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Decision boundary

Loss functions

Logistic Regression
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Classification vs Regression

We are interested in mapping the input x ∈ X to a label t ∈ Y
In regression typically Y = <
Now its a category

Examples?
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Examples of Classification

What digit is this?
How can I predict this? What are my input features?
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Examples of Classification

Is this a dog?
How can I predict this? What are my input features?
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Examples of Classification

what about this one?
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Examples of Classification

Am I going to pass the exam?
How can I predict this? What are my input features?
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Examples of Classification

Do I have diabetes?
How can I predict this? What are my input features?
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Discriminative vs Generative

Generative approach: Model the distribution of inputs characteristic of the
class (Bayes classifier)

build a model of p(x|t = k) for every class
apply Bayes rule to predict the class

Discriminative approach: estimate parameters of decision boundary/class
separator directly from labeled examples

learn boundary parameters directly (e.g., logistic regression)
learn mappings from inputs to classes x → t (e.g., neural nets)
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Classification as Regression

Can we do this task using what we have learned in the previous lecture?

Simple hack: Ignore that the input is categorical!

Suppose we have a binary problem, t ∈ {−1, 1}
Assuming the standard model used for regression

y = f (x,w) = wTx

How can we obtain w?

Use least squares, w = (XTX)−1XT t. How is X computed? and t?

Which loss are we minimizing? Does it make sense?

`square(w, t) =
1

N

N∑
i=1

(ti −wTxi )
2

How do I compute a label for a new example? Let’s see an example
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Classification as Regression

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1

w0 +wTx

ŷ = −1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15
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Decision Rules

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1

w0 +wTx

ŷ = −1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15

Our classifier has the form

f (x,w) = wo + wTx

A reasonable decision rule is

y =

{
1 if f (x,w) ≥ 0

−1 otherwise

How can I mathematically write this rule?

y = sign(w0 + wTx)

How does this function look like?
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Decision Rules

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1

w0 +wTx

ŷ = −1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15

How can I mathematically write this rule?

y = sign(w0 + wTx)

This specifies a linear classifier: it has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”
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Example in 1D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 1D this is simply a threshold

Urtasun & Zemel (UofT) CSC 2515 Jan 19, 2015 10 / 48



Example in 1D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 1D this is simply a threshold

Urtasun & Zemel (UofT) CSC 2515 Jan 19, 2015 10 / 48



Example in 2D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 2D this is a line
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Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 + wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?
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Geometry

wTx = 0 a line passing though the origin and orthogonal to w
wTx + w0 = 0 shifts it by w0

Figure from G. Shakhnarovich
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Learning Linear Classifiers

Learning consists in estimating a ”good” decision boundary

We need to find w (direction) and w0 (location) of the boundary

What does ”good” mean?

Is this boundary good?

We need a criteria that tell us how to select the parameters

Do you know any?
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Loss functions

Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(w0 + wTx)

What is the cost of being wrong?

Loss function: L(y , t) is the loss incurred for predicting y when correct
answer is t

For medical diagnosis: For a diabetes screening test is it better to have false
positives or false negatives?

For movie ratings: The ”truth” is that Alice thinks E.T. is worthy of a 4.
How bad is it to predict a 5? How about a 2?
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Loss functions

A possible loss to minimize is the zero/one loss

L(y(x), t) =

{
0 if y(x) = t

1 if y(x) 6= t

Is this minimization easy to do? why?
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Other Loss functions

Zero/one loss for a classifier

L0−1(y(x), t) =

{
0 if y(x) = t

1 if y(x) 6= t

Asymmetric Binary Loss

LABL(y(x), t) =


α if y(x) = 1 ∧ t = 0

β if y(x) = 0 ∧ t = 1

0 if y(x) = t

Squared (quadratic) loss

Lsquared(y(x), t) = (t − y(x))2

Absolute Error
Lquadratic(y(x), t) = |t − y(x)|
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More complex Loss Functions

What if the movie predictions are used for rankings? Now the predicted
ratings don’t matter, just the order that they imply.

In what order does Alice prefer E.T., Amelie and Titanic?

Possibilities:

0-1 loss on the winner
Permutation distance
Accuracy of top K movies.
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Can we always separate the classes?
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Can we always separate the classes?

How can we obtain a non-linear decision boundary?
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Can we always separate the classes?

Causes of non perfect separation

Model is too simple

Noise in the inputs (i.e., data attributes)

Simple features that do not account for all variations

Errors in data targets (miss labelings)

Should we make the model complex enough to have perfect separation in the
training data?
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Linear Classifier

The classifier we have looked at is

y(x) = sign(w0 + wTx)

It was difficult to optimize any loss on `(y , t) due to the form of y(x)

Can we have a smoother function such that things become easier to
optimize?
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Logistic Regression

An alternative: replace the sign(·) with the sigmoid or logistic function

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

0 

0.5 

0 

1 

The output is a smooth function of the inputs and the weights
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Logistic Regression

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = σ
(
wTx + w0

)
where the sigmoid is defined as

σ(z) =
1

1 + exp(−z)

One parameter per data dimension (feature)
Features can be discrete or continuous
Output of the model: value y ∈ [0, 1]
This allows for gradient-based learning of the parameters: smoothed
version of the sign(·)
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Shape of the Logistic Function

Let’s look at how modifying w changes the function shape

1D example:
y = σ (w1x + w0)

Show Matlab demo
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Probabilistic Interpretation

If we have a value between 0 and 1, let’s use it to model the posterior

p(C = 0|x) = σ(wTx + w0) with σ(z) =
1

1 + exp(−z)

Substituting we have

p(C = 0|x) =
1

1 + exp (−wTx− w0)

Supposed we have two classes, how can I compute p(C = 1|x)?

Use the marginalization property of probability

p(C = 1|x) + p(C = 0|x) = 1

Thus (show matlab)

p(C = 1|x) = 1− 1

1 + exp (−wTx− w0)
=

exp(−wTx− w0)

1 + exp (−wTx− w0)
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Conditional likelihood

Assume t ∈ {0, 1}, we can write the probability distribution of each of our
training points p(t(1), · · · , t(N)|x(1), · · · x(N))

Assuming that the training examples are sampled IID: independent and
identically distributed

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏
i=1

p(t(i)|x(i))

We can write each probability as

p(t(i)|x(i)) = p(C = 1|x(i))t(i)p(C = 0|x(i))1−t(i)

=
(

1− p(C = 0|x(i))
)t(i)

p(C = 0|x(i))1−t(i)

We might want to learn the model, by maximizing the conditional likelihood

max
w

N∏
i=1

p(t(i)|x(i))

Convert this into a minimization so that we can write the loss function
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Loss Function

p(t(1), · · · , t(N)|x(1), · · · x(N)) =
N∏
i=1

p(t(i)|x(i))

=
N∏
i=1

(
1− p(C = 0|x(i))

)t(i)
p(C = 0|x(i))1−t(i)

It’s convenient to take the logarithm and convert the maximization into
minimization by changing the sign

`log (w) = −
N∑
i=1

t(i) log(1−p(C = 0|x(i),w))−
N∑
i=1

(1−t(i)) log p(C = 0|x(i),w)

Why is this equivalent to maximize the conditional likelihood?

Is there a closed form solution?

It’s a convex function of w. Can we get the global optimum?
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Gradient Descent

min
w

`(w) = min
w

{
−

N∑
i=1

t(i) log(1− p(C = 0|x(i),w))−
N∑
i=1

(1− t(i)) log p(C = 0|x(i),w)

}

Gradient descent: iterate and at each iteration compute steepest direction
towards optimum, move in that direction, step-size α

w
(t+1)
j ← w

(t)
j − α

∂`(w)

∂wj

But where is w?

p(C = 0|x) =
1

1 + exp (−wTx− w0)
p(C = 1|x) =

exp(−wTx− w0)

1 + exp (−wTx− w0)

You can write this in vector form

5`(w) =

[
∂`(w)

∂w0
, · · · , ∂`(w)

∂wk

]T
, and 4 (w) = −α5 `(w)
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Let’s look at the updates

The log likelihood is

`log−loss(w) = −
N∑
i=1

t(i) log p(C = 1|x(i),w)−
N∑
i=1

(1−t(i)) log p(C = 0|x(i),w)

where the probabilities are

p(C = 0|x,w) =
1

1 + exp(−z)
p(C = 1|x,w) =

exp(−z)

1 + exp(−z)

and z = wTx + w0

We can simplify

`(w) =
∑
i

t(i) log(1 + exp(−z(i))) +
∑
i

t(i)z(i) +
∑
i

(1− t(i)) log(1 + exp(−z(i)))

=
∑
i

log(1 + exp(−z(i))) +
∑
i

t(i)z(i)

Now it’s easy to take derivatives
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Updates

`(w) =
∑
i

t(i)z (i) +
∑
i

log(1 + exp(−z (i)))

Now it’s easy to take derivatives

Remember z = wTx + w0

∂`(w)

∂wj
=
∑
i

t(i)x
(i)
j − x

(i)
j ·

exp(−z (i))
1 + exp(−z (i))

What’s x
(i)
j ?

And simplifying

∂`(w)

∂wj
=
∑
i

x
(i)
j

(
t(i) − p(C = 1|x(i))

)
Don’t get confused with indexes: j for the weight that we are updating and i
for the training example

Logistic regression has linear decision boundary
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Logistic regression vs least squares

If the right answer is 1 and the 
model says 1.5, it loses, so it 
changes the boundary to avoid 
being “too correct” (tilts away 
from outliers) 

logistic 
regression 

least squares 
regression 

33 
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Regularization

We can also look at

p(w|{t}, {x}) ∝ p({t}|{x},w) p(w)

with {t} = (t1, · · · , tN), and {x} = (x1, · · · , xN)

We can define priors on parameters w

This is a form of regularization

Helps avoid large weights and over fitting

max
w

log

[
p(w)

∏
i

p(t(i)|x(i),w)

]

What’s p(w)?
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Regularized Logistic Regression

For example, define prior: normal distribution, zero mean and identity
covariance p(w) = N (0, λI)

This prior pushes parameters towards zero

Including this prior the new gradient is

w
(t+1)
j ← w

(t)
j − α

∂`(w)

∂wj
− αλw (t)

j

How do we decide the best value of λ?
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Use of Validation Set

We can divide the set of training examples into two disjoint sets: training
and validation

Use the first set (i.e., training) to estimate the weights w for different values
of λ

Use the second set (i.e., validation) to estimate the best λ, by evaluating
how well the classifier does in this second set

This test how well you generalized to unseen data

The parameter λ is the importance of the regularization, and it’s a hyper
parameter
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Cross-Validation

Leave-p-out cross-validation:

We use p observations as the validation set and the remaining
observations as the training set.
This is repeated on all ways to cut the original training set.
It requires Cpn for a set of n examples

Leave-1-out cross-validation: When p = 1, does not have this problem

k-fold cross-validation:

The training set is randomly partitioned into k equal size subsamples.
Of the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k − 1 subsamples are
used as training data.
The cross-validation process is then repeated k times (the folds).
The k results from the folds can then be averaged (or otherwise
combined) to produce a single estimation
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Metrics

How to evaluate how good my classifier is?

Precision: is the fraction of retrieved instances that are relevant

P =
TP

TP + FN
=

TP

P

Recall: is the fraction of relevant instances that are retrieved

R =
TP

TP + FP

F1 score: harmonic mean of precision and recall

F1 = 2
P · R
P + R
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More on Metrics

How to evaluate how good my classifier is?

Precision: is the fraction of retrieved instances that are relevant

Recall: is the fraction of relevant instances that are retrieved

Precision Recall Curve

Average Precision (AP): mean under the curve
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Classification: Oranges and Lemons
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Classification: Oranges and Lemons

Can$construct$simple$
linear$decision$
boundary:$$$$
$$$y$=$sign(w0$+$w1x1$$$$$$$$$$$$$$$$$$$

$$$$$$$$+$w2x2)$
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What is the meaning of ”linear” classification

Linear classification means that the part that adapts is linear (just like linear
regression)

z(x) = wTx + w0

with adaptive w,w0

The adaptive part is follow by a non-linearity

y(x) = f (z(x))

What f have we seen?
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Classification as Induction
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Instance-based Learning

Alternative to parametric model is non-parametric

Simple methods for approximating discrete-valued or real-valued target
functions (classification or regression problems)

Learning amounts to simply storing training data

Test instances classified using similar training instances

Embodies often sensible underlying assumptions:

Output varies smoothly with input
Data occupies sub-space of high-dimensional input space
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Nearest Neighbors

Assume training examples correspond to points in d-dimensional Euclidean
space

Target function value for new query estimated from known value of nearest
training example(s)

Distance typically defined to be Euclidean:

||x(a) − x(b)|| =

√√√√ d∑
j=1

(x
(a)
j − (x

(b)
j )2

Algorithm

1 find example (x∗, t∗) closest to the test instance x(q)

2 output y (q) = t∗

Note: we don’t need to compute the square root. Why?
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Nearest Neighbors Decision Boundaries

Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred

Decision boundaries: Voronoi diagram visualization

show how input space divided into classes
each line segment is equidistant between two points of opposite classes
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k Nearest Neighbors

Nearest neighbors sensitive to mis-labeled data (“class noise”) → smooth by
having k nearest neighbors vote

Algorithm:

1 find k examples {x(i), t(i)} closest to the test instance x
2 classification output is majority class

y = arg max
t(z)

k∑
r=1

δ(t(z), t(r))
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k Nearest Neighbors: Issues & Remedies

Some attributes have larger ranges, so are treated as more important →
normalize scale

Irrelevant, correlated attributes add noise to distance measure → eliminate
some attributes, or vary and possibly adapt weight of attributes

Non-metric attributes (symbols) → Hamming distance

Brute-force approach: calculate Euclidean distance to test point from each
stored point, keep closest: O(dn2) → reduce computational burden:

1 Use subset of dimensions
2 Use subset of examples

Remove examples that lie within Voronoi region
Form efficient search tree (kd-tree), use Hashing (LSH), etc
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Decision Boundary K-NN
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K-NN Summary

Single parameter (k) → how do we set it?

Naturally forms complex decision boundaries; adapts to data density

Problems:

Sensitive to class noise.
Sensitive to dimensional scales.
Distances are less meaningful in high dimensions
Scales with number of examples

Inductive Bias: What kind of decision boundaries do we expect to find?
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