
CSC2515 Winter 2015 
 Introduction to Machine Learning 

Lecture 2: Linear regression 

All lecture slides will be available as .pdf on the course website: 
http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html 

Many of the figures are provided by Chris Bishop  
from his textbook: ”Pattern Recognition and Machine Learning” 
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Admin Details 

•  Permanent tutorial time/place:   
–  Tuesday 11-12, GB248 

•  Do I have the appropriate background? 
–  Linear algebra: vector/matrix manipulations, properties 
–  Calculus: partial derivatives 
–  Probability: common distributions; Bayes Rule 
–  Statistics: mean/median/mode; maximum likelihood 

•  Am I interested in this course? 
     - Many people in the waiting list 

•  Talk about Projects 



Outline 

•  Linear regression problem 
–  continuous outputs 
–  simple model 

•  Introduce key concepts:  
–  loss functions  
–  generalization  
–  optimization  
–  model complexity 
–  regularization 
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A	
  simple	
  example:	
  1-­‐D	
  regression	
  
The green curve is the true function 
(which is not a polynomial) – not known 

The data points are uniform in x         
but have noise in t. 

Aim: fit a curve to these points 

Key questions: 
–  How do we parametrize the model 

(the curve)? 
–  What loss (objective) function 

should we use to judge fit? 
–  How do we optimize fit to unseen 

test data (generaliz., prediction)? 

from Bishop 
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Example: Boston Housing data 

•  Estimate median house price 
in a neighborhood based on 
neighborhood statistics 

•  Look at first (of 13) 
attributes: per capita crime 
rate 

•  Use this to predict house 
prices in other 
neighborhoods 
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Represent	
  the	
  Data	
  

Data described as pairs D = ((x(1),t(1)), (x(2),t(2)),…, (x(N),t(N))) 
–  x is the input feature (per capita crime rate) 
–  t is the target output (median house price) 

•  Here t is continuous, so this is a regression problem 

Could take first 300 examples as training set, remaining 
206 as test set 

–  Use the training examples to construct hypothesis, or 
function approximator, that maps x to predicted y 

–  Evaluate hypothesis on test set 
6 



Noise	
  
A simple model typically does not exactly fit the 
data – lack of fit can be considered noise 

Sources of noise 
–  Imprecision in data attributes (input noise) 

–  Errors in data targets (mislabeling) 

–  Additional attributes not taken into account by 
data attributes, affect target values (latent 
variables) 

–  Model may be too simple to account for data 
targets 
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Least-­‐squares	
  Regression	
  

•  Standard loss/cost/objective 
function measures the 
squared error in the 
prediction of t(x) from x.  

•  The loss for the red 
hypothesis is the sum of the 
squared vertical errors.  

from Bishop 

€ 

J(w) = [t(n ) −
n=1

N

∑ y(x(n ))]2
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y(x) = w0 + w x



Op;mizing	
  the	
  Objec;ve	
  
•  One straightforward method: initialize w randomly, 

repeatedly update based on gradient descent in J 

•  Here λ is the learning rate 

•  For a single training case, this gives the LMS update 
rule: 

•  Note: as error approaches zero, so does update 
•  What about w_0? 
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Op;mizing	
  Across	
  Training	
  Set	
  
Two ways to generalize this for all examples in 
training set: 

1.  Stochastic/online updates – update the 
parameters for each training case in turn, 
according to its own gradients 

2.  Batch updates: sum or average updates across 
every example i, then change the parameter 
values 

 Underlying assumption: sample is independent 
and identically distributed (i.i.d.) 
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Non-­‐itera;ve	
  Least-­‐squares	
  Regression	
  

An alternative optimization approach is non-iterative: 
take derivatives, set to zero, and solve for 
parameters.  
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When is minimizing the squared error equivalent to 
Maximum Likelihood Learning? 

Minimizing the squared residuals is 
equivalent to maximizing the log 
probability of the correct answer 
under a Gaussian centered at the 
model’s guess. 

t = the 
correct 
answer 

y = model’s 
estimate of most 
probable value 

can be ignored 
if sigma is fixed 

can be ignored if 
sigma is same 
for every case 
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Mul;-­‐dimensional	
  inputs	
  

One method of extending the 
model is to consider other 
input dimensions 

In the Boston housing 
example, we can look at the 
number of rooms input 
feature 

We can use gradient descent 
to solve for each coefficient, 
or use linear algebra – solve 
system of equations 13 



Linear Regression 

•  Imagine now want to predict the median house price 
from these multi-dimensional observations 

•  Each house is a data point n, with observations 
indexed by j:  

•  Simple predictor is analogue of linear classifier, 
producing real-valued y for input x with parameters w 
(effectively fixing x0 = 1): 
   

Why is the last equation correct?   14 



Linear models 
•  It is mathematically easy to fit linear models to data. 

–  We can learn a lot about model-fitting in this relatively 
simple case. 

•  There are many ways to make linear models more powerful while 
retaining their nice mathematical properties: 
–  By using non-linear, non-adaptive basis functions, we can get 

generalized linear models that learn non-linear mappings from 
input to output but are linear in their parameters – only the 
linear part of the model learns. 

–  By using kernel methods we can handle expansions of the raw 
data that use a huge number of non-linear, non-adaptive basis 
functions.  

•  But linear methods will not solve most AI problems. 
–  They have fundamental limitations. 
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Some types of basis functions in 1-D 

Sigmoids             Gaussians            Polynomials 

Sigmoid and Gaussian basis functions can also be used in 
multilayer neural networks, but neural networks learn the 
parameters of the basis functions. This is much more powerful 
but also much harder and much messier. 16 



Two types of linear model that are 
equivalent with respect to learning 

•  The first model has the same number of adaptive 
coefficients as the dimensionality of the data +1. 

•  The second model has the same number of adaptive 
coefficients as the number of basis functions +1. 

•  Once we have replaced the data by the outputs of the 
basis functions, fitting the second model is exactly the 
same problem as fitting the first model (unless we use 
the kernel trick) 

•  So we’ll just focus on the first model 

bias 
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Fitting a polynomial 

•  Now we use one of these basis functions: an 
Mth order polynomial function 

•  We can use the same approaches to optimize 
the values of the weights on each coefficient: 
analytic, or iterative 
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Minimizing squared error 

optimal 
weights inverse of the 

covariance 
matrix of the 
input vectors 

The transposed 
design matrix has 
one input vector 
per row 

vector of 
target values 
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Online Least mean squares: An alternative 
approach for really big datasets 

•  This is called “online“ learning. It can be more efficient if the 
dataset is very redundant and it is simple to implement in hardware. 
–  It is also called stochastic gradient descent if the training 

cases are picked at random. 
–  Care must be taken with the learning rate to prevent divergent 

oscillations, and the rate must decrease at the end to get a 
good fit. 

weights after 
seeing training 
case  tau+1 

learning 
rate 

vector of derivatives of  the 
squared error w.r.t. the 
weights on the training case 
presented at time tau. 
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Some fits to the data: which is best? 
from Bishop 
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1-­‐D	
  regression	
  illustrates	
  key	
  concepts	
  
Data fits – is linear model best (model selection)? 

–  Simplest models do not capture all the important 
variations (signal) in the data: underfit 

–  More complex model may overfit the training data (fit 
not only the signal but also the noise in the data), 
especially if not enough data to constrain model 

One method of assessing fit: test generalization = model’s 
ability to predict the held out data 

Optimization is essential: stochastic and batch iterative 
approaches; analytic when available 
    22 



Regularized least squares 

The penalty on the squared weights (aka ridge 
regression, weight decay) is mathematically 
compatible with the squared error function, so we 
get a nice closed form for the optimal weights 
with this regularizer: 

identity 
matrix 

23 Probabilistic Interpretation of the Regularizer 



A picture of the effect of the regularizer 

•  The overall cost 
function is the sum of 
two parabolic bowls.  

•  The sum is also a 
parabolic bowl. 

•  The combined minimum 
lies on the line between 
the minimum of the 
squared error and the 
origin. 

•  The regularizer just 
shrinks the weights. 
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A problem with the regularizer 
•  We would like the solution to be independent of the units we use to 

measure the components of the input vector. 
•  If different components have different units (e.g. age and height), 

we have a problem. 
–  If we measure age in months and height in meters, the relative 

values of the two weights are very different than if we use years 
and millimeters  squared penalty has very different effects 

•  One way to avoid the units problem: Whiten the data so that the 
input components all have unit variance and no covariance. This stops 
the regularizer from being applied to the whitening matrix. 

–  But this can cause other problems when two input components 
are almost perfectly correlated. 

–  We really need a prior on the weight on each input component.   
25 



Other regularizers 

•  We do not need to use the squared error, 
provided we are willing to do more 
computation. 

•  Other powers of the weights can be used. 

€ 

˜ J (w) = {y(
n=1

N

∑ x(n ) ,w) − t(n )}2 + α ||w ||q
q
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The lasso: penalizing the absolute values of 
the weights 

•  Finding the minimum requires quadratic programming 
but its still unique because the cost function is 
convex (a bowl plus an inverted pyramid) 

•  As alpha is increased, many of the weights go to 
exactly zero.  
–  This is great for interpretation, and it is also 

pretty good for preventing overfitting. 
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A geometrical view of the lasso compared 
with a penalty on the squared weights 

Notice that w1=0 at 
the optimum 28 



Minimizing the absolute error 

•  This minimization involves solving a linear 
programming problem. 

•  It corresponds to maximum likelihood 
estimation if the output noise is modeled by a 
Laplacian instead of a Gaussian. 

29 



One dimensional cross-sections of loss 
functions with different powers 

Negative log of Gaussian                   Negative log of Laplacian 
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average 
target 
value for 
test case n 

model’s estimate 
for test case n 
when trained on 
dataset D 

angle brackets are 
notation for 
expectation over D 

The “bias” term is the squared error of 
the  average, over all training datasets, of 
the estimates. 

The “variance” term is the variance, over all 
training datasets, of the model’s estimate. 

a derivation using a different notation (Bishop, 149) 

The bias-variance decomposition 
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How the regularization parameter affects the bias 
and variance terms 

low bias high bias 

low variance high variance 
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An example of the bias-variance trade-off 

ln  α 33 


