CSC2515 Spring 2014 Introduction to Machine Learning

Lecture 1: Introduction

All lecture slides will be available as .pdf on the course website:

http://www.cs.toronto.edu/~urtasun/courses/CSC2515/CSC2515_Winter15.html

Many of the figures are provided by Chris Bishop from his textbook: "Pattern Recognition and Machine Learning"

Admin Details

- Permanent tutorial time/place:
 - Thursdays 2-3, Haultain 401
- Do I have the appropriate background?
 - Linear algebra: vector/matrix manipulations, properties
 - Calculus: partial derivatives
 - Probability: common distributions; Bayes Rule
 - Statistics: mean/median/mode; maximum likelihood
 - Sheldon Ross: A First Course in Probability
- Related Courses

Textbooks

- Christopher Bishop:
 - "Pattern Recognition and Machine Learning", 2006.

- Other recommended texts
 - Kevin Murphy: Machine Learning: a Probabilistic Perspective
 - David Mackay: Information Theory, Inference, and Learning Algorithms

Requirements

Do the readings!

Assignments

- Two assignments, worth 10% each
- Programming: take Matlab/Python code and extend it
- Derivations: pen(cil)-and-paper

Test

- Two hour exam on last day of class, check that understand main concepts in course
- Worth 35% of course mark

Project

- Proposal due Jan 26
- Presentations: Week March 23 (date might change)
- Write-up due April 3rd (date might change)
- Worth 45% of course mark

What is Machine Learning?

- Learning systems are not directly programmed to solve a problem, instead develop own program based on:
 - Examples of how they should behave
 - From trial-and-error experience trying to solve the problem
- Different than standard CS: want to implement unknown function, only have access to sample input-output pairs (training examples)
- Learning simply means incorporating information from the training examples into the system

Why Study Learning?

- Develop enhanced computer systems
 - Automatically adapt to user, customize
 - Often difficult to acquire necessary knowledge
- Improve understanding of human, biological learning
 - Computational analysis provides concrete theory, predictions
 - Explosion of methods to analyze brain activity during learning
- Timing is good
 - Ever growing amounts of data available
 - Cheap and powerful computers
 - Suite of algorithms, theory already developed

A classic example of a task that requires machine learning: What makes a 2?

Why use learning?

- It is very hard to write programs that solve problems like recognizing a handwritten digit
 - What distinguishes a 2 from a 7?
 - How does our brain do it?
- Instead of writing a program by hand, we collect examples that specify the correct output for a given input
- A machine learning algorithm then takes these examples and produces a program that does the job
 - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
 - If we do it right, the program works for new cases as well as the ones we trained it on.

Two classic examples of tasks that are best solved by using a learning algorithm

Date: Mon, 6 Sep 2027 05:08:33 -0400 From: Essence <Jonathan@wupperverband.de>

To: dcsprofs@cs.toronto.edu

Subject: Emerging Growth stock Opportunity

Big news expected. This stock will explode. Do not wait until it is too late.

Learning algorithms are useful in other tasks

- Recognizing patterns:
 - Facial identities, expressions
 - Handwritten or spoken words
- Digital images and videos:
 - Locating, tracking, and identifying objects
 - Driving a car
- Recognizing anomalies:
 - Unusual sequences of credit card transactions
- Spam filtering, fraud detection:
 - The enemy adapts so we must adapt too
- Recommendation systems:
 - Noisy data, commercial pay-off (Amazon, Netflix).
- Information retrieval:
 - Find documents or images with similar content

Data Explosion: Text

- "Large" text dataset
 - 1,000,000 words in 1967
 - 1,000,000,000,000 words in 2006
- Successful Applications
 - Speech recognition
 - Machine translation
 - Lots of labeled data
 - Memorization is useful

Really Big Data

"When the **Sloan Digital Sky Survey** started work in 2000, its telescope in New Mexico collected more data in its first few weeks than had been amassed in the entire history of astronomy.

Now, a decade later, its archive contains a whopping 140 terabytes of information.

A successor, the Large Synoptic Survey Telescope, due to come on stream in Chile in 2016, will acquire that quantity of data every five days."

Human learning

Josh Tenenbaum

Types of learning task

- Supervised: correct output known for each training example
 - Learn to predict output when given an input vector
 - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
 - Regression: real-valued output (predicting market prices, customer rating)
- Unsupervised learning
 - Create an internal representation of the input, capturing regularities/structure in data
 - Examples: form clusters; extract features
 - How do we know if a representation is good?
- Reinforcement learning
 - Learn action to maximize payoff
 - Not much information in a payoff signal
 - Payoff is often delayed
 - Important area not covered here, many applications: games, SmartHouse

Supervised Learning

Classification

- Outputs are categorical (1-of-N)
- Inputs are anything
- Goal: select correct class for new inputs
- Ex: speech, object recognition, medical diagnosis

• Regression

- Outputs are continuous
- Inputs are anything (typically continuous)
- Goal: predict outputs accurately for new inputs
- Ex: predicting market prices, customer rating of movie

• Temporal Prediction

- Goal: perform classification/regression on new input sequences values at future time points
- Given input values and corresponding class labels/outputs at some previous time points

Unsupervised Learning

• Clustering:

- Inputs are vector or categorical
- Goal: group data cases into a finite number of clusters so that within each cluster all cases have very similar inputs

Compression

- Inputs are typically vector
- Goal: deliver an encoder and decoder such that size of encoder output is much smaller than original input, but composition of encoder followed by decode very similar to original input

• Outlier detection

- Inputs are anything
- Goal: select highly unusual cases from new and given data

Machine Learning & Data Mining

- Data-mining: Typically using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples
- Previously used in a negative sense misguided statistical procedure of looking for all kinds of relationships in the data until finally find one
- Now lines are blurred: many ML problems involve tons of data
- But problems with AI flavor (e.g., recognition, robot navigation) still domain of ML

Machine Learning & Statistics

- ML uses statistical theory to build models core task is inference from a sample
- A lot of ML is rediscovery of things statisticians already knew; often disguised by differences in terminology:
- But the emphasis is very different:
 - Good piece of statistics: Clever proof that relatively simple estimation procedure is asymptotically unbiased.
 - Good piece of ML: Demo that a complicated algorithm produces impressive results on a specific task.
- Can view ML as applying computational techniques to statistical problems. But go beyond typical statistics problems, with different aims (speed vs. accuracy).

Cultural gap (Tibshirani)

Machine Learning-----Statistics

- network, graphs
- weights
- learning
- generalization
- supervised learning
- unsupervised learning.
- large grant: \$1,000,000
- conference location:
 Snowbird, French Alps

- model
- parameters
- fitting
- test set performance
- regression/classification
- density estimation, clustering
- large grant: \$50,000
- conference location: Las Vegas in August

Representing the structure of a set of documents using Latent Semantic Analysis (a form of PCA)

Each document is converted to a vector of word counts. This vector is then mapped to two coordinates and displayed as a colored dot. The colors represent the hand-labeled classes.

When the documents are laid out in 2-D, the classes are not used. So we can judge how good the algorithm is by seeing if the classes are separated.

Representing the structure of a set of documents using a neural network

Using Variables to Represent the World

- We use mathematical variables to encode everything we know about the task: inputs, outputs and internal states.
- Variables may be discrete/categorical; continuous/vector
 - Discrete quantities take on one of a fixed set of values e.g., {0,1}, {email,spam}, {sunny,overcast,raining}
 - Continuous quantities take on real values e.g. 1.6632, [3.3,-1.8,120.4]
- Generally have repeated measurements of same quantities
- Conventions
 - *i,j,...* indexes components/variables/dimensions
 - *n,m,...* indexes cases/records
 - $x_i^{(n)}$: value of the i^{th} input variable on the n^{th} case
 - $y_i^{(m)}$: value of the j^{th} output variable on the m^{th} case
 - $\mathbf{x}^{(n)}$: vector of inputs for the n^{th} case
 - $X = \{x^{(1)}x^{(2)},...,x^{(N)}\}$ is all the inputs

Initial Case Study

- What grade will I get in this course?
- Data: entry survey and marks from previous years
- Process the data
 - Split into training set; test set
 - Determine representation of input features; output
- Choose form of model: linear regression
- Decide how to evaluate the system's performance: objective function
- Set model parameters to optimize performance
- Evaluate on test set: generalization

Hypothesis Space

- Now have a representation for inputs and outputs
- How to represent a supervised learning machine?
- One way to think about a supervised learning machine is as a device that explores a "hypothesis space".
 - Each setting of the parameters in the machine is a different hypothesis about the function that maps input vectors to output vectors.
 - If the data is noise-free, each training example rules out a region of hypothesis space.
 - If the data is noisy, each training example scales the posterior probability of each point in the hypothesis space in proportion to how likely the training example is given that hypothesis.
- The art of supervised machine learning is in:
 - Deciding how to represent the inputs and outputs
 - Selecting a hypothesis space that is powerful enough to represent the relationship between inputs and outputs but simple enough to be searched.

Searching a hypothesis space

- The obvious method is to first formulate a loss function and then adjust the parameters to minimize the loss function.
 - This allows the optimization to be separated from the objective function that is being optimized.
- Bayesians do not search for a single set of parameter values that do well on the loss function.
 - They start with a prior distribution over parameter values and use the training data to compute a posterior distribution over the whole hypothesis space.

Some Loss Functions

- Squared difference between actual and target real-valued outputs
- Number of classification errors
 - Problematic for optimization because the derivative is not smooth
- Negative log probability assigned to the correct answer.
 - This is usually the right function to use.
 - In some cases it is the same as squared error (regression with Gaussian output noise)
 - In other cases it is very different (classification with discrete classes needs cross-entropy error)