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Part I: Probability

We devote the first part of this book (chapters 1-4) to a brief review of probabil-
ity and probability distributions. Almost all models for computer vision can be
interpreted in a probabilistic context, and in this book we will present all the ma-
terial in this light. The probabilistic interpretation may initially seem confusing,
but it has a great advantage: it provides a common notation which will be used
throughout the book and elucidates relationships between different models that
would otherwise remain opaque.

So why is probability a suitable language to describe computer vision problems?
In a camera the three-dimensional world is projected onto the optical surface to
form a two-dimensional set of measurements. Our goal is to take these measure-
ments and use them to establish the properties of the world that created them.
However, there are two problems. First, the measurement process is noisy: what
we observe is not the amount of light that fell on the sensor, but a noisy esti-
mate of this quantity. We must describe the noise in this data and for this we use
probability. Second, the relationship between world and measurements is generally
many to one: there may be many real world configurations that produce exactly
the same measurements. The relative likelihood of these possible worlds can also
be described using probability.

The structure of part I is as follows: in chapter 1 we introduce the basic rules
for manipulating probability distributions including the ideas of conditional and
marginal probability and Bayes’ rule. We also introduce more advanced ideas such
as independence, conditional independence and expectation.

In chapter 2 we discuss the properties of eight specific probability distributions.
We divide these into four pairs. The first set will be used to describe the observed
data or the world. The second set of distributions model the parameters of the
first set. In combination, they allow us to fit a probability model and provide
information about how certain we are about the fit.

In chapter 3 we discuss methods for fitting probability distributions to observed
data. We also discuss how to assess the probability of new data points under the
fitted model and in particular, how to take account of uncertainty in the original
fit when we calculate this predictive density. Finally, in chapter 4 we investigate
the properties of the multivariate normal distribution in detail. This distribution
is ubiquitous in vision applications and has a number of useful properties that are
frequently exploited in machine vision.

Readers who are very familiar with probability models and the Bayesian phi-
losophy may wish to skip this part and move directly to part II.
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Chapter 1

Introduction to Probability

In this chapter, we provide a compact review of probability theory. There are very
few ideas and each is relatively simple when considered separately. However, they
combine to form a powerful language for describing uncertainty.

1.1 Random Variables

A random variable X denotes a quantity that is uncertain. The variable may denote
the result of an experiment (e.g. flipping a coin) or a real-world measurement of
a fluctuating property (e.g. measuring the temperature). If we observe several
instances of X then it might take a different value on each occasion. However,
some values may occur more often than others. This information is captured by
the probability distribution Pr(X) of the random variable.

A random variable may be discrete or continuous. A discrete variable takes
values from a predefined set. This set may be ordered (the outcomes 1-6 of rolling
a die) or unordered (the outcomes “sunny”, “raining”, “snowing” of observing
the weather). It may be finite (there are 52 possible outcomes of drawing a card
randomly from a standard pack) or infinite (the number of people on the next train
is theoretically unbounded). The probability distribution of a discrete variable can
be visualized as a histogram or a Hinton diagram (figure 1.1). Each outcome has
a positive probability associated with it and the sum of the probabilities for all
outcomes is always one.

Continuous random variables take values that are real numbers. These may
be finite (the time taken to finish a 2 hour exam is constrained to be be greater
than 0 hours and less than 2 hours) or infinite (the amount of time until the next
bus arrives is unbounded above). Infinite continuous variables may be defined
on the whole real range or may be bounded above or below (the velocity of a
vehicle may take any value, but the speed is bounded below by 0). The probability
distribution of a continuous variable can be visualized by plotting the probability
density function (pdf). The probability density for an outcome represents the
relative propensity of the random variable to take that value (see figure 1.2). It
may take any positive value. However, the integral of the pdf always sums to one.
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Figure 1.1 Two different representations for discrete probabilities a) A bar
graph representing the probability that a biased 6-sided die lands on each
face. The height of the bar represents the probability so the sum of all
heights is one. b) A Hinton diagram illustrating the probability of observing
different weather types in England. The area of the square represents the
probability, so the sum of all areas is one.

Figure 1.2 Continuous probability dis-
tribution (probability density function
or PDF) for time taken for athletes
to complete 10K race. Note that the
probability density can exceed one,
but the area under the curve must al-
ways have unit area.
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1.2 Joint probability

Consider two random variables, X and Y . If we observe multiple paired instances
of X and Y, then some combinations of the two outcomes occur more frequently
than others. This information is encompassed in the joint probability distribution
of X and Y which is written as Pr(X,Y ). The comma in Pr(X,Y ) can be read
as the English word “and” so Pr(X,Y ) is the probability of X and Y. A joint
probability distribution may relate variables that are all discrete, all continuous or
it may relate discrete variables to continuous ones (see figure 1.3). Regardless, the
total probability of all outcomes (summing over discrete variables and integrating
over continuous ones), is always one.

In general we will be interested in the joint probability distribution of more
than two variables. We will write Pr(X,Y, Z) to represent the joint probability
distribution of scalar variables X,Y, Z. We may also write Pr(X) to represent
the joint probability of all of the elements X1, X2 . . . XK of the multidimensional
variable X. Finally, we will write Pr(X,Y) to represent the joint distribution of
all of the elements from multidimensional variables X and Y.
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Figure 1.3 Joint probability distributions between variables X and Y. a-c)
Joint pdf of two continuous variables represented as surface, contour plot
and image respectively. d) Joint distribution of two discrete variables repre-
sented as 2d Hinton diagram e) Joint distribution of a continuous variable
X and discrete variable Y. f) Joint distribution of a discrete variable X and
continuous variable Y.

1.3 Marginalization

We can recover the probability distribution of any variable from a joint distribution
by summing (discrete) or integrating (continuous) over all the other variables (figure
1.4). For example, if X and Y are both continuous and we know Pr(X,Y ), then
we can recover the distributions Pr(X) and Pr(Y ) using the relation:

Pr(X) =

∫
Pr(X,Y )dY (1.1)

Pr(Y ) =

∫
Pr(X,Y )dX (1.2)

The recovered distributions Pr(X) and Pr(Y ) are referred to as marginal dis-
tributions and the process of integrating/summing over the other variables is called
marginalization. Calculating the marginal distribution Pr(X) from the joint distri-
bution Pr(X,Y ) by marginalizing over the variable Y has a simple interpretation:
we are finding the probability distribution of X regardless of (or in the absence of
information about) the value of Y.
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Figure 1.4 Joint and marginal probability distributions. The marginal prob-
ability Pr(X) of X is found by summing over all values of Y in the joint
distribution Pr(X,Y ) and vice-versa. Note that the plots for the marginal
distributions have different scales from those for the joint distribution (on
the same scale, they marginals would look larger as they sum all of the mass
from one direction). a) Both X and Y are continuous. b) Both X and Y are
discrete. c) The random variable X is continuous and Y is discrete.

In general, we can recover the joint probability of any subset of variables, by
marginalizing over all of the others. For example, given four discrete variables,
W,X, Y, Z we can recover Pr(X,Y ) using:

Pr(X,Y ) =
∑
W

∑
Z

Pr(W,X, Y, Z) (1.3)

1.4 Conditional probability

The conditional probability of X given that Y takes value y∗ tells us the relative
propensity of the random variable X to take different outcomes given that the
random variable Y is fixed to value y∗. This conditional probability is written as
Pr(X|Y = y∗) . The vertical line “|” can be read as “given”.

The conditional probability Pr(X|Y = y∗) of X given that Y takes the value y∗

can be recovered from the joint distribution Pr(X,Y ). In particular, we examine
the appropriate slice Pr(X,Y = y∗) of the joint distribution Pr(X,Y) (figure 1.5).
The values in the slice tell us about the relative propensity of X to take various
outcomes having observed Y = y∗ but do not themselves form a valid probability
distribution: they cannot sum to one as they constitute only a small part of the
joint distribution which does sum to one. To calculate the conditional probability
distribution, we normalize by the total probability of this slice:

Pr(X|Y = y∗) =
Pr(X,Y = y∗)∫
Pr(X,Y = y∗dX

=
Pr(X,Y = y∗)

Pr(Y = y∗)
(1.4)

where we have used the marginal probability relation (Equation 1.2) to simplify the
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a) b) Figure 1.5 Conditional Probability. a)
Joint pdf of X and Y. b) Two
conditional probability distributions
Pr(X|Y = y1) and Pr(X|Y = y2).
These are formed by extracting the
appropriate slice from the joint pdf
and normalizing so that the area is
one. A similar operation can be per-
formed for discrete distributions.

denominator. It is common to write the conditional probability relation without
explicitly defining the value Y = y∗ to give the more compact notation,

Pr(X|Y ) =
Pr(X,Y )

Pr(Y )
. (1.5)

This relationship can be re-arranged to give,

Pr(X,Y ) = Pr(X|Y )Pr(Y ), (1.6)

and by symmetry,

Pr(X,Y ) = Pr(Y |X)Pr(X). (1.7)

When we have more than two variables, we may repeatedly take conditional
probabilities to divide up the joint probability distribution into a product of terms:

Pr(W,X, Y, Z) = Pr(W,X, Y |Z)Pr(Z) (1.8)

= Pr(W,X|Y, Z)Pr(Y |Z)Pr(Z)

= Pr(W |X,Y, Z)Pr(X|Y,Z)Pr(Y |Z)Pr(Y )

1.5 Bayes’ rule

In equations 1.6 and 1.7 we expressed the joint probability in two ways. We can
combine these formulations to find a relationship between Pr(X|Y ) and Pr(Y |X):

Pr(Y |X)Pr(X) = Pr(X|Y )Pr(Y ) (1.9)

or rearranging
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Figure 1.6 Independence. a) Joint pdf of continuous independent variables
X and Y. b) The independence of X and Y means that every conditional dis-
tribution is the same: the value of Y tells us nothing about X and vice-versa.
Compare this to figure 1.5 which illustrated variables that were dependent.
c) Joint pdf of discrete independent variables X and Y. d) The conditional
distributions of X given Y are all the same.

Pr(Y |X) =
Pr(X|Y )Pr(Y )

Pr(X)
(1.10)

=
Pr(X|Y )Pr(Y )∫
Pr(X,Y )dY

(1.11)

=
Pr(X|Y )Pr(Y )∫
Pr(X|Y )Pr(Y )dY

(1.12)

where we have expanded the denominator in Equations 1.11 and 1.12 using the
definitions of marginal and conditional probability respectively. Equations 1.10-
1.12 are all commonly referred to as Bayes’ rule.

Each term in Bayes’s rule has a name. The term Pr(Y |X) on the left hand
side is the posterior. It represents what we know about Y given X. Conversely, the
term Pr(Y ) is the prior as it represents what is known about Y before we know X.
The term Pr(X|Y ) is the likelihood and the denominator Pr(X) is the evidence.

1.6 Independence

If knowing the value of variable X tells us nothing about variable Y (and vice-versa)
then we say X and Y are independent (figure 1.6). In this case, we can write:

Pr(X|Y ) = Pr(X) (1.13)

Pr(Y |X) = Pr(Y ) (1.14)

Substituting into equation 1.6 we see that for independent variables the joint
probability Pr(X,Y) is the product of the marginal probabilities Pr(X) and Pr(Y).
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Figure 1.7 Conditional Independence. a) Joint pdf of three discrete variables
X,Y, Z. All 24 probability values sum to one. b) Marginalizing, we see that
variables X and Y are not independent - the conditional distribution of X is
different for different values of Y and vice-versa. c) Variables X and Z are
also dependent. d) Variables Y and Z are also dependent. e-g) However,
X and Z are conditionally independent given Y . For fixed Y , X tells us
nothing more about Z and vice-versa.

Pr(X,Y ) = Pr(X|Y )Pr(Y )

= Pr(X)Pr(Y ) (1.15)

This can be observed in figure 1.6: the joint distribution is the outer product of
the two marginal distributions.

1.7 Conditional Independence

With more than two random variables, independence relations become more com-
plex. The variable X is said to be conditionally independent to variable Z given
variable Y when X and Z are independent for fixed Y (figure 1.7).

Confusingly, the conditional independence of X and Z given Y does not imply
that X and Z are themselves independent. It merely implies that if we know
variable Y then X provides no further information about Z and vice-versa. One
way that this can occur is in a chain of events: if event X causes event Y and Y
causes Z then the dependence of Z on X might be entirely mediated by Y .
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Figure 1.8 Directed graphical model
relating variables X,Y, Z from
figure 1.7. This model implies
that the joint probability can be
broken down as Pr(X,Y, Z) =
Pr(X)Pr(Y |X)Pr(Z|Y ).

Figure 1.9 Interpreting directed
graphical models. Variable X is
independent from all the others as it
is not connected to them. Variable Y
is conditionally independent of all of
the others given its Markov blanket.
This comprises, the parents, children
and other parents of the children.
The Markov blanket for variable Y is
indicated by the gray region.

1.8 Graphical Models

A graphical model is a graph-based representation of the dependencies between
multiple variables. In a directed graphical model or Bayesian network, the depen-
dencies are expressed as a factorization of the joint probability distribution into a
product of conditional distributions so that

Pr(X1 . . . Xn) =

n∏
i=1

Pr(Xi|Xpa[i]), (1.16)

where the notation pa[i] denotes the set of variables that are parents of variable
Xi. For example, the graphical model in figure 1.8 tells us that

Pr(X,Y, Z) = Pr(X)Pr(Y |X)Pr(Z|Y ). (1.17)

The conditional independence relations can be inferred from the visual repre-
sentation of the directed graphical model by following two rules (figure 1.9). First,
if there is no route connecting two variables at all then they are independent. Sec-
ond, any variable is conditionally independent of all the other variables given its
parents, children and the other parents of its children (its Markov blanket). Conse-
quently, in figure 1.8, which corresponds to the conditional independence example
above, variable X is conditionally independent of variable Z given variable Y .

Directed models will be used frequently throughout this book, but other types
of graphical model also exist. For example, in chapter 11 we introduce undirected
graphical models in which there is no notion of child and parent and different
conditional independence relations are specified.
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1.9 Expectation

Given a function f() that returns a value for each possible value of X and a proba-
bility Pr(X = x) that each value of X occurs, we sometimes wish to calculate the
expected output of the function. If we drew a very large number of samples from
the probability distribution, calculated the function for each sample and took the
average of these values, the result would be the expectation. More precisely, the
expected value of a function f() of a random variable X is defined as

E[f(X)] =
∑
x

f(x)Pr(X = x) (1.18)

E[f(X)] =

∫
f(x)Pr(X = x)dx (1.19)

for the discrete and continuous cases respectively. This idea generalizes to functions
f() of more than one random variable so that for example

E[f(X,Y )] =

∫ ∫
f(x, y)Pr(X = x, Y = y)dxdy. (1.20)

For some choices of the function f() the expectation is given a special name as
(table 1.1). Such quantities are are commonly used to summarize the properties of
complex probability distributions. There are four rules for manipulating expecta-
tions, which can be easily proved from the original definition (equation 1.19).

E[k] = k (1.21)

E[kf(X)] = kE[f(X)] (1.22)

E[f(X) + g(X)] = E[f(X)] + E[g(X)] (1.23)

E[f(X)g(X)] = E[f(X)]E[g(X)] if X,Y independent (1.24)

Function f() Expectation

x mean, µx

xk k’th moment about zero

(x− µx)k k’th moment about the mean

(x− µx)2 variance

(x− µx)3 skew

(x− µx)(y − µy) covariance of X and Y

Table 1.1: Special cases of expectation. For some special functions f(x), the expectation
E[f(x)] is given a special name. Here we use the notation µx to represent the mean with

respect to random variable x and µy the mean with respect to random variable y.
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Summary

The rules of probability are remarkably compact and simple. Amazingly, the ideas
of marginalization, joint and conditional probability, independence and Bayes’ rule
will underpin all of the machine vision algorithms in this book.



Chapter 2

Common probability
distributions

In chapter 1 we introduced abstract rules for manipulating probabilities. To use
these rules we need mathematical expressions for probability distributions. The
particular choices of expression Pr(x) that we use will depend on the type of data
x that we are modelling (table 2.1).

Data Type Domain Distribution

univariate, discrete, z ∈ {0, 1} Bernoulli
binary

univariate, discrete, z ∈ {1, 2, . . . ,K} categorical
multi-valued

univariate, continuous, z ∈ R univariate normal
unbounded

univariate, continuous, z ∈ [0, 1] beta
bounded

multivariate, continuous, z ∈ RK multivariate normal
unbounded

multivariate, continuous, z = [z1 . . . zK ]T Dirichlet

bounded, sums to one zk ∈ [0, 1],
∑K

k=1 zk = 1

bivariate, continuous, z = [z1, z2] normal
z1 unbounded, z1 ∈ R inverse gamma

z2 bounded below z2 ∈ R+

multivariate vector z and matrix Z z ∈ Rk normal

z unbounded, Z ∈ Rk×k inverse Wishart

Z square, positive definite xTZx > 0 ∀x ∈ Rk

Table 2.1: Common probability distributions: the choice of distribution depends on the
type/domain of data to be modeled.

Probability distributions such as the categorical and normal distributions are
obviously useful for modeling visual data. However, the need for distributions over
more elaborate quantities is not so obvious: for example, the Dirichlet distribution



22 2 Common probability distributions

models K positive numbers that sum to one. It is hard to imagine visual data
having this form.

The reason for these more elaborate distributions is as follows: when we fit
probability models to data, we will need to know how uncertain we are about the
fit. This uncertainty is represented as a probability distribution over the possible
parameters of the fitted model. So for each distribution used for modelling, there
is a second distribution over the associated parameters (table 2.2). In fact, the
Dirichlet is used to model the parameters of the categorical distribution.

Distribution Domain Parameters modelled by

Bernoulli z ∈ {0, 1} beta

categorical z ∈ {1, 2, . . .K} Dirichlet

univariate normal z ∈ R normal inverse gamma

multivariate normal z ∈ Rk normal inverse Wishart

Table 2.2: (left) Common distributions used for modelling and (center) their associated
domains. (right) For each of these distributions there is an associated distribution over

the parameters.

We will now work through the distributions in table 2.2 in row order before
looking more closely at the relationship between these pairs of distributions.

2.1 Bernoulli distribution

The Bernoulli distribution (figure 2.1) is a discrete distribution that models bi-
nary trials: it describes the situation where there are only two possible outcomes
y ∈ {0, 1} which are referred to as “failure” and “success”. In machine vision, the
Bernoulli distribution could be used to model the data: it might describe the prob-
ability of a pixel taking an intensity value of greater or less than 128. Alternatively,
it could be used to model the state of the world. For example it might describe
the probability that a face is present or absent in the image.

The Bernoulli has a single parameter λ ∈ [0, 1] which defines the probability of
observing a success y = 1. The distribution is hence

Pr(y = 0) = 1− λ
Pr(y = 1) = λ. (2.1)

We can alternatively express this as

Pr(y) = λy(1− λ)1−y, (2.2)

and we will sometimes use the equivalent notation

Pr(y) = Berny[λ]. (2.3)
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Figure 2.1 The Bernoulli distribution
is a discrete distribution with two pos-
sible outcomes, y ∈ {0, 1} referred to
as failure and success repsectively. It
is governed by a single parameter λ
that determines the probability of suc-
cess such that Pr(y = 0) = 1− λ and
Pr(y = 1) = λ.

2.2 Beta distribution

The beta distribution (figure 2.2) is a continuous distribution defined on single
parameter λ where λ ∈ [0, 1]. As such it is suitable for representing the uncertainty
over the parameter λ of the Bernoulli distribution.
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Figure 2.2 The Beta distribution is defined on [0, 1] and has parameters
(α, β) whose relative values determine the expected value so E[λ] = α/(α+
β). As the absolute values of (α, β) increase the concentration around E[λ]
increases. a) E[λ] = 0.5 for each curve, concentration varies. b) E[λ] = 0.25.
c) E[λ] = 0.75.

The beta distribution has two parameters α, β ∈ [0,∞] which both take positive
values and effect the shape of the curve as indicated in figure 2.2. Mathematically,
the beta distribution has the form,

Pr(λ) =
Γ(α+ β)

Γ(α)Γ(β)
λα−1(1− λ)β−1. (2.4)

where Γ() is the Gamma function1. For short, we abbreviate this to

Pr(λ) = Betaλ[α, β]. (2.5)

1The Gamma function is defined as Γ(z) =
∫∞
0 tz−1e−tdt and is closely related to factorials,

so that for positive integers Γ(z) = (z − 1)!
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Figure 2.3 The categorical distribu-
tion is a discrete distribution with K
possible outcomes, x ∈ {1, 2 . . .K}
and K parameters λ1, λ2 . . . λK where∑

k λk = 1. The likelihood of ob-
serving x = k is given by λk. When
K=2, the categorical reduces to the
Bernoulli distribution.
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2.3 Categorical distribution

The categorical distribution is a discrete distribution that determines the proba-
bility of observing one of K possible outcomes. Hence, the Bernoulli distribution is
a special case of the categorical distribution when there are only two outcomes. In
machine vision the intensity data at a pixel is usually quantized into discrete levels
and so can be modelled with a categorical distribution. The state of the world may
also take one of several discrete values. For example an image of a vehicle might be
classified into {car,motorbike,van,truck} and our uncertainty over this state could
be described by a categorical distribution.

The probabilities of observing the K outcomes are held in K parameters λ1 . . . λK ,
where λk ∈ [0, 1] and

∑K
k=1 λk = 1. The categorical distribution can be visualized

as a normalized histogram with K-bins and can be written as

Pr(x = k) = λk. (2.6)

Alternatively, we can think of the data as a vector x = [0, 0, . . . 0, 1, 0, . . . 0] where
all elements are zero except the k’th which is one. Here we can write

Pr(x) =

K∏
j=1

λ
xj

j = λk, (2.7)

where xk is the k’th element of x. For short, we use the notation

Pr(x) = Catx [λ1 . . . λK ] . (2.8)

2.4 Dirichlet distribution

The Dirichlet distribution (figure 2.4) is defined over K continuous values λ1 . . . λK
where λk ∈ [0, 1] and

∑K
k=1 λk = 1. Hence it is suitable for defining a distribution

over the parameters of the categorical distribution.

In K dimensions the Dirichlet distribution has K parameters α1 . . . αK each
of which can take any positive value. The relative values of the parameters de-
termine the expected values E[λ1] . . . E[λk]. The absolute values determine the
concentration around the expected value. We write
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Figure 2.4 The Dirichlet distribution in K dimensions is defined on values
λ1, λ2 . . . λK such that

∑
k λk = 1 and λk ∈ [0, 1] ∀ k ∈ {1 . . .K}. a) For

K=3, this corresponds to a triangular section of the plane
∑

k λk = 1. In
K dimensions, the Dirichlet is defined by K positive parameters α1...K . The
ratio of the parameters determines the expected value for the distribution.
The absolute values determine the concentration: the distribution is highly
peaked around the expected value at high parameter values but pushed away
from the expected value at low parameter values. b-e) Ratio of parameters
is equal, absolute values increase. f-i) ratio of parameters favours α3 > α2 >
α1, absolute values increase.

Pr(λ1 . . . λK) =
Γ[
∑K
k=1 αk]∏K

k=1 Γ[αk]

K∏
k=1

λαk−1
k , (2.9)

or for short

Pr(λ1 . . . λK) = Dirλ1...K
[α1, α2 . . . αK ]. (2.10)

Just as the Bernoulli distribution was a special case of the categorical distribu-
tion with two possible outcomes, so the beta distribution is a special case of the
Dirichlet distribution where the dimensionality is two.

2.5 Univariate normal distribution

The univariate normal or Gaussian distribution (figure 2.5) is defined on continuous
values x ∈ [−∞,∞]. In vision, it is common to ignore the fact that the intensity
of a pixel is quantized and model it with the continuous normal distribution. The
world state may also be described by the normal distribution. For example, the
distance to an object could be represented in this way.

The normal distribution has two parameters, the mean µ and the variance σ2.
The parameter µ can take any value and determines the position of the peak. The
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Figure 2.5 The univariate normal dis-
tribution is defined on x ∈ R and has
two parameters (µ, σ2). The mean
parameter µ determines the expected
value and the variance σ2 determines
the concentration about the mean so
that as σ2 increases, the distribution
becomes wider and flatter.
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Figure 2.6 The Normal scaled inverse gamma distribution defines a proba-
bility distribution over bivariate continuous values µ, σ2 where µ ∈ [−∞,∞]
and σ2 ∈ [0,∞]. a) Distribution with parameters [α, β, γ, δ] = [1, 1, 1, 0]. b)
Varying α. c) Varying β. d) Varying γ. e) Varying δ.

parameter σ2 takes only positive values and determines the width of the distribu-
tion. The distribution is defined as

Pr(x) =
1√

2πσ2
exp

[
−0.5(x− µ)2/σ2

]
(2.11)

and will abbreviate this by writing

Pr(x) = Normx[µ, σ2] (2.12)

2.6 Normal inverse gamma distribution

The normal-scaled inverse gamma distribution (figure 2.6) is defined over a pair of
continuous values (µ, σ2), the first of which can take any value and the second of
which is constrained to be positive. As such it can define a distribution over the
mean and variance parameters of the normal distribution.

The normal-scaled inverse gamma has four parameters α, β, γ, δ where α, β and
γ are positive real numbers but δ can take any value. We write
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+

Figure 2.7 The multivariate normal
distribution models K-dimensional
variables x = [x1 . . . xK ]T where each
dimension xk is continuous and real.
It is defined by a K×1 vector µ defin-
ing the mean of the distribution and a
K×K covariance matrix Σ which de-
termines the shape. The iso-contours
of the distribution are ellipsoids where
the centre of the ellipsoid is deter-
mined by µ and the shape by Σ. This
figure depicts a bivariate distribution,
where the covariance is illustrated by
drawing one of these ellipsoids.

Pr(µ, σ2) =

√
γ

σ
√

2π

βα

Γ(α)

(
1

σ2

)α+1

exp

[
−2β + γ(δ − µ)2

2σ2

]
(2.13)

or for short

Pr(µ, σ2) = NormInvGamµ,σ2 [α, β, γ, δ] (2.14)

2.7 Multivariate normal distribution

The multivariate normal or Gaussian distribution models K-dimensional variables x
where each of the K elements x1 . . . xK is continuous and lies in the range [−∞,+∞]
(figure 2.7). As such the univariate normal distribution is a special case of the
multivariate normal where the number of elements K is one. In machine vision
the multivariate normal might model the joint distribution of the intensities of K
pixels within a region of the image. The state of the world might also be described
by this distribution. For example, the multivariate normal might describe the joint
uncertainty in the 3d position (x, y, z) of an object in the scene.

The multivariate normal distribution has two parameters: the mean µ and
covariance Σ. The mean µ is a K × 1 vector that describes the mean of the
distribution. The covariance Σ is a symmetric K ×K positive definite matrix so
that zTΣz is positive for any real vector z. The probability density function has
the following form

Pr(x) =
1

(2π)K/2|Σ|1/2
exp

[
−0.5(x− µ)TΣ−1(x− µ)

]
, (2.15)

or for short

Pr(x) = Normx [µ,Σ] . (2.16)

The multivariate normal distribution will be used extensively throughout this
book, and we devote chapter 4 to describing its properties.
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Figure 2.8 Sampling from 2d normal inverse Wishart distribution. a) Each
sample consists of a mean vector and covariance matrix, here visualized
with 2D ellipses illustrating the isocontour of the associated Gaussian at
a Mahalanobis distance of 2. b) Changing α modifies the dispersion of
covariances observed. c) Changing Ψ modifies the average covariance. c)
Changing γ modifies the dispersion of mean vectors observed. d) Changing
δ modifies the average value of the mean vectors.

2.8 Normal inverse Wishart distribution

The normal inverse Wishart distribution defines a distribution over a K × 1 vector
µ and a K × K positive definite matrix Σ. As such it is suitable for describing
uncertainty in the parameters of a multivariate normal distribution. The normal
inverse Wishart has four parameters α,Ψ, γ, δ, where α and γ are positive scalars,
δ is a K × 1 vector and Ψ is a K ×K matrix

Pr(µ,Σ) =
Ψα/2|Σ|−(α+K+2)/2 exp

[
−0.5

(
2Tr(ΨΣ−1)− γ(µ− δ)TΣ−1(µ− δ)

)]
2αK/2(2π)K/2Γp(α/2)

,

(2.17)

where Γp is the multivariate Gamma function. For short we will write

Pr(µ,Σ) = NorIWisµ,Σ [α,Ψ, γ, δ] . (2.18)

The mathematical form of the normal inverse Wishart distribution is rather
opaque. However, it is just a function that produces a positive value for any valid
mean vector µ and covariance matrix Σ, such that when we integrate over all
possible values of µ and Σ, the answer is one. It is hard to visualize the normal
inverse Wishart, but easy to draw samples and examine them: each sample is the
mean and covariance of a normal distribution (figure 2.8).
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2.9 Conjugacy

We have argued that the beta distribution can represent probabilities over the
parameters of the Bernoulli. Similarly the Dirichlet defines a distribution over the
parameters of the categorical and there are analagous relationships between the
the normal-scaled inverse Gamma and univariate normal and the normal inverse
Wishart and the multivariate normal.

These pairs were carefully chosen because they have a special relationship: in
each case, the former distribution is conjugate to the latter: the beta is conjugate
to the Bernoulli and the Dirichlet is conjugate to the categorical and so on. When
we multiply a distribution with its conjugate, the result is proportional to a new
distribution which has the same form as the conjugate. For example,

Bernx[λ].Betaλ[α, β] = κ(x, α, β)Betaλ

[
α̃, β̃

]
(2.19)

where κ is a scaling factor that is constant with respect to the variable of interest,
λ. It is important to realize that this was not necessarily the case. If we had picked
any distribution other than the Beta then this product would not have had the
same form. For this case, the relationship in equation 2.19 is easy to prove

Bernx[λ]Betaλ[α, β] = λx(1− λ)1−x.
Γ(α+ β)

Γ(α)Γ(β)
λα−1(1− λ)β−1

=
Γ(α+ β)

Γ(α)Γ(β)
λx+α−1(1− λ)1−x+β−1

=
Γ(α+ β)

Γ(α)Γ(β)
.
Γ(x+ α)Γ(1− x+ β)

Γ(x+ α+ 1− x+ β)
Betaλ[x+ α, 1− x+ β]

= κ(x, α, β)Betaλ

[
α̃, β̃

]
(2.20)

The conjugate relationship is important because we do take products of dis-
tributions during both learning (fitting distributions) and evaluating the model
(assessing probability of new data under fitted distribution). The conjugate rela-
tionship means that these products both be computed neatly in closed form.

Summary

We use probability distributions to describe both the world state and the image
data. We have presented four distributions (Bernoulli, categorical, univariate nor-
mal, multivariate normal) that are suited to this purpose. We also presented four
other distributions (beta, Dirichlet, normal-scaled inverse gamma and normal in-
verse Wishart) that can be used to describe the uncertainty in parameters of the
first: they can hence describe the uncertainty in the fitted model. These four pairs
of distributions have a special relationship: each distribution from the second set is
conjugate to one from the first set. Conjugacy facilitates fitting these distributions
to observed data and evaluating new data under the fitted model.



30 2 Common probability distributions



Chapter 3

Fitting probability models

This chapter concerns fitting probability models to observed data x1 . . .xI and
evaluating the likelihood of a new datum x∗ under the resulting model. This
process is referred to as learning because we learn about the parameter of the
model. We consider three methods: maximum likelihood, maximum a posteriori
and the Bayesian approach.

3.1 Maximum likelihood

As the name suggests, the maximum likelihood (ML) method finds the set of param-

eters θ̂ under which the data x1 . . .xI are most likely. To calculate the likelihood
Pr(xi|θ) for a single data point xi we simply evaluate the probability density func-
tion at xi. Assuming each data point was drawn independently, the joint likelihood
for a set of points Pr(x1...I |θ) is the product of the individual likelihoods. Hence,
the ML estimate of the parameters is

θ̂ = arg max
θ

Pr(x1...I |θ) = arg max
θ

I∏
i=1

Pr(xi|θ). (3.1)

To evaluate the predictive density for a new data point x∗ (compute the probability
that x∗ belongs to the fitted model), we simply evaluate the probability density

function Pr(x∗|θ̂) using the ML fitted parameters θ̂.

3.2 Maximum a posteriori

In maximum a posteriori (MAP) fitting, we introduce prior information about
the parameters θ. From previous experience we may know something about the
possible parameter values. An obvious example would be for time-sequences: the
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values of the parameters at time t tell us a lot about the possible values at time
t+ 1 and this information would be encoded in the prior distribution.

As the name suggests, maximum a posteriori estimation maximizes the posterior
probability Pr(θ|x1 . . .xI) of the parameters:

θ̂ = arg max
θ

Pr(θ|x1 . . .xI)

= arg max
θ

Pr(x1...I |θ)Pr(θ)

Pr(x1 . . .xI)

= arg max
θ

∏I
i=1 Pr(xi|θ)Pr(θ)

Pr(x1 . . .xI)
(3.2)

where we have used Bayes’ rule between the first two lines and subsquently assumed
independence of the data likelihoods. In fact, we can discard the denominator as
it is constant with respect to the parameters and so does not effect the position of
the maximum and we get

θ̂ = arg max
θ

I∏
i=1

Pr(xi|θ)Pr(θ). (3.3)

Comparing this to the maximum likelihood criterion (equation 3.1) we see that it
is identical except for the additional prior term Pr(θ): maximum likelihood is a
special case of maximum a posteriori where the prior is uninformative.

The predictive density (likelihood of a new datum x∗ under the fitted model)

is again calculated by evaluating the pdf Pr(x∗|θ̂) using the new parameters.

3.3 The Bayesian approach

In the Bayesian approach we stop trying to estimate fixed, concrete values for the
parameters θ and admit what is obvious: there may be many values of the param-
eters that are compatible with the data. We compute a probability distribution
Pr(θ|x1...I) over the parameters θ based on data x1...I using Bayes’ rule so that

Pr(θ|x1...I) =

∏I
i=1 Pr(xi|θ)Pr(θ)

Pr(x1...I)
. (3.4)

Evaluating the predictive distribution (the likelihood ascribed to a new data-
point by the model) is more difficult for the Bayesian case: we have not estimated
a single model, but found a probability distribution over possible models. Hence,
we calculate

Pr(x∗|x1...I) =

∫
Pr(x∗|θ)Pr(θ|x1...I)dθ, (3.5)
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which can be interpreted as follows: the first term Pr(x∗|θ) is the prediction for
a given value of θ. So, the integral is a weighted sum of the predictions given
by different parameters θ, where the weighting is determined by the posterior
probability distribution Pr(θ|x1...I) over the parameters.

The predictive density calculations for the Bayesian, MAP and ML cases can
be unified if we consider the ML and MAP estimates to be special probability
distributions over the parameters where all of the density is at θ̂ (i.e. delta functions

at θ̂). The predictive density can now be written:

Pr(x∗|x1...I) =

∫
Pr(x∗|θ)δ(θ − θ̂)dθ

= Pr(x∗|θ̂) (3.6)

which is exactly the calculation we originally prescribed.

3.4 Worked example 1: univariate normal

To illustrate the above ideas, we will consider fitting a univariate normal model to
scalar data x1 . . . xI . Recall that the univariate normal model has pdf

Pr(x|µ, σ2) = Normx[µ, σ2] =
1√

2πσ2
exp

[
−0.5

(x− µ)2

σ2

]
, (3.7)

and has two parameters, the mean µ and the variance σ2. Let’s generate I inde-
pendent data points x1...I from a univariate normal with µ = 1 and σ2 = 1. Our
goal is re-estimate these parameters from the data.

Maximum likelihood estimation

The likelihood Pr(x1...I |µ, σ2) of the data x1...I for parameters {µ, σ2} is computed
by evaluating the pdf for each data point separately and taking the product:

Pr(x1...I |µ, σ2) =

I∏
i=1

Pr(xi|µ, σ2)

=

I∏
i=1

Normxi [µ, σ
2]

=
1

(2πσ2)I/2
exp

[
−0.5

I∑
i=1

(xi − µ)2

σ2

]
. (3.8)

Obviously, the likelihood for some sets of parameters µ, σ2 will be higher than
others (figure 3.1) and it is possible to visualize this by drawing the likelihood as a
2d function of the mean µ and variance σ2 (figure 3.2). The maximum likelihood
solution µ̂, σ̂ will occur at the peak of this surface so that
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Figure 3.1 Maximum likelihood fitting. The likelihood of a single datapoint
is the height of the pdf evaluated at that point (blue vertical lines). The
likelihood of a set of independently sampled data is the product of the in-
dividual likelihoods. a) The likelihood for this normal distribution is low
because the large variance means the height of the pdf is low everywhere. b)
The likelihood for this normal distribution is even lower as the left-most da-
tum is very unlikely under the model. c) The maximum likelihood solution
is the set of parameters for which the data likelihood is maximized.

Figure 3.2 The likelihood of the ob-
served data can be plotted as a func-
tion of the mean µ and variance σ2 pa-
rameters. The plot shows that there
are many parameter settings which
might plausibly be responsible for the
ten data points from figure 3.1. A sen-
sible choice for the “best” parameter
setting is the maximum likelihood so-
lution (green cross) which corresponds
to the maximum of this function. −2.0 2.0

0.0

2.0

+

µ̂, σ̂2 = arg max
µ,σ2

Pr(x1...I |µ, σ2). (3.9)

In principle we can maximize this by taking the derivative of equation 3.8 with
respect to µ and σ2, equating the result to zero and solving. In practice however,
the resulting equations are messy. To simplify things, we work instead with the log-
arithm of this expression (the log likelihood, L). Since the logarithm is a monotonic
function (figure 3.3), the position of the maximum in the transformed function re-
mains the same. Algebraically, the logarithm turns the product of the likelihoods
of the individual data points into a sum and so decouples the contribution of each.
The ML parameters can now be calculated as

µ̂, σ̂ = arg max
µ,σ2

I∑
i=1

log
[
Normxi [µ, σ

2]
]

(3.10)

= arg max
µ,σ2

[
−0.5I log[2π]− 0.5I log σ2 − 0.5

I∑
i=1

(xi − µ)2

σ2

]
.
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3

Figure 3.3 The logarithm is a mono-
tonic transformation: if one point is
higher than another then it will also
be higher after transformation by the
logarithmic function. It follows that
if we transform the surface in figure
3.2 through the logarithmic function,
the maximum will remain in the same
position.

To maximize, we differentiate with respect to µ and equate the result to zero

∂L

∂µ
=

I∑
i=1

(xi − µ)

σ2
=

∑I
i=1 xi
σ2

− Iµ

σ2
= 0 (3.11)

and re-arranging, we see that

µ̂ =

∑I
i=1 xi
I

. (3.12)

By a similar process the expression for the variance can be shown to be

σ2 =

I∑
i=1

(xi − µ̂)2

I
. (3.13)

These expressions are hardly surprising, but the same idea can be used to esti-
mate parameters in other distributions where the results are less familiar. Figure
3.1 shows a set of data points and three possible fits to the data. The mean of the
maximum likelihood fit is the mean of the data. The ML fit is neither too narrow
(giving very low probabilities to the furthest data points from the mean) nor too
wide (resulting in a flat distribution and giving low probability to all points.

Maximum a posteriori estimation

To find maximum a posteriori parameters we use

µ̂, σ̂2 = arg max
µ,σ2

I∏
i=1

Pr(xi|µ, σ2)Pr(µ, σ2)

= arg max
µ,σ2

I∏
i=1

Normxi
[µ, σ2]NormInvGamµ,σ2 [α, β, γ, δ], (3.14)

where we have chosen normal inverse gamma prior with parameters α, β, γ, δ (figure
3.4) as this is conjugate to the normal distribution. The expression for the prior is

Pr(µ, σ2) =

√
γ

σ
√

2π

βα

Γ(α)

(
1

σ2

)α+1

exp

[
−2β + γ(δ − µ)2

2σ2

]
. (3.15)
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Figure 3.4 a) A normal inverse gamma with α, β, γ = 1 and δ = 0 gives a
broad prior distribution over univariate normal parameters. The magenta
cross indicates the peak of distribution. The blue crosses are 5 samples ran-
domly drawn from the distribution. b) The samples and peak are visualized
as the normal distributions they represent.
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Figure 3.5 a) The likelihood surface is multiplied by b) the prior probability
to give a new surface c) that is proportional to the posterior distribution.
The maximum a posteriori (MAP) solution (blue cross) is found at the peak
of the posterior distribution. It lies between the maximum likelihood (ML)
solution (green cross) and the maximum of the prior (purple cross).

The posterior distribution is proportional to the product of the data likelihood
and the prior (figure 3.5), and has the highest density in regions that both agree
with the data and were a priori plausible.

As for the ML case, it is easier to maximize the logarithm of equation 3.14 so that

µ̂, σ̂2 = arg max
µ,σ2

I∑
i=1

log[Normxi

[
µ, σ2]

]
+log

[
NormInvGamµ,σ2 [α, β, γ, δ]

]
.

(3.16)
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To find the MAP parameters, we substitute in the expressions, differentiate
with respect to µ and σ, equate to zero and rearrange to give

µ̂ =

∑
i=1 xi + γδ

I + γ
and σ̂2 =

∑I
i=1(xi − µ)2 + 2β + γ(δ − µ)2

I + 3 + 2α
. (3.17)

The formula for the mean can be more easily understood if we write it as

µ̂ =
Ix+ γδ

I + γ
. (3.18)

This is a weighted sum of two terms. The first term is the data mean x and is
weighted by the number of training examples I. The second term is δ, the value of
µ favored by the prior, and is weighted by γ.

This gives some insight into the behaviour of the MAP estimate (figure 3.6).
With a large amount of data, the first term dominates and the MAP estimate µ̂ is
very close to the data mean (and the ML estimate). With intermediate amounts
of data, the µ̂ is a weighted sum of the prediction from the data and the prediction
from the prior. With no data at all, the estimate is completely governed by the
prior. The hyperparameter γ controls the concentration of the prior with respect
to µ and determines the extent of its influence. Similar conclusions can be drawn
about the MAP estimate of the variance.

A particularly interesting case occurs where there is a single data point (figure
3.6e-f). The data tells us nothing about the variance and the maximum likelihood
estimate σ̂2 is zero. This is unrealistic, not least because it accords the datum an
infinite likelihood. However, MAP estimation is still valid: σ̂2 is determined purely
by the prior.

The Bayesian approach

In the Bayesian approach we calculate a posterior distribution Pr(µ, σ2|x1...I) over
possible parameter values using Bayes’ rule,

Pr(µ, σ2|x1...I) =

∏I
i=1 Pr(xi|µ, σ2)Pr(µ, σ2)

Pr(x1...I)

=

∏I
i=1 Normxi

[µ, σ2]NormInvGamµ,σ2 [α, β, γ, δ]

Pr(x1...I)

=
κ(α, β, γ, δ, x1...I).NormInvGamµ,σ2 [α̃, β̃, γ̃, δ̃]

Pr(x1...I)
, (3.19)

where we have used the conjugate relationship between likelihood and prior. The
product of the normal likelihood and normal inverse gamma prior creates a poste-
rior over µ, σ2, which is a new normal inverse gamma distribution, with parameters
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Figure 3.6 Maximum a posteriori estimation. a) MAP solution (blue cross)
lies between ML (green cross) and densest region of prior. b) Normal distri-
butions corresponding to MAP solution, ML solution and peak of prior. c-d)
With fewer datapoints, the prior has a greater effect on the final solution.
e-f) With only one datapoint, the maximum likelihood solution cannot be
computed (you cannot calculate the variance of a single point). However,
the MAP solution can still be calculated.

α̃ = α+ I/2, γ̃ = γ + I δ̃ =
(γδ +

∑
i xi)

γ + I

β̃ =

∑
i x

2
i

2
+ β +

γδ2

2
−

(γδ +
∑
i xi)

2

2(γ + I)
. (3.20)

Note that the posterior (equation 3.19) must be a valid probability distribution
and sum to one, so the constant κ and the denominator must exactly cancel to give

Pr(µ, σ2|x1...I) = NormInvGamµ,σ2 [α̃, β̃, γ̃, δ̃]. (3.21)

Now we see the major advantage of using a conjugate prior: we are guaranteed
a convenient closed form for the posterior distribution over parameters. This pos-
terior distribution represents the relative plausibility of various parameter settings
µ, σ2 having created the data. At the peak of the distribution is the MAP estimate,
but there are many other plausible configurations (figure 3.6).

When data is plentiful, the parameters are well specified and the probability
distribution concentrated. In this case, placing all of the probability mass at the
MAP estimate is a good approximation to the posterior. However, when data is
scarce, many possible parameters might have explained the data and the posterior
is broad. In this case approximation with a point mass is inadequate.
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Figure 3.7 a-c) Predictive densities for MAP and Bayesian approaches with
50, 5 and 1 training example. As the training data decreases, the Bayesian
prediction becomes less certain but the MAP prediction is erroneously over-
confident. d-f) This effect is even more clear on a log scale.

Predictive density

For the maximum likelihood and MAP estimates we evaluate the predictive den-
sity (probability that a new data point x∗ belongs to the same model) by simply
evaluating the pdf of the estimated Gaussian. For the Bayesian case, we compute
a weighted average of the predictions for each possible parameter set, where the
weighting is given by the posterior distribution over parameters (figure 3.6a-c),

Pr(x∗|x1...I) =

∫∫
Pr(x∗|µ, σ2)Pr(µ, σ2|x1...I)dµdσ (3.22)

=

∫ ∫
Normx∗ [µ, σ2]NormInvGamµ,σ2 [α̃, β̃, γ̃, δ̃]dµdσ

=

∫ ∫
κ(α, β, δ, γ, x1...I|).NormInvGamµ,σ2 [ᾰ, β̆, γ̆, δ̆]dµdσ.

Here we have used the conjugate relation for a second time. The integral contains
a constant with respect to µ, σ multiplied by a probability distribution. Taking the
constant outside the integral we get

Pr(x∗|x1...I) = κ(α, β, δ, γ, x1...I|)

∫ ∫
NormInvGamµ,σ2 [ᾰ, β̆, γ̆, δ̆]dµdσ

= κ(α, β, δ, γ, x1...I|) (3.23)

which follows because the integral of a pdf is one. It can be shown that the constant
is given by
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Figure 3.8 a) Categorical probabil-
ity distribution over 6 discrete val-
ues with parameters λ1...6 where∑6

k=1 λk = 1. This could be the
relative probability of a biased die
landing on its six sides. b) Fifteen
observations x1...I randomly sampled
from this distribution. We denote
the number of times category k is ob-
served by Nk.
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κ(α, β, δ, γ, x1...I|) =
1√
2π

√
γ̃β̃α̃
√
γ̆β̆ᾰ

Γ[ᾰ]

Γ[α̃]
, (3.24)

where

ᾰ = α̃+ 1/2, γ̆ = γ̃ + 1

β̆ =
x∗2

2
+ β̃ +

γ̃δ̃2

2
− (γ̃δ̃ + x∗)2

2(γ̃ + 1)
. (3.25)

Figure 3.7 shows the predictive distribution for the Bayesian and MAP cases,
for varying amounts of training data. With plenty of training data, there is little
difference but as the data decreases, the Bayesian likelihood has a significantly
longer tail. This is typical of Bayesian solutions: they are more moderate (less
certain) in their predictions. In the MAP case, erroneously committing to a single
estimate of µ, σ2 causes overconfidence in our future predictions.

3.5 Worked example 2: categorical distribution

As a second example, we consider discrete data x1...I where xi ∈ {1, 2, . . . , 6}
(figure 3.8). This could represent observed rolls of a die with unknown bias. We
will describe the data using a categorical distribution (normalized histogram) where

Pr(x = k|λ1 . . . λK) = λk. (3.26)

For the ML and MAP techniques we estimate the 6 parameters λ1...6. For Bayesian
approach, we compute a probability distribution over the parameters.

Maximum Likelihood

To find the maximum likelihood solution we maximize the product of the individual
data likelihoods with respect to the parameters λ1 . . . λk.
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λ̂1 . . . λ̂6 = arg max
λ1...λ6,ν

I∏
i=1

Pr(xi|λ1 . . . λ6)

= arg max
λ1...λ6,ν

I∏
i=1

Catxi [λ1 . . . λ6]

= arg max
λ1...λ6,ν

6∏
k=1

λNk

k (3.27)

where Nk is the total times we observed bin K in the training data. As before, it
is easier to maximize the log probability so that

λ̂1 . . . λ̂6 = arg maxλ1...λ6

∑6
k=1Nk log[λk] + ν(

∑6
k=1 λk − 1). (3.28)

Note that the parameters must be constrained so that
∑6
k=1 λk = 1 and we use the

Lagrange multiplier ν to enforce this constraint. Taking the derivative with respect
to λk and ν, equating the resulting equations to zero and re-arranging yields

λ̂k =
Nk∑6
k=1Nk

. (3.29)

In other words, λk is the proportion of times that we observed bin k.

Maximum a posteriori

To find the maximum a posteriori solution we need to define a prior. We choose
the Dirichlet distribution as it is conjugate to the categorical likelihood. We choose
hyperparameters α1...6 = 1 which gives a uniform prior. This prior over the six
categorical parameters is hard to visualize but samples can be drawn and examined
(figure 3.9a-e). The MAP solution is given by

λ̂1 . . . λ̂6 = arg max
λ1...λ6,ν

I∏
i=1

Pr(xi|λ1 . . . λ6)Pr(λ1 . . . λ6)

= arg max
λ1...λ6,ν

I∏
i=1

Catxi [λ1 . . . λ6]Dirλ1...λ6 [α1 . . . α6]

= arg max
λ1...λ6,ν

6∏
k=1

λNk

k

6∏
k=1

λαk−1

= arg max
λ1...λ6,ν

6∏
k=1

λNk+αk−1
k (3.30)

By a similar process to that for the maximum likelihood case, the MAP estimate
of the parameters can be shown to be
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Figure 3.9 a-e) Five samples drawn from Dirichlet prior with hyperparam-
eters α1...6 = 1. This defines a uniform prior, so each sample looks like a
random unstructured probability distribution. f-j) Five samples from Dirich-
let posterior. The distribution favours histograms where bin three is larger
and bin four is small as suggested by the data.

λ̂k =
Nk + αk − 1∑6

k=1(Nk + αk − 1)
(3.31)

where Nk is the number of times that observation k occurred in the training data.

Bayesian Approach

In the Bayesian approach we calculate a posterior over the parameters

Pr(λ1 . . . λ6|x1...I) =

∏I
i=1 Pr(xi|λ1 . . . λ6)Pr(λ1 . . . λ6)

Pr(x1...I)

=

∏I
i=1 Catxi

[λ1 . . . λ6]Dirλ1...6
[α1 . . . α6]

Pr(x1...I)

=
κ(α1...6, x1...I)Dirλ1...6 [α̃1...6]

Pr(x1...I)

= Dirλ1...6
[α̃1...6], (3.32)

where α̃k = Nk+αk. We have again exploited the conjugate relationship to yield a
posterior distribution with the same form as the prior. The constant κ must again
cancel with the denominator to yield a valid probability distribution. Samples from
this distribution are shown in figure 3.9f-j).
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0.4 Figure 3.10 Predictive distributions

with α1...6 = 1 for a) Maximum like-
lihood / maximum a posteriori ap-
proaches and b) Bayesian approach.
The ML/MAP approach predict the
same distribution that exactly follows
the data frequencies. The Bayesian
approach predicts a more moderate
distribution and allots some proba-
bility to the case x = 4 despite hav-
ing seen no training examples in this
category.

Predictive Density

For the ML and MAP estimates we evaluate the predictive density (probability
that a new data point x∗ belongs to the same model) by simply evaluating the
categorical pdf with the estimated parameters. With the uniform prior (α1...6 = 1)
the MAP and ML predictions are identical (figure 3.10a) and both are exactly
proportional to the frequencies of the observed data .

For the Bayesian case, we compute a weighted average of the predictions for each
possible parameter set, where the weighting is given by the posterior distribution
over parameters so that

Pr(x∗|x1...I) =

∫
Pr(x∗|λ1...6)Pr(λ1...6|x1...I)dλ1...6

=

∫
Catx∗ [λ1 . . . λ6]Dirλ̃1...λ̃6

[α1...6]dλ1...6

=

∫
κ(α1...6, x1...I).Cat[λ̆1...k]dλ1...K

= κ(α1...6, x1...I). (3.33)

Here, we have again exploited the conjugate relationship to yield a constant mul-
tiplied by a probability distribution and the integral is simply the constant as the
integral of the pdf is one. For this case, it can be shown that

Pr(x∗ = k|y = 1) = κ(α1...6, x1...I) =
Nk + αk∑20
j=1(Nj + αj)

. (3.34)

This is illustrated in figure 3.10b. It is notable that once more the Bayesian
predictive density is less confident than the ML/MAP solutions. In particular, it
does not allot zero probability to observing x∗ = 4 despite the fact that this value
was never observed in the training data. This is sensible: just because we have not
drawn a four in fifteen observations does not imply that it is inconceivable that we
will ever see one: we may have just been unlucky. The Bayesian approach takes
this into account and allots this category a small amount of probability.
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Summary

We presented three ways to fit a probability distribution to data and to predict the
probability of new points. Of the three methods discussed, the Bayesian approach
is the most desirable. Here it is not necessary to exactly estimate the parameters
and so no errors are introduced because the point estimate is wrong.

However, the Bayesian approach is only tractable when we have a conjugate
prior, which makes it easy to calculate the posterior distribution over the parame-
ters Pr(θ|x1...I) and also to evaluate the integral in the predictive density. When
this is not the case, we will usually have to rely on maximum a posteriori estimates.
Maximum likelihood estimates can be thought of as a special case of maximum a
posteriori estimates in which the prior is uninformative.



Chapter 4

Properties of the multivariate
normal

The most common representation for uncertainty in machine vision is the multivari-
ate normal distribution. We devote this chapter to exploring its main properties,
which will be used extensively throughout the rest of the book.

Recall from chapter 2 that the multivariate normal distribution has two param-
eters: the mean µ and covariance Σ. The mean µ is a K × 1 vector that describes
the mean of the distribution. The covariance Σ is a symmetric K × K positive
definite matrix so that zTΣz is positive for any real vector z. The probability
density function has the following form

Pr(x) =
1

(2π)K/2|Σ|1/2
exp

[
−0.5(x− µ)TΣ−1(x− µ)

]
, (4.1)

or for short

Pr(x) = Normx [µ,Σ] . (4.2)

4.1 Types of covariance matrix

Covariance matrices in multivariate normals take three forms, termed spherical,
diagonal and full covariances. For the two dimensional (bivariate) case, these are

Σspher =

[
σ2 0
0 σ2

]
Σdiag =

[
σ2

1 0
0 σ2

2

]
Σfull =

[
σ2

11 σ2
12

σ2
12 σ2

22

]
. (4.3)

The spherical covariance matrix is a positive multiple of the identity matrix
and so has the same value on all of the diagonal elements and zeros elsewhere. In
the diagonal covariance matrix, each value on the diagonal has a different positive
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Figure 4.1 Covariance matrices take three forms. a) Spherical covariance
matrices are multiples of the identity. The variables are independent and
the iso-probability surfaces are hyperspheres (circles in 2d). b) Diagonal
covariance matrices permit different non-zero entries on the diagonal, but
have zero entries elsewhere. The variables are independent, but scaled dif-
ferently and the iso-probability surfaces are hyper-ellipsoids (ellipses in 2d)
whose principal axes are aligned to the coordinate axes. c) Full covariance
matrices are symmetric and positive definite. Variables are dependent and
iso-probability surfaces are ellipsoids that are not aligned in any special way.

value. The full covariance matrix can have non-zero elements everywhere although
the matrix is still constrained to be symmetric and positive definite.

For the bivariate case (figure 4.1), spherical covariances produce circular iso-
density contours. Diagonal covariances produce ellipsoidal iso-contours are aligned
with the coordinate axes. Full covariances also produce ellipsoidal isodensity con-
tours, but these may now take an arbitrary orientation. It is easy to show that the
individual variables are independent when the covariance is spherical or diagonal.
For example, for the bivariate diagonal case with zero mean we have

Pr(x1, x2) =
1

2π
√
|Σ|

exp

[
−0.5

(
x1 x2

)
Σ−1

(
x1

x2

)]
=

1

2πσ1σ2
exp

[
−0.5

(
x1 x2

)(σ−2
1 0
0 σ−2

2

)(
x1

x2

)]
=

1√
2πσ2

1

exp

[
− x2

1

2σ2
1

]
1√

2πσ2
2

exp

[
− x2

2

2σ2
2

]
= Pr(x1)Pr(x2) (4.4)
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Figure 4.2 Decomposition of full co-
variance. For every bivariate normal
distribution in variables x1 and x2
with full covariance matrix, there ex-
ists a coordinate system with variables
x′1 and x′2 where the covariance is
diagonal: the ellipsoidal iso-contours
align with the coordinate axes x′1 and
x′2 in this canonical coordinate frame.
The two frames of reference are re-
lated by the rotation matrix R which
maps (x′1, x

′
2) to (x1, x2). From this it

follows (see text) that any covariance
matrix Σ can be broken down into the
product RΣ′diagR

T of a rotation ma-
trix R and a diagonal covariance ma-
trix Σ′diag.

4.2 Decomposition of covariance

We can use the geometrical intuitions above to decompose the full covariance matrix
Σfull. Given a normal distribution with mean zero and a full covariance matrix
we know that the iso-contours take an ellipsoidal form with the major and minor
axes at arbitrary orientations.

Now consider viewing the data from a new set of coordinate axes that are
aligned with the axes of the normal (figure 4.2): in this new frame of reference, the
covariance matrix Σ′diag will be diagonal. We denote the data vector in the new

coordinate system by x′ = [x′1, x
′
2]T where the frames of reference are related by

x′ = Rx. We can write the probability distribution over x′ as

Pr(x′)=
1

(2π)K/2|Σ′diag|1/2
exp

[
−0.5x′TΣ′−1

diagx
′
]

. (4.5)

We now convert back to the original axes by substituting in x′ = Rx to get

Pr(x) =
1

(2π)K/2|Σ′diag|1/2
exp

[
−0.5(Rx)TΣ′−1

diagRx
]

=
1

(2π)K/2|RΣ′diagR
T |1/2

exp
[
−0.5xTRTΣ′−1

diagRx
]

(4.6)

where we have used |RΣ′RT | = |R|.|Σ′|.|RT | = 1.|Σ′|.1 = |Σ′|. Equation 4.6 is a
multivariate Gaussian with covariance

Σfull = RΣ′diagR
T . (4.7)

We conclude that full covariance matrices are expressible as a product of this
form involving a rotation matrix R, and a diagonal covariance matrix Σ′diag. Hav-
ing understood this, it is possible to take an arbitrary valid covariance matrix Σfull

and retrieve these elements by calculating the eigenvalue decomposition.
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Figure 4.3 Transformation of normal
variables. a) If x has a multivari-
ate normal pdf and we apply a linear
transformation to create new variable
y = Ax + b then b) the distribution
of y is also multivariate normal. The
mean and covariance of y depend on
the original mean and covariance of x
and the parameters A and b -5 5
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The matrix R contains the principal directions of the ellipsoid in its rows. The
values on the diagonal of Σ′diag encode the variance along each of these axes. Hence
we can use the results of the eigen-decomposition to answer questions about which
directions in space are most and least certain.

4.3 Transformation of variables

The form of the multivariate normal is preserved under linear transformations
y = Ax + b (figure 4.3). If the original distribution was

Pr(x) = Normx [µ,Σ] , (4.8)

then the transformed variable y is distributed as:

Pr(y) = Normy

[
Aµ + b,ATΣA

]
. (4.9)

4.4 Marginal distributions

If we marginalize over any subset of random variables in a multivariate normal
distribution, the remaining distribution is also normally distributed (figure 4.4). If
we partition the original random variable x into two parts x1 and x2 so that

Pr(x) = Pr

([
x1

x2

])
= Normx

[[
µ1

µ2

]
,

[
Σ11 ΣT

12

Σ12 Σ22

]]
, (4.10)

then

Pr(x1) = Normx1
[µ1,Σ11]

Pr(x2) = Normx2
[µ2,Σ22] . (4.11)

So, to find the mean and covariance of the marginal distribution of a subset of
variables, we extract the relevant entries from the original mean and covariance.
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Figure 4.4 The marginal distribution
of one subset of variables in a normal
distribution is normally distributed.
In other words, if we sum over the
distribution in any direction, the re-
maining quantity is also normally dis-
tributed. To find the mean and the
covariance of the new distribution, we
can simply extract the relevant entries
from the original mean and covariance
matrix.
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Figure 4.5 Conditional distributions of multivariate normal. a) If we take
any multivariate normal distribution, fix a subset of the variables, and look
at the distribution of the remaining variables, this distribution will also take
the form of a normal. b) If the original multivariate normal has spherical
or diagonal variance, the resulting normal distributions are all the same,
regardless of the value we conditioned on: these forms of covariance matrix
imply independence between the constituent variables.

4.5 Conditional distributions

If the variable x is distributed as a multivariate normal then the conditional dis-
tribution of one subset of variables x1 with given known values for the remaining
variables x2 is also distributed as a multivariate normal (figure 4.5). If

Pr(x) = Pr

([
x1

x2

])
= Normx

[[
µ1

µ2

]
,

[
Σ11 ΣT

21

Σ21 Σ22

]]
(4.12)

then the conditional distributions are

Pr(x1|x2) = Normx1

[
µ1 + ΣT

21Σ
−1
22 (x2 − µ2),Σ11 −ΣT

12Σ
−1
22 Σ12

]
Pr(x2|x1) = Normx2

[
µ2 + Σ21Σ

−1
11 (x1 − µ1),Σ22 −Σ12Σ

−1
11 ΣT

12

]
.(4.13)
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Figure 4.6 The product of any two
normals is proportional to a third nor-
mal distribution, with a mean between
the two original means and a variance
that is smaller than either of the orig-
inal distributions.

4.6 Product of two normals

The product of two normal distributions is proportional to a third normal dis-
tribution (figure 4.6). If the two original distributions have means a and b and
covariances A and B respectively then we find that

Normx[a,A].Normx[b,B] = (4.14)

κ.Normx

[(
A−1+B−1

)−1
(A−1a+B−1b),

(
A−1+B−1

)−1
]
,

where the constant κ can itself be expressed as a normal distribution,

κ = Norma[b,A + B]. (4.15)

4.6.1 Self-conjugacy

The above property can be used to demonstrate that the normal distribution is
self-conjugate with respect to its mean µ. Consider taking a product of a normal
distribution over data x and a second normal distribution over the mean vector µ
of the first distribution. It is easy to show from equation 4.14 that

Normx[µ,Σ].Normµ[µp,Σp] = Normµ[x,Σ].Normµ[µp,Σp]

= κ.Normµ[µ̃, Σ̃] (4.16)

which is the definition of conjugacy (see section 2.9). The new parameters µ̃ and
Σ̃ are determined from equation 4.14. This analysis assumes that the variance Σ
is being treated as a fixed quantity. If we also treat this as uncertain, then we must
use a normal inverse Wishart prior.

4.7 Change of variable

Consider a normal distribution in variable x whose mean is a linear function Ay+b
of a second variable y then we can re-express this in terms of a normal distribution
in y which is a linear function A′x + b′ of x so that
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Figure 4.7 a) Consider a normal distribution in x whose variance σ2 is con-
stant, but whose mean is a linear function ay + b of a second variable y. b)
This is mathematically equivalent to a constant κ times a normal distribu-
tion in y whose variance σ′2 is constant and whose mean is a linear function
a′x+ b′ of x.

Normx[Ay + b,Σ] = κ.Normy[A′x + b′,Σ′], (4.17)

where κ is a constant and the new parameters are given by

Σ′ = (ATΣ−1A)−1 (4.18)

A′ = Σ′ATΣ−1 (4.19)

b′ = −Σ′ATΣ−1b. (4.20)

This relationship is mathematically opaque, but is easy to understand visually
when x and y are scalars (figure 4.7). It is often used in the context of Bayes’ rule
where our goal is to move from Pr(x|y) to Pr(y|x). It can easily be proved by
writing out the terms in the original exponential, extracting quadratic and linear
terms in y and completing the square.

Summary

In this chapter we have presented a number of properties of the multivariate normal
distribution. These are not the only interesting properties: for example, the Fourier
transform of a normal distribution in space is normal in the Fourier domain. The
central limit theorem states that the sum of a large number of draws from any
distribution will be normally distributed.

Of the properties discussed in this chapter, two of the most important relate to
the marginal and conditional distributions: when we marginalize or take the con-
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ditional distribution of a normal with respect to a subset of variables, the resulting
distribution is also normal. These properties are exploited in many machine vision
applications.



Part II

Machine learning for machine
vision





Part II: Machine learning for
machine vision

In the following section of this book (chapters 5-8), we treat vision as a machine
learning problem and disregard everything we know about the creation of the image.
For example, we will not exploit our understanding of perspective projection or light
transport. Instead we treat vision as pattern recognition: we interpret new image
data based on prior experience of images in which the contents were known. We
divide this process into two parts: in learning we model the relationship between
the image data and the scene content. In inference, we exploit this relationship to
predict the contents of new images.

To abandon useful knowledge about image creation may seem perverse, but
the logic is twofold. First, these same learning and inference techniques will also
underpin our algorithms when image formation is taken into account. Second, it is
possible to achieve a great deal with a pure learning approach to vision. For many
tasks, knowledge of the image formation process is genuinely unnecessary.

The structure of part II is as follows: in chapter 5 we present a taxonomy
of models that relate the measured image data and the actual scene content. In
particular, we distinguish between generative models and discriminative models.
For generative models we build a probability model of that data and parameterize
it by the scene content. For discriminative models, we build a probability model
of the scene content and parameterize it by the data.

We then introduce a simple visual task: we attempt to assign a discrete label to
each pixel based on its color using both generative methods (chapter ??) and dis-
criminative methods (chapter ??). This label might connote object type (sky, tree,
car), material (skin, wood, hair) or the presence of a new object against a known
background (foreground, background). The extent to which we can correctly assign
such a label based on only the pixel color is obviously quite limited. Nonetheless,
this simple task allows demonstrations of the main ideas from Chapter 5.

In chapters 6 and 8 we progress to the more interesting problem of classifying
a larger image region. For example, we tackle the problem of face detection. For
each square sub-region of an image we decide whether a face is present or absent
(assign a label indicating face or non-face).
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Chapter 5

A framework for vision tasks

At an abstract level, the goal of computer vision problems is to use the observed
image data to infer something about the world. For example, we might observe
adjacent frames of a video sequence and wish to infer the camera motion, or we
might observe a facial image and wish to infer the identity.

The aim of this chapter is to describe a mathematical framework for solving
this type of problem and to organize the resulting models into useful subgroups
which will be explored in subsequent chapters.

5.1 The abstract computer vision problem

In vision problems, we take visual data x and use them to infer the state of the world
y. The world state y may be continuous (the 3d pose of a body model) or discrete
(the presence or absence of a particular object). When the state is continuous, we
call this regression. When the state is discrete, we call this classification.

Unfortunately, the measurements x may be compatible with more than one
world state y. The measurement process is noisy and there is inherent ambiguity
in visual data: a lump of coal viewed under bright light may produce the same
luminance measurements as white paper in dim light. Similarly, a small object
seen close-up may produce the same image as a larger object that is further away.

In the face of such ambiguity, the best that we can do is to return the posterior
probability distribution Pr(y|x) over possible states y. This describes everything we
know about the state after observing the visual data. So, a more precise description
of an abstract vision problem is that we wish take observations x and return the
whole posterior probability distribution Pr(y|x) over world states.

In practice computing the posterior is not always tractable: we often have to
settle for returning the world state ŷ at the peak of the posterior (the maximum a
posteriori solution). Alternatively, we might draw samples from the posterior: the
collection of samples acts as an approximation to the full distribution.
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5.1.1 Components of the solution

To solve a vision problem of this kind we need three components.

• We need a model that mathematically relates the visual data x and the world
state y. The model specifies a family of possible relationships between x and
y and the particular relationship is determined by the model parameters θ.

• We need a learning algorithm that allows us to fit the parameters θ using
paired training examples {xi,yi} where we know both the measurements
and the underlying state.

• We need an inference algorithm that takes a new observation x and uses the
model to return the posterior Pr(y|x,θ) over the world state y. Alternately,
it might return the MAP solution or draw samples from the posterior.

The rest of this book is structured around these components: each chapter focusses
on one model and discusses the associated learning and inference algorithms.

5.2 Types of model

The first and most important component of the solution is the model. Every model
relating the data x to the world y falls into one of three categories. We either:

1. model the contingency of the world on the data Pr(y|x) or
2. model the joint occurrence of the world and the data Pr(x,y) or
3. model the contingency of the data on the world Pr(x|y).

The first type of model is termed discriminative. The second two are both termed
generative: they both maintain probability models over the data which can used to
generate (confabulate) new observations. Let’s consider these three types of model
in turn and discuss learning and inference in each.

5.2.1 Model contingency of world on data (discriminative)

For this case, we first choose an appropriate form for the distribution Pr(y) over
the world state y and then make the distribution parameters a function of the data
x. So if the world state was continuous, we might model Pr(y) with a normal
distribution and make the mean µ a function of the data x.

The shape of this function is determined by a second set of parameters, θ. Since
the distribution over the state now depends on both the data and these parameters,
we write it as Pr(y|x,θ) and refer to it as the posterior distribution.

The goal of the learning algorithm is to fit the parameters θ using paired training
data {xi,yi}. This can be done using maximum likelihood (ML), maximum a
posteriori (MAP) or Bayesian approaches (see chapter 3).

The goal of inference is to find a distribution over the possible world states y for
a particular observation x. In this case, this is easy: we have directly constructed
an expression for the posterior distribution Pr(y|x,θ).
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5.2.2 Model joint occurrence of world and data (generative)

Here we describe the joint probability distribution Pr(x,y) of the world y and the
data x. For example, if both the world and the state were continuous, we might
describe the variable z = [xT yT ]T with a multivariate normal distribution.

Whatever distribution we choose, it will have some parameters θ. The goal of
learning is to use paired training examples {xi,yi} to fit these parameters.

The goal of inference is to compute the posterior distribution Pr(y|x) and to
this end, we use use Bayes’ rule

Pr(y|x) =
Pr(x,y)

Pr(x)
=

Pr(x,y)∫
Pr(x,y)dy

. (5.1)

Algorithms for inference will use this relation to either compute the full posterior,
find the MAP world state or draw samples.

5.2.3 Model contingency of data on world (generative)

Here we choose an appropriate form for the distribution Pr(x) over the data x and
make the distribution parameters a function of the world state y. For example,
if the data was discrete and multi-valued then we might choose the categorical
distribution and make the parameter vector λ a function of the world state y.

The shape of this function is determined by a second set of parameters, θ. Since
the distribution Pr(x) now depends on both the world state and these parameters,
we write it as Pr(x|y,θ) and refer to it as the likelihood. The goal of learning is
to fit the parameters θ using paired training examples {xi,yi}.

In inference, we aim to compute the posterior distribution Pr(y|x). To this end
we specify a prior Pr(y) over the world state (which may itself have parameters
θp which need to be learned) and then use Bayes’ rule,

Pr(y|x) =
Pr(x|y)Pr(y)∫
Pr(x|y)Pr(y)dy

. (5.2)

Algorithms for inference will use this relation to compute the posterior, find the
MAP world state or draw samples from the posterior.

Summary

We’ve seen that there are three distinct approaches to modelling the relationship
between the world state y and the data x, corresponding to modelling the posterior
Pr(y|x), the joint probability Pr(x,y) or the likelihood Pr(x|y).

The three model types result in different approaches to inference. For the
discriminative model we model the posterior Pr(y|x) directly and there is no need
for further work. For the generative models, we compute the posterior using Bayes’
rule. This sometimes results in complex inference algorithms.



60 5 A framework for vision tasks

0

10

0 10

a)

0 10

b)

Figure 5.1 Regression by modeling posterior Pr(y|x) (discriminative). a)
We represent the world state y with a normal distribution. b) We make
the parameters of this distribution a function of the observations x. In this
case, the mean is a linear function µ = ω0 +ω1x of the observations and the
variance σ2 is fixed. The associated learning algorithm fits the parameters
θ = {ω0, ω1, σ

2} to example training pairs {xi, yi} (blue dots). In inference
we take a new observation x and compute the posterior distribution Pr(y|x)
over the state.

The discussion so far has been rather abstract. To clarify things we’ll present
two example tasks and develop models to solve them using each of the three ap-
proaches. In the first example, we’ll consider a regression task in which we estimate
a univariate continuous state y from a univariate continuous measurement x. In
the second example, we’ll consider classification: the world state y is now binary
and discrete, but we’ll assume that the measurement remains univariate and con-
tinuous.

5.3 Example 1: Regression

Consider the situation where we make a univariate continuous measurement x from
an image and use this to predict a univariate continuous state y. For example, we
might want to predict the distance to a car in a road scene based on the total
number of pixels in its silhouette.

Model contingency of world on data (discriminative)

We define a probability distribution over the world state y and make its parameters
contingent on the data x. Since the world state is univariate and continuous, we’ll
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Figure 5.2 Regression by modeling joint distribution Pr(x, y) (generative).
a) We model the joint distribution of the measurements x and the world state
y with a multivariate normal. The goal of learning is to fit the parameters
θ = {µ,Σ} to paired training examples {xi, yi} (blue dots). In inference we
convert the joint probability to the posterior using Bayes’ rule Pr(y|x) =
Pr(x, y)/Pr(x). In practice this means normalizing the distribution with
respect to x (i.e. normalizing each column).

make the probability distribution a univariate normal. We’ll fix the variance, σ2

and make the mean µ a linear function ω0 + ω1x of the data. So we have,

Pr(y|x,θ) = Normy

[
ω0 + ω1x, σ

2
]

(5.3)

were θ = {ω0, ω1, σ
2} are the unknown parameters of the model (figure 5.1).

The associated learning algorithm estimates the model parameters θ from paired
training examples {xi,yi}. For example, in the MAP approach we seek

θ̂ = arg max
θ

Pr(θ|y1...I , x1...I) = arg max
θ

I∏
i=1

Pr(yi|xi,θ)Pr(θ), (5.4)

where we have assumed that the I training pairs {xi, yi} are independent, and
defined a suitable prior Pr(θ).

We also need an inference algorithm that takes visual data x and returns the
posterior distribution Pr(y|x,θ). Here this is very simple: we simply evaluate

equation 5.11 using the data x and the learnt parameters θ̂.

Model the joint occurrence of world and data (generative)

We concatenate the measurements and state to form a new variable z = [x, y]T

and model this with the bivariate normal distribution (figure 5.2)
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Pr(x, y|θ) = Pr(z) = Normz [µ,Σ] , (5.5)

The associated learning algorithm, fits the parameters θ = {µ,Σ} of the joint
distribution using either the ML, MAP or Bayesian approaches (see chapter 3).

The inference algorithm takes a new example of visual data x and returns
the posterior distribution Pr(y|x,θ). The posterior is computed from the joint
distribution using Bayes’ rule Pr(y|x) = Pr(x, y)/Pr(x). For the multivariate
normal distribution it is possible to find this in closed form (see section 4.5). It
takes the form of a normal distribution with constant variance but a mean that is
proportional to the observed data x.

Model the contingency of data on world (generative)

Finally, consider choosing a probability distribution over the data x and making
its parameters contingent on the world state y. Since the data is univariate and
continuous, we’ll model the data as a normal distribution with fixed variance, σ2

and a mean µ that is linear function ω0 +ω1y of the world state (figure 5.3) so that

Pr(x|y,θ) = Normx

[
ω0 + ω1y, σ

2
]
. (5.6)

We also need a prior Pr(y) over the world states which might also be normal so

Pr(y) = Normy[µp, σ
2
p]. (5.7)

The learning algorithm fit the parameters θ = {ω0, ω1, σ
2} using paired training

data {xi, yi} and the parameters θp = {µp, σ2
p} using the world states yi. The

inference algorithm takes a new datum x and returns the posterior Pr(y|x,θ) over
the world state y using Bayes rule

Pr(y|x) =
Pr(y|x)Pr(y)

Pr(x)
=
Pr(x, y)Pr(y)

Pr(x)
. (5.8)

In this case the posterior can be computed in closed form and is again normally
distributed with fixed variance a mean that is proportional to the data x.

Discussion

We have presented three models that can be used to estimate the world state y
from an observed data example x, based on modelling the posterior Pr(y|x), the
joint probability Pr(x, y) and the likelihood Pr(x|y) respectively.

The three models were carefully chosen so that they predict exactly the same
posterior P (y|x) over the world state (compare figures 5.1b, 5.2b and 5.3e). This
is only the case with maximum likelihood learning: the MAP approach we would
have placed priors on the parameters, and because each model is parameterized
differently they would probably have have a different effect in each case.



5.4 Example 2: Binary Classification 63

0

10

0 10

0

10

0 10

b)

d)

a)

c)

c)

0

10

0 10

Figure 5.3 Regression by modeling likelihood Pr(x|y) (generative). a) We
choose a normal distribution to represent the data x. b) We make the
parameters of this distribution depend on the world state y. Here the mean
is a linear function µ = ω0 + ω1y of the observations and the variance σ2

is fixed. The associated algorithm fits the parameters θ = {ω0, ω1, σ
2}

to example training pairs {xi, yi} (blue dots). c) We also learn a prior
distribution over the world state y (here modelled as a normal distribution
with parameters θp = {µp, σp}). In inference we take a new datum x and
compute the posterior distribution Pr(y|x) over the state. This can be done
by either by (d) computing the joint distribution Pr(x, y) = Pr(x|y)Pr(y)
(by weighting each row of (b) by the appropriate value from the prior) and
proceeding as for the previous model or (e) using Bayes’ rule Pr(y|x) =
Pr(x|y)Pr(y)/Pr(x) to directly compute the posterior (weighting each row
by the prior and normalizing the columns).

5.4 Example 2: Binary Classification

As a second example, we’ll consider the case where the observed measurement x
is univariate and continuous, but the world state y is discrete and can take one of
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Figure 5.4 Classification by modeling posterior Pr(y|x) (discriminative). a)
We represent the world state y as a Bernoulli distribution. We make the
Bernoulli parameter λ a function of the observations x. b) To this end we
form a linear function ω0 +ω1x of the observations. c) The Bernoulli param-
eter λ is formed by passing the linear function through the logistic sigmoid
σ[•] to constrain the value to lie between 0 and 1, giving the characteristic
sigmoid shape. In learning we fit parameters θ = {ω0, ω1} using example
training pairs {xi, yi}. In inference we take a new datum x and evaluate the
posterior Pr(y|x) over the state.

two values. For example, we might wish to classify a pixel as belonging to a skin
or non-skin region based on observing just the red channel.

Model contingency of world on data (discriminative)

We define a probability distribution over the world state y ∈ {0, 1} and make its
parameters contingent on the data x. Since the world state is discrete and binary,
we’ll use a Bernoulli distribution. This has a single parameter λ which determines
the probability of success (i.e. Pr(y = 1) = λ).

We make λ a function of the data x, but in doing so we must ensure the
constraint 0 ≤ λ ≤ 1 is obeyed. To this end, we form linear function ω0 + ω1x of
the data x (which returns a value in the range [−∞ ∞]) and pass this through a
function σ() that maps [−∞ ∞] to [0 1], so that

Pr(y|x) = Berny [σ[ω0 + ω1x]] = Berny

[
1

1 + exp[−ω0 − ω1x]

]
. (5.9)

The result of this is to produce a sigmoidal dependence of the distribution param-
eter λ on the data x (see figure 5.4). The function σ[] is called the logistic sigmoid.
The whole model is rather confusingly termed logistic regression despite being used
here for classification.

In learning, we aim to fit the parameters θ = {ω0, ω1} from paired training
examples {xi, yi}. In inference, we simply substitute in the observed data value x
into equation 5.9 to retrieve the posterior distribution Pr(y|x) over the state.
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Figure 5.5 Classification by modeling likelihood Pr(x|y) (generative). a)
We choose a normal distribution to represent the data x. b) We then make
the parameters {µ, σ2} of this distribution a function of the world state y.
In practice, this means using one mean and variance when the world state
y = 0 and another when y = 1. The associated learning algorithm fits the
parameters θ = {µ0, µ1, σ

2
0 , σ

2
1} to example training pairs {xi, yi} . We also

model the prior probability of the world state y with a Bernoulli distribution
with parameter λp. In inference we take a new observation x and compute
the posterior distribution Pr(y|x) over the state using Bayes’ rule.

Model joint occurrence of world and data (generative)

Here our goal is to fit a distribution to the compound variable z = [x y] . Although
this is possible in theory, there are no common probability distributions defined over
a concatenation of discrete and continuous variables and this approach is rarely
used in practice.

Model contingency of data on world (generative)

We choose a probability distribution over the data x and make its parameters
contingent on the world state y. Since the data is univariate and continuous, we’ll
choose a univariate normal and allow variance, σ2 and the mean µ to be functions
of the binary world state y (figure 5.5) so that the likelihood is
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Pr(x|y,θ) = Normx

[
µy, σ

2
y

]
. (5.10)

In practice this means that we have one set of parameters µ0, σ
2
0 when the state of

the world is y = 0 and a different set µ1, σ
2
1 when the state of the world is y = 1

so we can write

Pr(x|y = 0) = Normx

[
µ0, σ

2
0

]
Pr(x|y = 1) = Normx

[
µ1, σ

2
1

]
. (5.11)

These are referred to as class conditional density functions as they model the den-
sity of the data for each class separately.

We also need a prior distribution Pr(y) over the world states,

Pr(y) = Berny[λp], (5.12)

where λp is the prior probability of observing state y = 1.
In learning we fit the parameters θ = {µ0, σ

2
0 , µ1, σ

2
1} and using paired training

data {xi, yi}. In practice this consists of fitting the class conditional density func-
tions Pr(x|y = 0) from just the data x where the state y was 0, and P (x|y = 1)
from the data x where the state was 1. We also learn the parameter λp of the prior
from the world states yi.

The associated inference algorithm takes new datum x and returns the posterior
distribution Pr(y|x,θ) over the world state y using Bayes rule,

Pr(y|x) =
Pr(x|y)Pr(y)∑1
y=0 Pr(x|y)Pr(y)

. (5.13)

This is very easy to compute: it consists of evaluating the two class conditional
density functions, weighting each by the appropriate prior and normalizing so that
these two values sum to one.

Discussion

For binary classification, there is an asymmetry between world state which is dis-
crete and the measurements which are continuous. As a consequence of this, the
resulting models look quite different, and the posteriors over the world state y
as a function of the data x have different forms (compare figure 5.4c with figure
5.5d). For the discriminative model this function is by definition sigmoidal, but for
the generative case it has a more complex form that was implicitly defined by the
normal likelihoods. In general, choosing between describing Pr(y|x), Pr(x, y) and
P (x|y) will effect the expressiveness of the final model.

5.5 Which type of model should we use?

We have established that there are three different types of model that relate the
world state and the observed data and provided two concrete examples in which
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we investigated each in turn. So, when should we use each type of model? There
is no definitive answer to this question, but some considerations are:

• Generative methods build probability models Pr(x,y) or P (x|y) over the
data whereas discriminative models just build a probability model Pr(y|x)
over the world state. The data (usually an image) is generally of much higher
dimension than the world state (some aspect of a scene), and modelling it is
costly. Moreover, there may be many features of the probability distribution
over the data, which do not influence the state: we might devote parameters
to describing whether data configuration 1 is more likely than data configu-
ration 2 although that they both imply the same world state.

• Inference is simpler with discriminative models as they directly construct a
the posterior probability distribution as a function of the data. However,
it may still be hard (or even intractable) to find the MAP world state. In
contrast generative models compute the posterior indirectly via Bayes’ rule
and this may result in complex algorithms.

• Modeling the likelihood Pr(x|y) mirrors the actual way that the data was
created: the state of the world did create the observed data through some
physical process (usually light being emitted from a source, interacting with
the object and being captured by a camera). If we wish to build information
about the generation process into our model this approach is desirable. For
example, we can account for simple effects such as perspective projection and
occlusion. Using the other approaches, it is harder to exploit this knowledge:
essentially we have to re-learn these phenomena from the data.

• In some situations, some parts of the training or test data vector x . Here,
generative models are preferred. They model the joint distribution over all of
the data dimensions and can effectively interpolate the missing dimensions.

• In principle, we can model the same relationship using each of the three
approaches but some models are naturally easier to build in one form or the
other. For instance, the functional forms relating the distribution over the
world to the data in figures 5.4c and 5.5d are different. There is no simple
discriminative model that can produce a result like that in figure 5.5d and
no simple generative model that produces a result like that in figure 5.4c.

Summary

In this chapter, we have provided an overview of how abstract vision problems
are will be solved using machine learning techniques. We have illustrated these
ideas with some simple examples. We did not provide the implementation level
details of the learning and inference algorithms, these are in a sense just details
(they are mostly tackled in subsequent chapters anyway). We hope that the reader
would now feel confident to devise a new model to infer the state of the world
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from the measurements whatever form these take (discrete, continuous, univariate,
multivariate etc.).

In the next few chapters we elaborate on these models. In the following chapter,
we investigate building complex probability density models. These are needed for
generative models: they can describe both (i) the joint occurrence Pr(x,y) of the
data and world in regression tasks when both are continuous and (ii) the likelihood
in classification tasks via the class conditional density functions Pr(x|y = k). In
chapter 7 we investigate discriminative approaches to regression. Finally, in chapter
8 we investigate discriminative approaches to classification.


