
Chapter 11

Undirected Models for Images

In this chapter, we once more consider models that associate a label with each pixel
of a large image. We assume that the data at the pixel provides only very ambiguous
information about the associated label. However, certain spatial configurations of
labels are known to be more common than others and we aim to exploit this
knowledge to resolve the ambiguity.

In chapter 10 the prior knowledge about plausible label configurations took the
form of a directed model in which we specified the conditional probability of a label
given its topological parents. In this chapter, we describe the relative preference
for configurations of labels with a pairwise Markov random field or MRF. This is
an undirected model in which the interactions between labels are symmetric and
there is no notion of parent or child.

The properties of the MRF necessitate quite different approaches to learning and
inference than those used for directed models, and these changes have important
implications: maximum a posteriori (MAP) inference becomes tractable in many
circumstance, but learning becomes more problematic.

11.1 Denoising

Before we discuss undirected models, we introduce a representative application. In
image denoising (figure 11.1) we observe a corrupted image and aim to recover the
original. We will consider a noise process where a certain proportion of pixels have
been randomly changed to another value according to a uniform distribution.

More precisely, the observed image x = {x1, x2 . . . xN} is assumed to consist
of discrete variables where the different possible values (labels) represents different
intensities. Our goal is to recover the original uncorrupted image y = {y1, y2 . . . yN}
which also consists of discrete variables representing the intensity. We will initially
restrict our discussion to generative models and compute the posterior probability
over the unknown world state y using Bayes’ rule
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a) b) c) d)

Figure 11.1 Image denoising. a) Original binary image. b) Observed image
created by randomly flipping the polarity of a fixed proportion of pixels.
Our goal is to recover the original image from the corrupted one. c) Original
grayscale image. d) Observed corrupted image is created by setting a certain
proportion of the pixels to values drawn from a uniform distribution. Once
more, we aim to recover the original image.

Pr(y1...N |x1...N ) =

∏N
n=1 Pr(xn|yn)Pr(y1...N )

Pr(x1...N )
, (11.1)

where we have assumed that the data xn at pixel n is conditionally independent
of all the other true pixel values y1...N\n given the associated true pixel value yn.
We first consider denoising binary images in which the noise process flips the pixel
polarity with probability ρ so that

Pr(xn|yn = 0) = Bernxn
[ρ]

Pr(xn|yn = 1) = Bernxn
[1− ρ] (11.2)

We subsequently consider gray level denoising where the observed pixel is replaced
with probability ρ with a draw from a uniform distribution .

The focus of the remaining part of this chapter is on the prior Pr(y1...N ), which
we will choose to be a Markov Random field. This is a special case of a more
general class of distribution called undirected models.

11.2 Undirected Models

Undirected models describe the probability over a set of variables y1...N as a product
of potential functions φ[•] over the variables so that

Pr(y1...N ) =
1

Z

C∏
c=1

φc[y1...N ] (11.3)
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Figure 11.2 Graphical model for
worked MRF example. The variables
form a chain in which only neighbours
are connected. However, the links in
the chain have no particular direction:
this is an undirected model.

where the potential function φc[y1...N ] always returns a positive number. Since the
probability increases when φc[y1...K ] increases, the function modulates the tendency
for the system to take values y1...N . The probability is greatest where all of the
functions φ1...C return high values. The term Z is known as the partition function
and normalizes the product of these positive functions so that the total probability
is one:

Z =
∑
y1

∑
y2

. . .
∑
yN

C∏
c=1

φc[y1...N ] (11.4)

We can alternatively write equation 11.3 as

Pr(y1...N ) =
1

Z
exp

[
−

C∑
c=1

ψc[y1...N ]

]
(11.5)

where φc[y1...N ] = − log[ψc[y1...N ]]. When written in this form, the probability is
referred to as a Gibbs distribution. The terms ψc[y1...N ] are functions that may
return any real number and can be thought of as representing a cost for every
combination of labels y1...N . As the cost increases, the probability decreases.

11.2.1 Connecting neighbours with undirected models

In this chapter, we will consider a subset of undirected models called Markov Ran-
dom Fields (MRFs). The key idea is that the potential functions φ[•] each address
only a small subset of the variables, and these subsets are carefully chosen to induce
simple conditional independence relations. Before providing a formal definition,
let’s consider a simple concrete example.

Consider five variables where we define the probability Pr(y1...5) over the asso-
ciated discrete states as a normalized product of pairwise terms:

Pr(y1...5) =
1

Z
φ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ45(y4, y5), (11.6)

where φmn(ym, yn) are potential functions that take the two states ym and yn and
return a positive number.

This distribution has a very important property: each variable is conditionally
independent of all of the others given the variables with neighbouring indices. For
example, the dependence of the state y3 can be written as

Pr(y3|y1, y2, y4, y5) = Pr(y3|y2, y4). (11.7)
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This relationship is not obvious from the original definition (equation 11.6) but can
be easily proved using the conditional probability relation,

Pr(y3|y1, y2, y4, y5) =
Pr(y1, y2, y3, y4, y5)

Pr(y1, y2, y4, y5)

=
Pr(y1, y2, y3, y4, y5)∑
y3
Pr(y1, y2, y3, y4, y5)

(11.8)

where we the probability Pr(y1, y2, y4, y5) in the denominator of the first line is
found by marginalizing the full joint density Pr(y1, y2, y3, y4, y5) with respect to
y3. Now, substituting in the original expression for the joint density we get

Pr(y1, y2, y3, y4, y5)∑
y3
Pr(y1, y2, y3, y4, y5)

=
1
Zφ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ45(y4, y5)∑
y3

1
Zφ12(y1, y2)φ23(y2, y3)φ34(y3, y4)φ45(y4, y5)

=
φ23(y2, y3)φ34(y3, y4)∑
y3
φ23(y2, y3)φ34(y3, y4)

, (11.9)

where the final expression depends only on the neighbors y2 and y4 as required.
Hence the links in the graphical model (figure 11.2) tell us about conditional proba-
bility relations: a variable is conditionally independent from all the other variables
given its neighbors. By making different choices for the functions φ() we can model
distributions with different conditional independence structure.

Let’s consider the situation where the world state yn at each pixel is binary
and so takes values 0 or 1. The positive function φmn will now return four possible
values depending on which of the four configurations {00, 01, 10, 11} of yn and ym
is present. For simplicity, we’ll assume that the functions φ12, φ23, φ34 and φ45 are
identical and that

φmn(0, 0) = 1.0 φmn(0, 1) = 0.1

φmn(1, 0) = 0.1 φmn(1, 1) = 1.0. (11.10)

Since there are only five binary states, we can calculate the constant Z explicitly
by computing the product of the functions for each of the 32 possible combinations
and taking the sum as in equation 11.4. The resulting probabilities for each of the
32 possible states are shown below:

y1...5 Pr(y1...5) y1...5 Pr(y1...5) y1...5 Pr(y1...5) y1...5 Pr(y1...5)

00000 0.34151 01000 0.00342 10000 0.03415 11000 0.03415
00001 0.03415 01001 0.00034 10001 0.00342 11001 0.00342
00010 0.00342 01010 0.00003 10010 0.00034 11010 0.00034
00011 0.03415 01011 0.00034 10011 0.00342 11011 0.00342
00100 0.00342 01100 0.00342 10100 0.00034 11100 0.03415
00101 0.00034 01101 0.00034 10101 0.00003 11101 0.00342
00110 0.00342 01110 0.00342 10110 0.00034 11110 0.03415
00111 0.03415 01111 0.03415 10111 0.00342 11111 0.34151

The costs defined in equation 11.10 encourage smoothness in the labels: the
functions φmn return higher values when the neighbours take the same state and
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Figure 11.3 Maximal cliques. Cliques
are subsets of sites, where every vari-
able is connected to every other. In
a maximal clique it is not possible to
add any further variables and still be
a clique. The maximal cliques are
shown for a system of five variables
y1...5. For example, variables y1, y2, y3
are all connected to each other, but
there are no other variables which are
connected to all three, and so they
form the maximal clique C123.

lower values when they differ and this is reflected in the resulting probabilities. This
model captures similar properties to the directed models in the previous chapter.

It should be noted that for more realistically sized problems it will not be able
to compute the normalizing constant Z by brute force as above. For example, with
10,000 pixels each taking 20 values, the normalizing constant is the sum of 2010000

terms. In general we have to cope with only knowing the probabilities up to an
unknown scaling factor.

This worked example should have provided some insight into the properties of
MRFs, so now we proceed to a more formal description.

11.2.2 Markov Random Fields

A Markov Random Field is determined by

• a set of sites S = {1 . . . N}. These will correspond to the N pixel locations,

• a set of random variables y = {y1 . . . yN} associated with each of the sites,

• a set of neighbors N1...N at each of the N sites.

To be a Markov random field, the model must obey the Markov property,

Pr(yn|yS\n) = Pr(yn|yNn
) ∀ n ∈ S, (11.11)

that states that yn is conditionally independent of all of the other variables given
the values of the variables in the neighborhood Nn.

It can be shown (via the impressively named Hammersley-Clifford theorem)
that any function that obeys the Markov property (equation 11.11) can be written
as a Gibbs distribution so that

Pr(y) =
1

Z
exp

[
−
∑
c∈C

ψc(y)

]
. (11.12)

The terms ψc are called clique potentials and are effectively costs. As the clique
potential increases, the probability decreases. There is one clique potential for every
maximal clique in the graph. A clique is a subset of the sites, where every pair of
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Figure 11.4 Undirected model for im-
ages. The observed data xn at
pixel n is conditionally dependent on
the associated world state yn (red
directed edges). Each world state
yn has undirected edges to its four-
connected neighbors (blue undirected
edges). Together the world states
are connected in a Markov random
field with cliques that consist of neigh-
bouring pairs of variables. For exam-
ple variable y5 contributes to cliques
C25, C45, C65, C85

variables is connected to every other (figure 11.3). For a clique to be maximal it
must not be possible to add any further variables and remain a clique.

As before term Z is an unknown constant factor which normalizes this to make
it a proper probability distribution and is known as the partition function. We can
only write it as as the sum

Z =
∑
y

exp

[
−
∑
c∈C

ψc(y)

]
. (11.13)

11.2.3 Image denoising with discrete pairwise MRFs

Recall that in the binary image denoising task (section 11.1) the likelihood of
observing pixel xn given the original underlying image yn is given by

Pr(xn|yn = 0) = Bernxn [ρ]

Pr(xn|yn = 1) = Bernxn [1− ρ] (11.14)

We now define the prior probability over the world state to be a Markov random
field, with cliques C. In this chapter we will restrict the form of the MRF do have
pairwise connections only (figure 11.4). In other words, each clique consists of two
neighboring variables, and each 4-connection contributes one clique so that

Pr(y1...N ) =
1

Z
exp

− ∑
(m,n)∈C

ψ(ym, yn,θ)

 . (11.15)

where we have assumed that the clique potentials ψ() are the same for every
(ym, yn). The parametersθ define the costs ψ() for each combination of neigh-
boring pairwise values,

ψ(ym = j, yn = k,θ) = θjk, (11.16)
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so when the first variable ym in the clique takes label j and the second variable
yn takes label k we pay a price of θjk. In general we will choose these values so
that there is a small cost when neighboring labels are the same (so θ00 and θ11

are small) and a larger one when the neighboring labels differ (so θ01 and θ10 are
large). This has the effect of encouraging solutions that are mostly smooth.

The remaining part of the chapter concerns inference and learning in this model.
In section 11.3 we describe how to perform inference (estimate the original noiseless
image) by drawing samples from the posterior. In section 11.4 we describe methods
to find the maximum a posteriori estimate of the original image. Finally, in section
11.5 we describe how to learn the parameters of the MRF prior from training
examples.

11.3 Inference by Drawing Samples

We now turn our attention to the problem of infering the world states y1...N from
the observed data x1...N (i.e. inference). Unfortunately, the MRF is not conjugate
(section 2.9) to the likelihood model and there is no way to express the full posterior
distribution over the states in closed form.

In this section we consider drawing samples from the posterior distribution
over these states. This is not the most practical mode of inference but it is always
possible even in situations where the maximum a posteriori (MAP) solution cannot
be computed. In section 11.4 we will return to MAP estimation of the world states.

According to Bayes’ rule, the posterior probability over the states is propor-
tional to the product of the likelihood terms and the prior

Pr(y1...N |x1...N ) ∝
N∏
n=1

Pr(xn|yn).P r(y1...N ) (11.17)

For the equivalent directed model (section 10.1), each variable yn had a specified
set of parents ypa[n] and a well defined conditional probability relations Pr(yn|ypa[n]).
This allows us to draw samples using the ancestral technique (section 10.1.4). Un-
fortunately, there is no sense that each variable has parents in the Markov random
field and so ancestral sampling is not possible.

An alternative approach to generating samples from complex high-dimensional
probability distributions is to use a Markov chain Monte Carlo (MCMC) method.
The principle is to generate a series (chain) of samples from the distribution, so that
each sample depends directly on the previous one (hence “Markov”). However, the
generation of the sample is not completely deterministic (hence, “Monte Carlo”).

11.3.1 Gibbs Sampling

The MCMC method that we will use is called Gibbs sampling. This is a method that
can be used to draw samples from any high dimensional probability distribution.
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a) b)

Figure 11.5 Gibbs sampling. We generate a chain of samples, by cycling
through each dimension in turn and drawing a sample from the conditional
distribution of that dimension given that the others are fixed. a) For this

2d multivariate normal distribution we start at a random position y[0]. We
alternately draw samples from the conditional distribution of the first dimen-
sion keeping the second fixed (horizontal changes) and the second dimension
keeping the first fixed (vertical changes). For the multivariate normal, these
conditional distributions are themselves normal (section 4.5). Each time we

cycle through all of the dimensions, we create a new sample y[n]. b) Many
samples generated using this method.

We’ll start by discussing sampling from the MRF prior Pr(y1...N ) before showing
how to draw samples from the posterior.

The method is as follows. First, we randomly choose the initial state y[1] using
any method. We generate the next sample in the chain y[2] by updating the state
at each of the dimensions in turn. In the MRF, each dimension corresponds to one
pixel site. To update the nth dimension yn, we fix the other N − 1 dimensions and
draw from the conditional distribution Pr(yn|y1...N\n). After we have modified
every dimension in this way, we have the second sample in the chain. This idea is
illustrated in figure 11.5 for the multivariate normal distribution.

When this procedure is repeated a very large number of times, so that the
initial conditions are forgotten, a sample from this sequence can be considered as
a draw from the Pr(y1...N ). Although this is not immediately obvious (a proof
is beyond the scope of this book) this procedure does clearly have some sensible
properties: since we are sampling from the conditional probability distribution at
each pixel, we are more likely to change the current label to a configuration with
overall higher probability. The system will gradually tend towards more probable
configurations. However, the stochastic update rule provides the possibility of
(infrequently) visiting less probable regions of the space.

For the MRF case, we calculate the conditional distribution for the nth di-
mension (pixel site) keeping the remaining sites constant using the conditional
probability relation,
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a) b) c) d)

Figure 11.6 Gibbs sampling results. a-b) Samples from prior. This MRF
encourages solutions that are mostly smooth c-d) Samples from posterior in
denoising task (compare to figure 11.1b).

Pr(yn = k|y1...N\n) =
Pr(yn = k, y1...N\n)

Pr(y1...N\n)
=

Pr(yn = k, y1...N\n)∑K
k=1 Pr(yn = k, y1...N\n)

.

(11.18)
We then randomly choose the next value of yn according to this categorical distri-
bution. In practice this can be computed very efficiently, because of the Markov
property of the distribution (equation 11.11): in practice almost all of the poten-
tials in the numerator and denominator do not involve variable yn and cancel out.
Examples of samples from this type of prior are illustrated in figure 11.6a-b.

To sample from the posterior distribution, we use a similar formulation

Pr(yn = k|y1...N\n, x1...N ) =
Pr(yn = k, y1...N\n, x1...N )∑K
k=1 Pr(yn=k, y1...N\n, x1...N )

(11.19)

=

∏
i∈1...N\N Pr(xi|yi)Pr(xn|yn = k)Pr(yn = k, y1...N\n)∑K

k=1

∏
i∈1...N\N Pr(xi|yi)Pr(xn|yn = k)Pr(yn = k, y1...N\n)

=
Pr(xn|yn = k)Pr(yn = k, y1...N\n)∑K
k=1 Pr(xn|yn = k)Pr(yn = k, y1...N\n)

,

where we have used Bayes’ rule in both the numerator and denominator in the
second line.

Note that the Gibbs sampling procedure only requires us to know the probability
up to a constant scaling factor: we can hence draw samples from high dimensional
distributions where it is intractable to compute the normalizing constant Z.

Gibbs sampling could be used to search the state space for a solution with
a high posterior probability. Two possible solutions (draws from the posterior
distribution) for the binary denoising task are shown in figure 11.6c-d. Alternately,
we could approximate the marginal posterior distributions by taking many samples
and looking at the frequency of each label at each pixel location. In either case,
this method is rather slow and impractical, although it is applicable for all MRFs.
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In the following section we investigate MAP inference. As we shall see, efficient
algorithms for this task only exist for restricted subsets of MRF problems.

11.4 MAP Inference

In MAP inference, we aim to find the set of world states ŷ1...N that maximizes the
posterior probability Pr(y1...N |x1...N ) so that

ŷ1...N = arg max
y1...N

Pr(y1...N |x1...N )

= arg max
y1...N

N∏
n=1

Pr(xn|yn)Pr(y1...N )

= arg max
y1...N

N∑
n=1

log[Pr(xn|yn)] + log[Pr(y1...N )]. (11.20)

where we have applied Bayes’ rule, assumed that the observations at each site were
independent, and transformed to the log domain. For the case where the prior is a
binary MRF with pairwise connections we compute

ŷ1...N = arg max
y1...N

N∑
n=1

log[Pr(xn|yn)]−
∑

(m,n)∈C

ψ(ym, yn,θ)

= arg min
y1...N

N∑
n=1

Un(yn) +
∑

(m,n)∈C

Pmn(ym, yn) (11.21)

where Un(yn) denotes the unary term at pixel n. This is a cost for observing the
data at pixel n given the state was yn and is due to the negative log likelihood
term. Similarly, Pmn(ym, yn) denotes the pairwise term. This is a cost for placing
labels ym and yn at neighboring locations m and n and is due to the clique costs
ψ(ym, yn,θ) from the MRF prior (which are assumed to be identical at each loca-
tion). Note that we have omitted the term − log[Z] from the MRF definition as it
is constant with respect to the states y1...N and hence does not effect the optimal
solution.

The cost function in equation 11.21 can be optimized using a set of techniques
known collectively as graph cuts. We will consider three cases:

• binary MRFs (i.e. yi ∈ {0, 1}) where the costs for different combinations of
adjacent labels are “submodular”. Exact MAP inference is tractable here.

• multi-label MRFs (i.e. yi ∈ {1, 2 . . . ,K}) where the costs are “submodular”.
Once more, exact MAP inference is possible.

• multi-label MRFs where the costs are more general. Exact MAP inference is
intractable, but good approximate solutions can be found in some cases.
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Figure 11.7 Max flow problem: we are
given a network of vertices connected
by directed edges, each of which has a
non-negative capacity cmn. There are
two special vertices s and t termed the
source and sink respectively. In the
max flow problem we seek to push as
much ‘flow’ from source to sink while
respecting the capacities of the edges.

To solve these MAP inference tasks we will translate them into the form of
maximum flow problems. Maximum flow (or max-flow) problems are well-studied
and exact polynomial time algorithms exist. In the following section we describe
the max-flow problem and its solution. In sections 11.4.2-11.4.4 we describe how
to translate MAP inference for binary and multi-label Markov Random Fields into
max-flow problems.

11.4.1 Max-flow / Min-cut

Consider a graph G = {V, E} with vertices V and directed edges E connecting
them (figure 11.7). Each edge has a non-negative capacity so that the edge between
vertices m and n has capacity cmn. Two of the vertices are treated as special and
are termed the source and the sink.

Consider transferring some quantity (‘flow’) through the network from the
source to the sink. The goal of the max-flow algorithm is to compute the maximum
amount of flow that can be transferred across the network without exceeding any
of the edge capacities.

When the maximum possible flow is being transferred, every path from source
to sink must include a saturated edge (one where the capacity is reached) - if not
then we could push more flow down this path and so by definition this is not the
maximum flow solution.

It follows that an alternate way to think about the problem is to consider
the edges that saturate. We define a ‘cut’ on the graph to be a minimal set of
edges, that when removed prevent flow from the source from the sink. A cut hence
partitions the nodes into two groups: nodes that can be reached by some path from
the source, but cannot reach the sink, and nodes that cannot be reached from the
source, but can reach the sink via some route. For short, we will refer a cut as
‘separating’ the source from the sink. Every cut is given an associated cost which
is the sum of the capacities of the excised edges.

Since the saturated edges in the max flow solution separate the source from
the sink they form a cut. In fact, this particular choice of cut has the minimum
possible cost and is referred to as the min-cut solution. Hence, the maximum flow
and minimum cut problems can be considered interchangeably.
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Figure 11.8 Augmenting paths algorithm for max-flow. Numbers attached
edges correspond to current flow / capacity. a) We choose any route from
source to sink with spare capacity and push as much flow as possible along
this route. The edge with the smallest capacity (here edge 6-t) saturates. b)
We then choose another route where there is still spare capacity and push
as much flow as possible. Now edge 6-5 saturates. c) We repeat this until
there is no route from source to sink that does not contain a saturated edge
(highlighted edges are saturated). The total flow pushed is the maximum
flow. d) In the min-cut problem, we seek a set of edges that separate the
source from the sink and have minimal total capacity. The min-cut (dashed
gray line) consists of the saturated edges in the max-flow problem.

Augmenting paths algorithm for maximum flow

There are many algorithms to compute the maximum flow, and to describe them
properly is beyond the scope of this volume. However, for completeness, we present
a sketch of the augmenting paths algorithm (figure 11.8).

Consider choosing any path from the source to sink and pushing the maximum
possible amount of flow along it. This flow will be limited by the edge on that path
that has the smallest capacity which will duly saturate. We remove this amount of
flow from the capacities of all of the edges along the path and causing the saturated
edge to have a new capacity of zero. We repeat this procedure, finding a second
path from source to sink, pushing as much flow as possible along it and updating
the capacities. We continue this process until there is no path from source to sink
without at least one saturated edge. The total flow that we have transferred is the
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Figure 11.9 Graph structure for find-
ing MAP solution for MRF with bi-
nary labels and pairwise connections
in a 3 × 3 image. There is one vertex
per pixel and neighbors in the pixel
grid are connected by reciprocal pairs
of directed edges. Each pixel vertex
receives a connection from the source
and passes one to the sink. To sepa-
rate source from sink, the cut must in-
clude one of these two edges for each
vertex. The choice of which edge is
cut will determine which of two labels
is assigned to the pixel.

maximum flow, and the saturated edges form the minimum cut. There are some
extra complications: for example, if there is already some flow along edge i−j, it
may be that there is a remaining path from source to sink that includes the edge
j−i. In this situation we reduce the flow in i−j before adding flow to j−i. The
reader should consult a specialized text on graph-based algorithms for more details.

If we choose the path with the greatest remaining capacity at each step, the
algorithm is guaranteed to converge and has complexity O(|E|2|V|) where |E| is the
number of edges and |V| the number of vertices in the graph. From now on we will
assume that the max-flow/min-cut problem can be solved and concentrate on how
to convert MAP estimation problems with MRFs into this form.

11.4.2 MAP inference: binary variables

Recall that to find the MAP solution we must find

ŷ1...N = arg min
y1...N

N∑
n=1

Un(yn) +
∑

(m,n)∈C

Pmn(ym, yn) (11.22)

where Un(yn) denotes the unary term and Pmn(ym, yn) denotes the pairwise term.
For pedagogical reasons, we will first consider cases where the unary terms are

positive and the pairwise terms have the following zero-diagonal form

Pmn(0, 0) = 0 Pmn(1, 0) = θ10

Pmn(0, 1) = θ01 Pmn(1, 1) = 0,

where θ01, θ10 > 0. We discuss using more general values of θ in section 11.4.2.
The key idea will be to set up a directed graph G = {V, E} and attach weights

to the edges, so that the minimum cut on this graph corresponds to the maximum
a posteriori solution. In particular, we construct a graph with one vertex per pixel,
and a pair of directed edges between each adjacent vertices in the pixel grid. In
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Figure 11.10 Graph construction for binary MRF with diagonal pairwise
terms using simple 1d example. a) After the cut, vertices attached to the
source are given label 1 and vertices attached to the sink are given label
0. When we attach unary and pairwise terms to the edges as shown here,
the correct cost is paid for each solution. b) For example, the solution
(a = 0, b = 0, c = 0) requires us to cut edges s−a, s−b, s−c and pay the
cost Ua(0) + Ub(0) + Uc(0). c) For the solution (a = 1, b = 0, c = 0) we
must cut edges a−t, s−b, s−c and a−b (to prevent flow through the route
s−a−b−t). This incurs a total cost of Ua(1) +Ub(0) +Uc(0) +Pab(1, 0). d)
Similarly, in this example with (a = 1, b = 0, c = 1), we pay the appropriate
cost Ua(1)+Ub(0)+Uc(1)+Pab(1, 0)+Pbc(0, 1). This construction is readily
extended to higher-dimensional graphs such as that of figure 11.2.

addition, there is a directed edge from the source to every vertex and a directed
edge from every vertex to the sink (figure 11.9).

Now consider a cut on the graph. In any cut we must either remove the edge
that connects the source to a pixel vertex or the edge that connects the pixel vertex
to the sink or both. If we do not do this, then there will still be a path from source
to sink and it is not a valid cut. For the minimum cut, we will never cut both
- this is unnecessary and will inevitably incur a greater cost than cutting one or
the other. We’ll label pixels where the edge to the source was cut as yn = 0 and
pixels where the edge to the sink was cut as having label yn = 1. So each plausible
minimum cut is associated with a pixel labeling.

Our goal is now to assign capacities to the edges the edges so the cost of each
cut matches the cost of the associated labelling as prescribed in equation 11.22.
For simplicity, we illustrate these with a 1d image with 3 pixels (figure 11.10a), but
we stress that all the ideas are also valid for 2d images.

We attach the unary costs Un(0) and Un(1) to the edges from the pixel to the
source and sink respectively. If we cut the edge between a pixel to the source (and
hence assign yn = 0) we pay the cost Un(0). Conversely, if we cut the edge to the
sink (and hence assign yn = 1) we pay the cost Un(1).

We attach the pairwise costs Pmn(1, 0) and Pmn(0, 1) to the two edges between
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Figure 11.11 Graph structure for gen-
eral (i.e. non-diagonal) pairwise costs.
Consider the solution (a = 0, b =
0). We must break the edges s− a
ands−b giving a total cost of Ua(0) +
Ub(0) + Pab(0, 0). For the solution
(a = 1, b = 0) we must break the
edges a−t, a−b and s−b giving a total
cost of Ua(1)+Ub(0)+Pab(1, 0). Simi-
larly, the cuts corresponding to the so-
lutions (a = 0, b = 1) and (a = 1, b =
1) on this graph have pairwise costs
Pab(0, 1) and Pab(1, 1) respectively.

adjacent pixels. Now if one pixel is attached to the source and the other to the
sink, we pay either Pmn(0, 1) = θ01 or Pmn(1, 0) = θ10 as appropriate to separate
source from sink as in figures 11.10c-d.

Any cut on the graph in which each pixel is either separated from the source
or the sink now has the appropriate cost from equation 11.22. It follows that the
minimum cut on this graph will have the minimum cost and the associated labeling
y1...N will correspond to the maximum a posteriori solution.

General Pairwise Costs

Now let’s consider how to use the more general pairwise costs,

Pmn(0, 0) = θ00 Pmn(1, 0) = θ10

Pmn(0, 1) = θ01 Pmn(1, 1) = θ11. (11.23)

To illustrate this, we use an even simpler graph with only two pixels (figure 11.11).
Notice that we have added the pairwise cost Pab(0, 0) to the edge s−b - we will
have to pay this cost appropriately in configuration where ya = 0 and yb = 0.
Unfortunately, we would also pay it in the case where ya = 1 and yb = 0. Hence,
we subtract the same cost from the edge b−awhich must also be cut in this solution.
By a similar logic we add Pab(1, 1) to the edge a−t and subtract it from edge b−a.
In this way we associate the correct costs with each labeling.

Reparameterization

The above discussion assumed that the edge costs are all non-negative and can
be valid capacities in the max-flow problem. Unfortunately, this is not generally
necessarily the case. Even if the original unary and pairwise terms were positive,
the edge a−b in figure 11.11 with cost Pab(1, 0) − Pab(1, 1) − Pab(0, 0) could be
negative. The solution to this problem is reparameterization.

The goal of reparameterization is to modify the costs associated with the edges
in the graph in such a way that the MAP solution is not changed. In particular,
we will change the edge capacities so that every possible solution has a constant
cost added to it. This does not change which solution has the minimum cost, and
so the MAP labelling will be unchanged.
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Figure 11.12 Reparameterization. a) Original graph construction. b) Repa-
rameterization 1. Adding a constant cost α to the connections from a pixel
vertex to both the source and sink results in a problem with the same MAP
solution. Since we must cut either, but not both of these edges, every so-
lution increases in cost by α, and the minimum cost solution remains the
same. c) Reparameterization 2. Manipulating the edge capacities in this
way results in a constant β being added to every solution and so the choice
of minimum cost solution is unaffected. The easiest way to convince yourself
of this is to write out the costs for all four solutions.

We consider two reparameterizations (figure 11.12). First, consider adding a
constant cost α to the edge from a given pixel to the source and the edge from
the same pixel to the sink. Since any solution cuts exactly one of these edges, the
overall cost of every solution increases by α. We can use this to ensure that none
of the edges connecting the pixels to the source and sink have negative costs: we
simply add a sufficiently large positive value α to make them non-negative.

A more subtle type of reparameterization is illustrated in figure 11.12c. By
changing the costs in this way, we increase the value of each possible solution by
β. Applying this reparameterization to the general construction in figure 11.11, we
must ensure that the capacities on edges between pixel nodes are positive so that

θ10 − θ11 − θ00 − β ≥ 0 (11.24)

θ01 + β ≥ 0. (11.25)

Adding these equations together, we can eliminate β to get a single inequality

θ01 + θ10 − θ11 − θ00 ≥ 0. (11.26)

If this condition holds, the problem is termed submodular and the graph can be
reparameterized to have only non-negative costs. It can then can be solved in
polynomial time using the max-flow algorithm. If the condition does not hold, then
this approach cannot be used and in general the problem is NP hard. Fortunately,



11.4 MAP Inference 147
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Figure 11.13 Denoising results. a) Observed noisy image. b-h) Maximum
a posteriori solution as we increase zero-diagonal pairwise costs. When the
pairwise costs are low, the unary terms dominate and the MAP solution is
the same as the observed image. As the pairwise costs increase the image
gets more and more smooth until eventually it becomes a uniform field,
ignoring the unary contributions entirely.

the former case is much more common for vision problems: we generally favour
solutions where neighbouring labels are the same and hence the costs θ01, θ10 for
labels differing are naturally greater than the costs θ00, θ11 for the labels agreeing.

Figure 11.13 shows the MAP solutions to the binary denoising problem with
an MRF prior as we increase the strength of the cost for having adjacent labels
that differ. Here we have assumed that the costs θ01, θ10 when neighboring nodes
differ are the same and there is no cost when neighboring labels are the same
(θ00, θ11 = 0) so we are in the ‘zero-diagonal’ regimen. When the MRF costs are
small, the solution is dominated by the unary terms and the MAP solution looks
like the noisy image. As the costs increase the solution ceases to tolerate isolated
regions and most of the noise is removed. When the costs become larger details
such as the centre of the ‘0’ in ‘10’ are lost and eventually nearby regions are
connected together. With very high pairwise costs, the MAP solution is a uniform
field of labels: the overall cost is dominated by the pairwise terms from the MRF
and the unary terms have no effect.

11.4.3 MAP inference: multi-valued variables

We now investigate MAP inference using MRF priors with pairwise connections
when the world state yn at each pixel can take multiple labels {1, 2, . . .K}. To
solve the multilabel problem, we change the graph construction (figure 11.14a).
With K labels and N pixels, we introduce (K + 1)×N vertices into the graph.

For each pixel, the K+1 associated vertices are stacked and the top and bottom
of the stack are connected to the source and sink by edges with infinite capacity.
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Figure 11.14 a) Graph setup for multi-label case for two pixels (a, b) and
four labels (1, 2, 3, 4). There is a chain of 5 vertices associated with each
pixel. The four vertical edges between these vertices are assigned the unary
costs for the four labels. The minimum cut must break this chain to separate
source from sink, and the label is assigned according to where the chain is
broken. Vertical constraint edges of infinite capacity run between the four
vertices in the opposite direction. There are also diagonal edges between
the i’th vertex of pixel a and the j’th vertex of pixel b with assigned costs
Cab(i, j) (see text). b) The vertical constraint edges prevent solutions like
this, where the chain of vertices associated with a pixel is cut in more than
one place. For this to happen a constraint link must be cut and hence this
solution has an infinite cost.

Between the K + 1 vertices in the stack are K edges forming a path from source
to sink. These edges are associated with the K unary costs Un(1) . . . Un(K). To
separate the source from the sink, we must cut at least one of the K edges in this
chain. We will interpret a cut at the kth edge in this chain as indicating that the
pixel takes label k and this incurs the appropriate cost of Un(k).

To ensure that only a single edge from the chain is part of the minimum cut (and
hence that each possible cut corresponds to one valid labelling), we add constraint
edges. These are edges of infinite capacity that connect the vertices backwards
along each chain. Any cut that crosses the chain more than once must cut one of
these edges and will never be the minimum cut solution (figure 11.14b).

In figure 11.14a, there are also inter-pixel edges from the vertices associated
with pixel a to the vertices associated with pixel b. These are assigned costs
Cab(i, j) where i indexes the vertex associated with pixel a and j indexes the
vertex associated with pixel b. We choose the edges costs to be
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Figure 11.15 Example cuts for multi-label case. To separate the source and
sink, we must cut all of the links that pass from above the chosen label for
pixel a to below the chosen label for pixel b. a) Pixel a is set to label 1 and
pixel b is set to label 3 meaning we must cut the links from vertex a1 to
nodes b4 and b5. b) Pixel a takes label 4 and pixel b takes label 4. c) Pixel
a takes label 4 and pixel b takes label 2.

Cab(i, j) = Pab(i, j − 1) + Pab(i− 1, j)− Pab(i, j)− Pab(i− 1, j − 1), (11.27)

where we define any superfluous pairwise costs associated with the non-existent
labels 0 or K + 1 to be zero, so that

Pab(i, 0) = 0 Pab(i,K + 1) = 0 ∀ i ∈ {0 . . .K + 1}
Pab(0, j) = 0 Pab(K + 1, j) = 0 ∀ j ∈ {0 . . .K + 1} (11.28)

When label I is assigned to pixel a and label J to pixel b we must cut all of
the links from vertices a1 . . . aI to the vertices bJ+1 . . . bK+1 to separate the source
from the sink (figure 11.15). So, the total cost due to the inter-pixel edges for
assigning label I to pixel a and label J to pixel b is

I∑
i=1

K+1∑
j=J+1

Cab(i, j) =

I∑
i=1

K+1∑
j=J+1

Pab(i, j−1)+Pab(i−1, j)−Pab(i, j)−Pab(i−1, j−1)

= Pab(I, J)+Pab(0,K + 1)−Pab(I,K + 1)−Pab(0,K + 1)

= Pab(I, J), (11.29)
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Figure 11.16 Reparameterization for multi-label graph cuts. The original
construction (a) is equivalent to construction (b). The label at pixel b de-
termines which edges that leave node a1 are cut. Hence, we can remove
these edges and add the extra costs to the vertical links associated with
pixel b. Similarly, the costs of the edges passing into node b5 can be added
to the vertical edges associated with pixel a. If any of the resulting vertical
edges associated with a pixel are non-negative, we can add a constant α to
each: since exactly one is broken, the total cost increases by α but the MAP
solution remains the same.

Figure 11.17 Submodularity con-
straint for multi-label case (colour in-
dicates cost pairwise costs Pab(m,n).
For all edges in the graph to be
positive, we require that the pairwise
terms obey the constraint Pab(β, γ) +
Pab(α, δ) − Pab(β, δ) − Pab(α, γ) ≥ 0
for all α, β, γ, δ. If this condition
holds, the problem can be solved
in polynomial time, otherwise the
problem is NP-complete.
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Adding the unary terms, the total cost is Ua(I) + Ub(J) + Pab(I, J) as required.

Once more, we have implicitly made the assumption that the costs associated
with edges are non-negative. If the vertical (intra-pixel) edges terms have negative
costs, it is possible to re-parameterize the graph by adding a constant α to all of
the unary terms. Since the final cost includes exactly one unary term per pixel,
every possible solution increases by α and the MAP solution is unaffected.

The diagonal inter-pixel edges are more problematic. It is possible to remove
the edges that leave node a1 and the edges that arrive at bK by adding terms to the
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a) b) Figure 11.18 Denoising results with
convex (quadratic) pairwise costs. a)
Noisy observed image. b) Denoised
image has artefacts where there are
large intensity changes in the original
image. Convex costs imply that there
is a lower cost for a number of small
changes rather than a single large one.

intra-pixel edges associated with the unary terms (figure 11.16). These intra-pixel
edges can then be reparameterized as described above if necessary. Unfortunately,
we can neither remove nor re-parameterize the remaining inter-pixel edges so we
require that

Cab(i, j) = Pab(i, j − 1) + Pab(i− 1, j)− Pab(i, j)− Pab(i− 1, j − 1) ≥ 0 (11.30)

By mathematical induction we get the more general result (figure 11.17),

Pab(β, γ) + Pab(α, δ)− Pab(β, δ)− Pab(α, γ) ≥ 0, (11.31)

where α, β, γ, δ are any four values of the state y such that β > α and γ > δ. This is
the multi-label generalization of the submodularity condition (equation 11.26). An
important class of pairwise costs that are submodular are those which are convex in
the absolute difference |yi−yj | between the labels at adjacent pixels (figure 11.19a).
Here, smoothness is encouraged as the penalty becomes increasingly stringent as
the jumps between labels increase.

Unfortunately, convex potentials are not always appropriate. For example, in
the denoising task we might expect the image to be piecewise smooth: there are
smooth regions (corresponding to objects) followed by abrupt jumps (corresponding
to the boundaries between objects). A convex potential function cannot describe
this situation, because it penalizes large jumps much more than smaller ones. The
result is that the MAP solution smooths over the sharp edges changing the label
by several smaller amounts rather than one large jump (figure 11.18).

To solve this problem, we need to work with interactions that are non-convex in
the absolute label difference, such as the truncated quadratic function or the Pott’s
model (figures 11.19b-c). These favor small changes in the label, and penalize large
changes equally or nearly equally. This reflects the fact that the exact size of an
abrupt jump in label is relatively unimportant. Unfortunately, these pairwise costs
do not satisfy the submodularity constraint (equation 11.31). Here, the MAP
solution cannot in general be found exactly with the method described above, and
the problem is NP-hard. Fortunately, there are good approximate methods for
optimizing such problems, one of which is the alpha-expansion algorithm.

11.4.4 Inference: alpha expansion

The alpha expansion algorithm works by breaking the solution down into a series of
binary problems, each of which can be solved exactly. At each iteration we choose
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a) b) c)

Figure 11.19 Convex vs. non-convex potentials. The method for MAP in-
ference for multi-valued variables depends on whether the costs are a convex
or non-convex function of the difference in labels. a) Quadratic function
(convex), Pmn(ym, yn) = κ(ym − yn)2. For convex functions, it is possible
to draw a chord between any two points on the function without intersect-
ing the function anywhere between (e.g. dashed blue line). b) Truncated
quadratic function (non-convex), Pmn(ym, yn) = min(κ1, κ2(ym − yn)2). c)
Potts model (non-convex), Pmn(ym, yn) = κ(1− δ(ym − yn)).

Figure 11.20 The alpha expansion al-
gorithm breaks the problem down into
a series of binary sub-problems. At
each step, we choose a label α and we
expand: for each pixel we either leave
the label as it is or replace it with α.
This sub-problem is solved in such a
way that it is guaranteed to decrease
the multilabel cost function. a) Ini-
tial labelling. b) Orange label is ex-
panded: each label stays the same or
becomes orange. c) Yellow label is ex-
panded. d) Red label is expanded.

a) b)

c) d)

one label value α, and for each pixel we consider either retaining the current label,
or switching it to α. The name alpha-expansion derives from the fact that the real
estate occupied by label α in the solution expands at each iteration (figure 11.20).
The process is iterated until no choice of α causes any change. Each expansion
move is guaranteed to lower the overall objective function although the final result
is not guaranteed to be the global minimum.

For the alpha expansion algorithm to work, we require that the edge costs form
a metric. In other words, we require that
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P (α, β) = 0 ⇔ α = β (11.32)

P (α, β) = P (β, α) > 0 (11.33)

P (α, β) ≤ P (α, γ) + P (γ, β). (11.34)

These assumptions are reasonable for many applications in vision, and allow us to
model non-convex priors.

In the alpha-expansion graph construction (figure 11.21), there is one vertex
associated with each pixel. Each of these vertices is connected to the source (rep-
resenting keeping the original label or α) and the sink (representing the label α).
To separate source from sink, we must cut one of these two edges at each pixel.
The choice of edge will determine whether we keep the original label or set it to
α. Accordingly, we associate the unary costs for each edge being set to α or its
original label with the two links from each pixel. If the pixel already has label α
then we set the cost of being set to α to ∞.

The remaining structure of the graph is dynamic: it changes at each iteration
depending on the choice of α and the original labels. There are four possible
relationships between adjacent pixels:

• Pixel i has label α and the pixel j has label α. Here, the final configuration
is inevitably α−α, and so the pairwise cost is zero and there is no need to
add further edges connecting nodes i and j in the graph. Pixels a and b in
figure 11.21 have this relationship.

• The first pixel has label α but the second pixel has a different label β. Here
the final solution may be α − α with zero cost or α−β with cost Pij(α, β).
Here we add a single edge connecting pixel j to pixel i with cost Pij(α, β).
Pixels b and c in figure 11.21 have this relationship.

• Both pixels i and j take the same label β. Here the final solution may be
β−β with zero cost, α−β with cost Pij(α, β) or β−α with cost Pij(β, α). We
add two edges between the pixel representing the two non-zero costs. Pixels
c and d in figure 11.21 have this relationship.

• Pixel i takes label β and pixel j takes a second label γ. Here the final solution
may be α−α with zero cost, β−γ with cost Pij(β, γ), β−α with cost Pij(β, α)
and α−γ with cost Pij(α, γ). Here we add a new vertex k between vertices
i and j and add these three non zero costs to edges k− t, i−k and k− j
respectively. Pixels e and f in figure 11.21 have this relationship.

Note that this construction critically relies on the triangle inequality (equation
11.34). If this does not hold and Pij(β, γ) > Pij(β, α) + Pij(α, γ) then when both
pixel nodes are attached to the sink (as for pixels d and e in figure 11.21b), it will
be cheaper to cut both the links d−k and e−k than to cut k−α and the wrong
cost will be paid. In practice, it is sometimes possible to ignore this constraint by
truncating the offending cost Pij(β, γ) and running the algorithm as normal. After
the cut is done, the true objective function can be computed for the new label map
and the answer accepted if the cost has decreased.
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Figure 11.21 a) Alpha expansion graph setup. Each pixel node (a,b,c,d,e)
is connected to the source and the sink by edges which have costs U•(α)
and U•(α) respectively. In the minimum cut exactly one of these links
will be cut. The nodes and vertices describing the relationship between
neighbouring pixels depends on their current labels, which may be α−α as
for pixels a and b, α−β as for pixels b and c, β−β as for pixels c and d
or β−γ as for pixels d and e. For the last case an auxiliary node k must
be added to the graph. b-d) Example cuts on this graph illustrate that the
appropriate unary and pairwise costs are always paid.
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a) b) c) e) f)d)

Figure 11.22 Alpha expansion algorithm for denoising task. a) Observed
noisy image. b) Label 1 (black) is expanded, removing noise from the hair.
c-f) Subsequent iterations in which the labels corresponding to the boots,
trousers, skin and background are expanded respectively.

It should be emphasized that although each step optimally updates the objective
function with respect to expanding α, this algorithm is not guaranteed to converge
to the overall global minimum. However, it can be proven that the result is within
a factor of two of the minimum and often it behaves much better.

Figure 11.27 shows an example of multi-label denoising using the alpha expan-
sion algorithm. On each iteration one of the labels is chosen and is expanded and
the appropriate region is denoised. Sometimes the label is not supported at all by
the unary costs and nothing happens. The algorithm terminates when no choice
of α causes any further change.

11.5 Learning MRF models

It is possible to set the parameters Θ that specify the costs for adjacent labels in
the Markov random field prior by hand to encourage smoothness. However, a more
principled method is to learn the appropriate values from training data. Given I
training label fields y1...I and we aim to fit parameters Θ . Assuming that the
training examples are independent, the maximum likelihood solution is

Θ̂ = arg max
Θ

1

Z(Θ)I
exp

[
−

I∑
i=1

∑
c∈C

ψc(yi,Θ)

]

= arg max
Θ
−I log[Z(Θ)]−

I∑
i=1

∑
c∈C

ψc(yi,Θ), (11.35)

where as usual we have taken the log to simplify the expression.
To maximize this expression we calculate the derivative of the log likelihood L

with respect to the parameters Θ,
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∂L

∂Θ
= −I ∂ log[Z(Θ)]

∂Θ
−

I∑
i=1

∑
c∈C

∂ψc(yi,Θ)

∂Θ
(11.36)

= −I
∂ log

[∑
yi

exp
[
−
∑
c∈C ψc(yi,Θ)

]]
∂Θ

−
I∑
i=1

∑
c∈C

∂ψc(yi,Θ)

∂Θ

The second term is readily computable, but the first term involves an intractable
sum over all possible states: we cannot compute the derivative with respect to the
parameters and so learning is difficult. We can neither find an algebraic solution,
nor can we hope to use an optimization technique to steadily move uphill. The
best that we can do is to find an approximation to the gradient.

11.5.1 Contrastive divergence

One possible solution to this problem is the contrastive divergence algorithm. This
is a method for approximating the gradient of the log likelihood with respect to
parameters θ for functions with the general form,

Pr(y) =
1

Z(θ)
f(y,θ), (11.37)

where Z(θ) =
∑

y f(y,θ) is the normalizing constant and the derivative of the log
likelihood is

∂ log[Pr(y)]

∂θ
= −∂ log[Z(θ)]

∂θ
+
∂ log[f(y,θ)]

∂θ
. (11.38)

The main idea behind contrastive divergence follows from some algebraic manipu-
lation of the first term:

∂ log[Z(θ)]

∂θ
=

1

Z(θ)

∂Z(θ)

∂θ

=
1

Z(θ)

∂
∑

y f(y,θ)

∂θ

=
1

Z(θ)

∑
y

∂f(y,θ)

∂θ

=
1

Z(θ)

∑
y

f(y,θ)
∂ log[f(y,θ)]

∂θ

=
∑
y

Pr(y)
∂ log[f(y,θ)]

∂θ
. (11.39)

The last term is the expectation of the derivative of log[f()]. We cannot compute
this exactly, but we can approximate it by drawing J independent samples y∗ from
the distribution to yield
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*
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Samples 
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Figure 11.23 The contrastive diver-
gence algorithm changes the parame-
ters so that the un-normalized distri-
bution increases at the observed data
points (blue crosses) but decreases at
sampled data points from the model.
These two components counterbal-
ance one another and ensure that the
likelihood increases. When the model
fits the data these two forces will can-
cel out and the parameters will remain
constant.

∂ log[Z(θ)]

∂θ
=
∑
y

Pr(y)
∂ log[f(y,θ)]

∂θ
≈ 1

J

J∑
j=1

log[f(y∗j ,θ)]

∂θ
. (11.40)

With I training examples y1...I , the gradient of the log likelihood, L is hence

∂L

∂θ
≈ − I

J

J∑
j=1

∂ log[f(y∗j ,θ)]

∂θ
+

I∑
i=1

∂ log[f(yi,θ)]

∂θ
(11.41)

A visual explanation of this expression is presented in figure 11.23. The gradient
points in a direction that (i) increases the logarithm of the unnormalized function
at the data points yi but (ii) decreases the same quantity in places where the model
believes the density is high (i.e. the samples y∗j ). When the model fits the data
these two forces will cancel out that the parameters will stop changing.

This algorithm requires us to draw samples y∗ from the model at each iteration
of the optimization procedure in order to compute the gradient. Unfortunately, the
only way to draw samples from MRF models is to use costly Markov Chain Monte
Carlo methods such as Gibbs sampling (section 11.3.1) and this is impractically
time consuming. In practice it has been found that even approximate samples will
do: one method is to re-start I samples at the datapoints at each iteration and do
just a few MCMC steps. Surprisingly, this works well even with a single MCMC
step. Another approach is to start with the previous samples at each iteration
and perform a few MCMC steps: here the samples are free to wander without
restarting. This technique is known as persistent contrastive divergence.

11.6 Conditional Random Fields

The Markov random fields presented above form the prior in a generative model of
the image data. For the equivalent discriminative model the posterior probability
of the world state (label field) y given the observed data x is written as
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Figure 11.24 Graphical model for con-
ditional random field (compare to fig-
ure 11.4). The posterior probability
of the labels y is a Markov random
field for fixed data x. In this model,
the cliques relate (i) neighbouring la-
bels and (ii) each label to its associ-
ated measurement. Since this model
only includes unary and pairwise in-
teractions between the labels it can be
optimized using graph cut techniques.

Pr(y|x) =
1

Z
exp

[
−
∑
c

ψC(y)−
∑
d

ζ(y,x)

]
(11.42)

where the functions ψ(•) enforce structure in the label field and the functions ζ(•)
enforce agreement between the data and the label field. If we condition on the data
(and hence treat it as a fixed quantity) then this has the same mathematical form
as a Markov random field. Hence this model is called a conditional random field.

If the functions ψ(•) are used to encourage smoothness between neighbouring
labels and the functions ζ(•) each relate the compatibility of one label yn to its
associated measurement xn then the negative log posterior probability will again
be the sum of unary and pairwise terms. The best labels ŷ can hence be found by
minimizing the cost function

ŷ = arg min
y1...N

N∑
n=1

Un(yn) +
∑

(m,n)∈C

Pmn(ym, yn) (11.43)

and the graphical model will be as in figure 11.24. This cost function can be
minimized using the graph cuts techniques described throughout this chapter.

11.7 Applications

Markov random fields are used in many areas of computer vision including stereo
vision, motion estimation, background subtraction, segmentation, image editing
and building 3d models. Here we review a few key applications.

11.7.1 Segmentation

Pairwise Markov Random Field priors have been used in many segmentation ap-
plications where the label field is binary and reflects the presence or absence of an
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a)

b)

c)

d)

e)

f)

Figure 11.25 Grab Cut. a) The user draws a bounding box around the object
of interest. b) The algorithm segments the foreground from the background.
c-d) Another example. e-f) Failure mode. This algorithm does not segment
‘wiry’ objects well as the pairwise costs for tracing around all the boundaries
are prohibitive.

object. For example, the skin segmentation and background subtraction methods
from chapter 6 can be improved using this technique.

Binary MRFs have also been used for interactive segmentation. In the Grab-
cut algorithm, the user draws a rectangular box around the object of interest. The
system then builds two mixtures of Gaussians models to describe the likelihood of
observing the RGB data at each pixel given that the object is part of the foreground
or the background. On the first iteration, the background model is learnt from
regions of the image close to the edges of the rectangular box and the foreground
model is learnt from the centre. The MAP segmentation is then computed. The
likelihood models are relearned from the new segmentation and the system iterates
until it reaches convergence.

To improve the performance of this algorithm it is possible to modify the MRF
so that the pairwise cost for changing from foreground to background label is less
where there is an edge in the image. This is referred to as using “geodesic distance”.
From a pure probabilistic viewpoint, this is somewhat dubious as the MRF prior
should embody what we know about the task before seeing the data and hence
cannot depend on the image. However, this is largely a philosophical objection,
and the method works well in practice for a wide variety of objects.

A notable failure mode is in segmenting ‘wiry’ object such as trees. Here the
model is not prepared to pay the extensive pairwise costs to cut exactly around
the many edges of the object and so the segmentation is poor.
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Figure 11.26 Shift maps for image retargeting to reduce width. a) New image

I(2) is created from b) by copying parts of the original image I(1) c) These
parts are carefully chosen to produce a seamless result. d) The underlying
representation is a label at each pixel of the new image that specifies the
2d offset to the position in the original image that will be copied from. An
MRF encourages the labels to be piecewise constant and hence the result
tends to consist of large chunks copied verbatim.

11.7.2 Optical Flow

To do

11.7.3 Stereo Vision

To do

11.7.4 Rearranging Images

Another application of multi-label Markov random fields is for rearranging images.
We are given an original image I1 and wish to create a new image I(2) by rearranging
the pixels from I(1) in some way. Depending on the application we may wish to
change the dimensions of the original image (termed image retargeting), remove an
object or move an object from one place to another.

We will construct a model with hidden variables y = {y1 . . . yN} at each of the
N pixels of In. Each possible value of yn ∈ {−N . . .N} represents a positional
offset from this pixel to a different position in image I(1) so that

I(2)
n = I(1)

n + yn. (11.44)

The label map y is hence termed a shift map as it represents a two dimensional
offset to the original image. Each possible shiftmap defines an different output
image I(2) (figure 11.26).

We model the shiftmap y as a Markov random field with pairwise costs that
encourage smoothness . The result of this is that the only shiftmaps that are
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piecewise constant have high probability: in other words images where large chunks
of the original image are copied verbatim are favoured. We further modify the
pairwise costs so that they are lower when adjacent labels that differ encode offsets
with similar surrounding regions. This means that where the label does change, it
does so in such a way that there is no visible seam in the output image.

The remainder of the model depends on the application (figure ??:

• To move an object in the image, we specify unary costs at the its position so
that the shifts will certainly copy the desired object here. The remainder of
the shifts are left free to vary but favour relatively small offsets so that parts
of the scene that are far from the change tend to be unperturbed.

• To replace an area of the image, we specify the unary costs so that the
remaining part of the image must have a shift of zero (verbatim copying) and
the shift in the missing region must be such that it copies from outside this
region.

• To retarget and image to larger width, we set the unary costs so that the left
and right edges of the new image are forced to have shifts that correspond
to the left and right of the original image. We also use the unary costs to
specify that vertical shifts must be small.

• To retarget and image to a smaller width, we additionally specify the hori-
zontal offset can only increase. This ensures that new image does not contain
replicated objects and that their horizonal order remains constant.

In each case the best solution can be found using the alpha expansion algorithm.
Since the labels do not form a metric here, it is necessary to truncate the relevant
costs. In practice there are many labels and so a multi-resolution coarse to fine
scheme is preferred.

11.8 Appendices

TO DO

• Literature Review

• Pseudocode for Gibbs Sampling

• Pseudocode for binary graph cut solution

• Pseudocode for exact multi-label solution

• Pseudocode for alpha expansion
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a) b) c)

g) h)d) e) f)

i) j)

Figure 11.27 Applications of shift maps. Shift maps can be used to take
and object from the original image (a), move it to a new position (b) and
the fill in the remaining pixels to produce a new picture (c) . They can also
be used to remove an undesirable object (d) specified by a mask (e) from
an image by filling in the missing area (f). Finally they can to retarget an
original image (g) to a smaller size (h), or to retarget an original image (i)
bto larger size (j).


