exp(—2z"))
@ Now it's easy to take derivatives
@ Remember z =w”x+ w

ob(w) Oy Gy exp(=2)
ow; Zt SRR + exp(—z()

1

@ What's )<j(")?
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(w) = >t 13 log(1 + exp(—2z"))
@ Now it's easy to take derivatives
@ Remember z =w”x+ w

ob(w) Oy Gy exp(=2)
ow; Zt SRR + exp(—z()

@ What's )<j(")?

@ And simplifying
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Uw) = > t020 + 3 log(1 + exp(—2z("))

i i

Now it's easy to take derivatives

Remember z = w”x + w

3€(W) - (N () (/) exp(—z(i))
ow; Zt T 1+ exp(—z()

1

What's x{7
And simplifying

ov i i i
o) =37 (40 - (= 14)

@ Don't get confused with indexes: j for the weight that we are updating and /
for the training example
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Uw) = > t020 + 3 log(1 + exp(—2z("))

i i

Now it's easy to take derivatives

Remember z = w”x + w

ob(w) Oy Gy exp(=2)
ow; Zt SRR + exp(—z()

1

What's x{7
And simplifying

ov i i i
a(W“JO :pr (0 — p(C = 1x))

@ Don't get confused with indexes: j for the weight that we are updating and /
for the training example

@ Logistic regression has linear decision boundary
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Logistic regression vs least squares

logistic
/regression

1

least squarges
regression

If the right answer is 1 and the
model says 1.5, it loses, so it
changes the boundary to avoid
being “too correct” (tilts aways
from outliers)
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Regularization

@ We can also look at

p(wi{t}, {x}) oc p({t}[{x}, w) p(w)

with {t} = (¢1,-- ,tV), and {x} = (x!,--- ,x")
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Regularization

@ We can also look at
p(wl{t}, {x}) o< p({t}|{x}, w) p(w)
with {t} = (¢!, ,tN), and {x} = (x!,--- ,xN)
@ We can define priors on parameters w

@ This is a form of regularization
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Regularization

@ We can also look at
p(wl{t}, {x}) o< p({t}|{x}, w) p(w)
with {t} = (¢!, ,tN), and {x} = (x!,--- ,xN)
@ We can define priors on parameters w

@ This is a form of regularization

@ Helps avoid large weights and over fitting

( ) w
max log [p H p(t x
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Regularization

We can also look at

p(w|{t}, {x}) o< p({t}|{x}, w) p(w)
with {t} = (¢1,-- ,tV), and {x} = (x!,--- ,x")

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and over fitting

( ) w
max log [p H p(t x

What's p(w)?
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Regularized Logistic Regression

@ For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N(0, Al)
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Regularized Logistic Regression

@ For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N(0, Al)

@ This prior pushes parameters towards zero
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Regularized Logistic Regression

@ For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N(0, Al)

@ This prior pushes parameters towards zero
@ Including this prior the new gradient is

4
Wj(t+1) —w - ai(“_l) —axw?

J (9|A/J J
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Regularized Logistic Regression

For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N(0, Al)

@ This prior pushes parameters towards zero
@ Including this prior the new gradient is
ol(w
Wj(t+1) —w - a(i_) —aw?

J (9|A/J J

@ How do we decide the best value of \?
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Use of Validation Set

@ We can divide the set of training examples into two disjoint sets: training
and validation
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@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of A
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Use of Validation Set

@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of A

@ Use the second set (i.e., validation) to estimate the best A, by evaluating
how well the classifier does in this second set
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Use of Validation Set

@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of A

@ Use the second set (i.e., validation) to estimate the best A, by evaluating
how well the classifier does in this second set

@ This test how well you generalized to unseen data
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Use of Validation Set

@ We can divide the set of training examples into two disjoint sets: training
and validation

@ Use the first set (i.e., training) to estimate the weights w for different values
of A

@ Use the second set (i.e., validation) to estimate the best A, by evaluating
how well the classifier does in this second set

@ This test how well you generalized to unseen data

@ The parameter )\ is the importance of the regularization, and it’s a hyper
parameter
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Cross-Validation

@ Leave-p-out cross-validation:
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.
e This is repeated on all ways to cut the original training set.
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@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.
o It requires CF for a set of n examples
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem

@ k-fold cross-validation:
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@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

e The training set is randomly partitioned into k equal size subsamples.
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

e The training set is randomly partitioned into k equal size subsamples.

o Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining kK — 1 subsamples are
used as training data.
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

e The training set is randomly partitioned into k equal size subsamples.

o Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining kK — 1 subsamples are
used as training data.

o The cross-validation process is then repeated k times (the folds).
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Cross-Validation

@ Leave-p-out cross-validation:

o We use p observations as the validation set and the remaining
observations as the training set.

e This is repeated on all ways to cut the original training set.

o It requires CF for a set of n examples

@ Leave-1-out cross-validation: When p = 1, does not have this problem
@ k-fold cross-validation:

e The training set is randomly partitioned into k equal size subsamples.

o Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining kK — 1 subsamples are
used as training data.

o The cross-validation process is then repeated k times (the folds).

o The k results from the folds can then be averaged (or otherwise
combined) to produce a single estimation
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Metrics

How to evaluate how good my classifier is?
@ Precision: is the fraction of retrieved instances that are relevant

TP TP

Pzizi
TP+FN P
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@ Reacall: is the fraction of relevant instances that are retrieved
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How to evaluate how good my classifier is?
@ Precision: is the fraction of retrieved instances that are relevant

__ T _ TP
T TP+FN P

P
@ Reacall: is the fraction of relevant instances that are retrieved

TP

R=Tprrp

@ F1 score: harmonic mean of precision and recall

P-R
FI=2-—"
P+R
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More on Metrics

How to evaluate how good my classifier is?
@ Precision: is the fraction of retrieved instances that are relevant

@ Reacall: is the fraction of relevant instances that are retrieved
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More on Metrics

How to evaluate how good my classifier is?
@ Precision: is the fraction of retrieved instances that are relevant
@ Recall: is the fraction of relevant instances that are retrieved

@ Precision Recall Curve

L —precision=recall
——precision

Precision
o
@
I

05
Recall
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More on Metrics

How to evaluate how good my classifier is?
@ Precision: is the fraction of retrieved instances that are relevant
@ Recall: is the fraction of relevant instances that are retrieved

@ Precision Recall Curve

L —precision=recall
——precision

Precision
o
@
I

05
Recall
@ Average Precision (AP): mean under the curve
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Classification: Oranges and Lemons

101
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Classification: Oranges and Lemons

Can construct simple
linear decision
boundary:
y = sign(wg + w;x,
+ W,X,)

height (cm)

(<]
4r ° e oranges|]
A lemons
4 6 8 10
width (cm)
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What is the meaning of "linear” classification

@ Linear classification means that the part that adapts is linear (just like linear
regression)
z(x) = w'x + wp

with adaptive w, wy

@ The adaptive part is follow by a non-linearity
y(x) = f(z(x))

@ What f have we seen?
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Classification as Induction
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Instance-based Learning

@ Alternative to parametric model is non-parametric
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Instance-based Learning

Alternative to parametric model is non-parametric

Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

Learning amounts to simply storing training data
@ Test instances classified using similar training instances
@ Embodies often sensible underlying assumptions:

e Output varies smoothly with input
e Data occupies sub-space of high-dimensional input space
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
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@ Distance typically defined to be Euclidean:

@ Algorithm

@ find example (x*, t*) closest to the test instance x(9)
Q output y(q) = t*
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Nearest Neighbors

@ Assume training examples correspond to points in d-dimensional Euclidean
space

@ Target function value for new query estimated from known value of nearest
training example(s)

@ Distance typically defined to be Euclidean:

@ Algorithm

@ find example (x*, t*) closest to the test instance x(9)
Q output y(q) = t*

@ Note: we don't need to compute the square root. Why?
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Nearest Neighbors Decision Boundaries

@ Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred
@ Decision boundaries: Voronoi diagram visualization

e show how input space divided into classes
e each line segment is equidistant between two points of opposite classes
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k Nearest Neighbors

@ Nearest neighbors sensitive to mis-labeled data ( “class noise”) — smooth by
having k nearest neighbors vote
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k Nearest Neighbors

@ Nearest neighbors sensitive to mis-labeled data ( “class noise”) — smooth by
having k nearest neighbors vote

@ Algorithm:

@ find k examples {x(), t()} closest to the test instance x
@ classification output is majority class

k
- (2) 4(r)
y = arg rrt1(:za)x ; o(t#) ')
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important —
normalize scale
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k Nearest Neighbors: Issues & Remedies

@ Some attributes have larger ranges, so are treated as more important —
normalize scale

@ lIrrelevant, correlated attributes add noise to distance measure — eliminate
some attributes, or vary and possibly adapt weight of attributes

@ Non-metric attributes (symbols) — Hamming distance

@ Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn?) — reduce computational burden:

© Use subset of dimensions
@ Use subset of examples

@ Remove examples that lie within Voronoi region
o Form efficient search tree (kd-tree), use Hashing (LSH), etc
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Decision Boundary K-NN
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K-NN Summary
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@ Single parameter (k) — how do we set it?
@ Naturally forms complex decision boundaries; adapts to data density
@ Problems:

Sensitive to class noise.

Sensitive to dimensional scales.

Distances are less meaningful in high dimensions
Scales with number of examples
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K-NN Summary

height (cm)

6 8
width (cm)

@ Single parameter (k) — how do we set it?
@ Naturally forms complex decision boundaries; adapts to data density
@ Problems:

o Sensitive to class noise.

e Sensitive to dimensional scales.

e Distances are less meaningful in high dimensions
e Scales with number of examples

@ Inductive Bias: What kind of decision boundaries do we expect to find?
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