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Neural Networks

● A neuron

● One neuron can implement logical gates (and 
a lot more)
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x is called the total input 
to the neuron, and f(x) 
is its output
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Neural Networks

● Neural Networks are 
circuits

Output

input

● They can compute 
lots of complicated 
functions

● The connections 
determine the function

● Connections are 
slowly adjusted by a 
learning algorithm to 
reduce error on 
training cases



  

Training Neural Networks
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● Do until convergence
● Pick a training case
● Compare prediction to target
● Update parameters to slightly 

reduce error

● This process will converge to weights 
should make sensible predictions on 
all training cases

● These weights implement a circuit 
whose operation reflects deep facts 
about the data

● Training method is simple,  resulting 
neural network is extremely complex

● Slowly change the weights to improve performnace

Random training case

Repeat:



  

Generalization

● How does the network “know” the correct answer 
on previously unseen examples?

● The network's ability to memorize random patterns 
is limited
– With enough training data, train error=test error

● If we are lucky, the network is capable of 
representing a good function, so training will find it
– Otherwise our error will be large



  

Generalization

Neural network space

Training cases are like constraints
Learning is like solving an equation

Constraint imposed by
one training case



  

Convolutional neural networks
● Apply neural networks to images

– Images are very large, so networks are huge
● One convolution: apply the same weight to every 

image-patch

All nodes compute 
the same function of 
the nodes below 
them

This is one layer.
The input is either an 
image or an 
intermediate layer

Advantages of conv:
 - less connections
 - much less parameters 



  

Convolutional neural networks

● Many “maps” go to many “maps”

● GPU-friendly

● Key operation

Each edge is a
a convolution 

All edges are different
In this figure!



  

Overview of our model

● Deep: 7 hidden weight layers
● Learned: all feature extractors initialized  

with Gaussian noise and learned from the 
data

● Entirely supervised
● More data = good

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



  

Overview of our model

● Trained with stochastic gradient descent on 
two NVIDIA GPUs for about a week

● 650,000 neurons
● 60,000,000 parameters
● 630,000,000 connections
● Final feature layer: 4096-dimensional

Image

Convolutional layer: convolves its input 
with a bank of 3D filters, then applies 
point-wise non-linearity

Fully-connected layer: applies linear 
filters to its input, then applies point-
wise non-linearity



  

96 learned low-level filters
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Training
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Local convolutional filters

Fully-connected filters
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Using stochastic gradient descent and the 
backpropagation algorithm (just repeated 
application of the chain rule)

Make millions of small changes to the 
network's weights

Image Image



  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000
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Input representation

● Centered (0-mean) RGB values.

An input image (256x256) The mean input imageMinus sign



  

Neurons

f(x) = tanh(x) f(x) = max(0, x)

Very bad (slow to train) Very good (quick to train)
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x is called the total input 
to the neuron, and f(x) 
is its output



  

Data augmentation

● Our neural net has 60M real-valued 
parameters and 650,000 neurons

● It overfits a lot. Therefore we train on 224x224 
patches extracted randomly from 256x256 
images, and also their horizontal reflections.



  

Testing

● Average predictions made at five 224x224 
patches and their horizontal reflections (four 
corner patches and center patch)

● Logistic regression has the nice property that it 
outputs a probability distribution over the class 
labels

● Therefore no score normalization or calibration 
is necessary to combine the predictions of 
different models (or the same model on 
different patches), as would be necessary with 
an SVM. 



  

Dropout

● Independently set each hidden unit activity to 
zero with 0.5 probability

● We do this in the two globally-connected 
hidden layers at the net's output

A hidden unit 
turned off by 
dropout

A hidden unit 
unchanged

A hidden layer's activity on a given training image



  

Implementation

● The only thing that needs to be stored on disk 
is the raw image data

● We stored it in JPEG format. It can be loaded 
and decoded entirely in parallel with training.

● Therefore only 27GB of disk storage is needed 
to train this system.

● Uses about 2GB of RAM on each GPU, and 
around 5GB of system memory during 
training.



  

Implementation

● Written in Python/C++/CUDA
● Sort of like an instruction pipeline, with the 

following 4 instructions happening in parallel:
– Train on batch n (on GPUs)

– Copy batch n+1 to GPU memory

– Transform batch n+2 (on CPU)

– Load batch n+3 from disk (on CPU)



  

Comparison to monkey brain

● Some researchers showed images to macaques and 
recorded the firing rates of 128 of their neurons

● Compare to other systems in recognizing “hard images”
– Lots of rotations, change in illumination

● Our neural network's 4096 neurons beat the 128 
macaque's neurons
– Although more of the macaque's neurons may outperform our 

system

● All other computer vision methods did much worse than 
the macaque neurons



  

Monkey vs machine

Place a big electrode in the 
right part of the visual cortex
and record from 128 neurons

Get 
128
dims

Get 
4096
dims

other methods Get 
lots 
of dims

?

?

?



  

Validation classification



  

Validation classification



  

Validation classification



  

Validation localizations



  

Validation localizations



  

Retrieval experiments
First column contains query images from ILSVRC-2010 test set, remaining 
columns contain retrieved images from training set. 



  

Retrieval experiments
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