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Abstract

Much of the social choice literature examines direct voting systems, in which
voters submit their ranked preferences over candidates and a voting rule picks a
winner. Real-world elections and decision-making processes are often more com-
plex and involve multiple stages. For instance, one popular voting system filters
candidates through primaries: first, voters affiliated with each political party
vote over candidates of their own party and the voting rule picks a candidate
from each party, which then compete in a general election.

We present a model to analyze such multi-stage elections, and conduct the
first quantitative comparison (to the best of our knowledge) of the direct and
primary voting systems in terms of the quality of the elected candidate. Our
main theoretical result is that every voting rule is guaranteed to perform al-
most as well (i.e., within a constant factor) under the primary system as under
the direct system. Surprisingly, the converse does not hold: we show settings
in which there exist voting rules that perform significantly better under the
primary system than under the direct system. Using simulations, we see that
plurality benefits significantly from using a primary system over a direct one,
while Condorcet-consistent rules do not.

1. Introduction

If I could not go to heaven but
with a party, I would not go there
at all.

– Thomas Jefferson, 1789

Thomas Jefferson, like many of the US constitution’s authors, believed that
political parties and factions are a bad thing (see also Hamilton et al. [1]). This
view stemmed from a long history of British and English political history, in
which prison sentences and executions were possible outcomes in the battle be-
tween factions for supremacy at the Royal court [2]. However, both in Britain
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and in the Unites States, once their respective legislative assemblies gained polit-
ical force, parties turned out to be quite unavoidable. Even Jefferson eventually
had to start his own party (the Republican party1), which ended up quite suc-
cessful, and was able to vanquish the opposing party (the Federalist party) from
political existence [3].

Moving on to current times, political parties have become the bedrock of par-
liamentary politics throughout the world. In particular, one of political parties’
main roles — if not the most important (especially in presidential systems) —
is to select the candidates which are voted on by the general public. The mech-
anisms by which parties make this selection are varied, and they have evolved
significantly throughout the past 150 years. But in the past few decades there
has been a marked shift by parties throughout the world towards increasing the
ability of individual party members to influence the outcome, and in some cases,
to be the only element to determine party candidates [4]. In particular, US par-
ties have changed their election methods since the 1970s to focus the selection
of presidential, congressional and state-wide candidates on popular support by
party members via primaries [5].

Despite this long and established role of parties in whittling down the can-
didate field in elections, the treatment of a parties’ role in elections within the
multiagent systems community has been quite limited. While various candidate
manipulation attacks have been investigated (e.g., Sybil attacks [6]), and there
is recent research into parties as a collection of similar minded candidates (e.g.,
in gerrymandering, across different districts), the role of parties in removing
candidates has not been analyzed.

The focus of this paper is the primary voting systems, in which each party’s
electorate selects a winner from among the party’s candidates, and among these
primary winners, an ultimate election winner is selected by the general public.
We compare this system to the direct voting system, in which all voters directly
vote over all candidates. Moreover, we expand this voting mechanism to encom-
pass various multi-stage processes, by which parties may have multiple stages
before the general election (for example, in Britain, before the party member-
ship votes, each party’s parliamentary members can decide which candidates
will be voted on).

While we write of parties, voters and elections, this multi-stage model applies
to a variety of decision-making processes by agents. This can be used to manage
the number of candidates – when the potential number of options is huge, it is
common to use subdivisions to cull the options and present only a few of them for
discussion and vote. For example, in many universities academic departments
bring forward only a subset of the candidates vying for a position to the faculty
forum which decides on hiring. Or a city may ask its regional subdivisions to
assess which roads require urgent fixing, and then the city council decides from
these options where to invest its efforts. The multi-stage model can also be

1Commonly referred in research as the Democratic-Republican party, as it is not a precursor
of the modern Republican party.
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used for gatekeeping purposes, i.e., to ensure only “good-enough” options are
presented (for example, by having a forum of experts vet options before being
brought forward for general consideration).

1.1. Our Results

Our contribution is twofold. First, we formulate a model which allows a
quantitative comparison of the two voting systems. Our model is a spatial
model of voting in which voters and candidates are located in an underlying
multi-dimensional space, and voter preferences are single-peaked. This allows
us to compare each candidate’s social utility in terms of its total distance to the
voters. We make the evaluation objective formal using the notion of distortion as
advocated by a recent line of research [7, 8]. Our results begin by analyzing a 2-
party setting, in which all voters are affiliated with a party, each party selecting a
single candidate, and both candidates are presented to the general voting public.
We then extend this setting to include various voters – independent voters (i.e.,
not party affiliated) and voters which do not participate in the general election
– as well as multiple parties and multiple decision stages.

Second, we use this model to present a comparison of the direct and pri-
mary voting systems not in worse-case bounds but in simulations. We show
how different voting systems behave quite differently under primary and direct
elections. In particular, we show plurality generally benefits strongly from using
primaries, while Condorcet consistent rules are mainly better off under the di-
rect system. We explore the effects of various parameters (independent voters,
party sizes, etc.) on the distortion, and show which settings reduce distortion
and which increase it.

2. Related Work

The analysis of regular, direct elections is long and varied, both in the social
sciences and in AI [9]. In our particular setting, the voters are located in a
metric space, with their preferences related to their distance from candidates.
Such settings have been widely investigated in the social science literature since
the work of Downs [10], recently summarized by Schofield [11]. In particular,
we focus on the concept of distortion, introduced by Procaccia and Rosenschein
[7]. While they analyze it in the context of a direct election in which voters have
arbitrary utilities for candidates, we consider distortion in a primary setting in
which the costs (negative utilities) of voters for candidates are determined by
their locations in an underlying metric space, which represents their opinions.
Voter distortion in metric spaces in regular elections (which we term direct)
was investigated in a series of papers [12, 13, 14] for most common voting rules.
Feldman et al. [15] explored such a setting for strategyproof mechanisms.

Discussing changes to the set of candidates has mainly focused on two paths
of research. Strategic candidates, investigation of which began with the work of
Dutta et al. [16] — followed by Dutta et al. [17] discussing strategic candidacy
in tournaments, and more recently further explored by Brill and Conitzer [18],
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Polukarov et al. [19] and others — deals mainly with finding equilibria. The
other is the addition and removal of candidates, as a form of control manip-
ulation, which was studied by Bartholdi III et al. [20]; see the summaries by
Brandt et al. [9] and Rothe [21].

Investigating parties’ selection methods and their effect on the election has
mostly been done in the social sciences. Kenig [22] details the range of selection
methods parties use, and there has been significant focus on more democratic
methods for leader selection [23], which seems to be a general trend in many
Western countries [4]. There is also significant literature on particular party
elections in various countries, such as Britain [24], Belgium [25], Israel [26],
and many others. Naturally, the most widely examined country is the US, in
which political parties have been a fixture of political life since its early days
[3]. The most recent extensive summary of research on it is due to Cohen et al.
[5], who try to explain how party power-brokers influence the party membership
vote. Norpoth [27] uses primary data to predict election results, and notably
Sides et al. [28] show that primary voters are very similar to “regular” voters. In
computational fields, recent interest in proxy voting [29, 30], in which voters give
other agents the ability to vote for them, may be related to how modern parties
are viewed and analyzed. Concretely, party analysis has mostly been about
having the same set of candidates in different voting domains, as in district
elections [31], and their related manipulation problem, gerrymandering [32, 33,
34, 35, 36, 37].

3. Model

For k ∈ N, define [k] = {1, . . . , k}. Let V = [n] denote a set of n voters,
and A denote a set of m candidates. We assume that voters and candidates
lie in an underlying metric space M = (S, d), where S is a set of points and
d is a distance function satisfying the triangle inequality and symmetry. More
precisely, there exists an embedding ρ : V ∪ A → S mapping each voter and
candidate to a point in S. For a set X ⊆ V ∪A, we slightly abuse the notation
and let ρ(X) = {ρ(x) : x ∈ X}. Also, for x, x′ ∈ V ∪ A, we often use d(x, x′)
instead of d(ρ(x), ρ(x′)) for notational convenience.

In this work, we assume that voters and candidates also have an affiliation
with a political party. Specifically, we begin with a setting of two parties,
denoted −1 and 1. For now, we shall assume that every voter and candidate is
affiliated with exactly one of the two parties. In Section 8 (and Appendix A)
we will show that our results continue to hold even when some of the voters are
independent and unaffiliated with either party. The party affiliation function
π : V ∪ A → {−1, 1} maps each voter and candidate to the party they are
affiliated with. For p ∈ {−1, 1}, let Vp = π−1(p) ∩ V , Ap = π−1(p) ∩ A,
np = |Vp|, and mp = |Ap|. We require np ≥ 1 for each p ∈ {−1, 1}.

Collectively, an instance is the tuple I = (V,A,M, ρ, π). Given I, we can
find a candidate a ∈ A which is the winner. The social cost of a is its total
distance to the voters, denoted CI(a) =

∑
i∈V d(i, a). For party p ∈ {−1, 1},

let CIp (a) =
∑
i∈Vp d(i, a). Hence CI(a) = CI−1(a) + CI1 (a). For X ⊆ V , we
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also use CIX(a) =
∑
i∈X d(i, a). Given an instance I, we would like to choose

a candidate aOPT ∈ arg mina∈A C
I(a) that minimizes the social cost. We shall

drop the instance from superscripts if it is clear from the context.
However, we do not observe the full instance. Specifically, we do not know

the underlying metric M or the embedding function ρ. Instead, each voter i ∈ N
submits a vote, which is a ranking (strict total order) �i over the candidates in
A induced by their distance to the voter. Specifically, for all i ∈ N and a, b ∈ A,
a �i b⇒ d(i, a) ≤ d(i, b). The voter is allowed to break ties between equidistant
candidates arbitrarily. The vote profile

−→� I = (�1, . . . ,�n) is the collection
of votes. Given an instance I, its corresponding election EI = (V,A,

−→� I , π)
contains all observable information. Note that requiring voters’ preferences to
be defined by the underlying metric space they are in does not constrain the
possible preference sets – any preference order, for any number of voters and
candidates can be expressed in a metric space with a large enough dimension.

In the families of instances that we consider, we fix the number of candidates
m and let the number of voters n to be arbitrarily large. This choice is justified
because in many typical elections (e.g., political ones), voters significantly out-
number candidates. Let Iαm,M be the family of instances satisfying the following
conditions:

• Each party has at least an α fraction of the voters affiliated with it, i.e.,
np ≥ α · n for each p ∈ {−1, 1}. Note that α ∈ [0, 0.5]: α = 0.5 is the
strictest (exactly half of the voters are affiliated with each party), while
α = 0 imposes no conditions; in the latter case, we omit the superscript
α in Iαm,M.

• The number of candidates is at most m.

In particular, we shall focus on a few cases of M :

• M = ?: This allows M to be any arbitrary metric space.

• M = Rk: The metric space should beM = (Rk, d), where d is the standard
Euclidean distance. In particular, R = R1 denotes the real line.

• M = sep-Rk: This means the embedding ρ must be such that ρ(V−1∪A−1)
and ρ(V1∪A1) are linearly separable.2 In this case we also take the metric
to be M = (Rk, d) with d as the standard Euclidean distance. In plain
words, the voters and candidates affiliated with each party reside in a
certain part of the metric space, separate from those affiliated with the
other party. In the single dimension, this means there exists a threshold
on the line such that voters and candidates affiliated with one party lie to
the left of it, while those affiliated with the other party lie to the right.
Note that that this choice of M restricts the embedding ρ based on the
party affiliation π.

2Two sets of points are linearly separable if their convex hulls are disjoint, or equivalently,
if there exists a hyperplane that contains each set in a distinct open halfspace.
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These families of instances are related by the following relation. For all k,

Iαm,sep-Rk
⊂
⊂

Iα
m,Rk

Iα
m,sep-Rk+1

⊂
⊂
Iαm,Rk+1 ⊂ Iαm,?

3.1. Voting Rules and Distortion

A voting rule f takes an election as input, and returns a winning candidate
from A. We say that the cost-approximation of f on instance I is

φ(f, I) =
CI(f(EI))

mina∈A CI(a)
,

that is, the ratio of the cost of the elected and the cost of the optimal candidate
(reminiscent of price of anarchy/stability metrics). Given a family of instances
I, the distortion of f with respect to I is

φI(f) = sup
I∈I

φ(f, I).

Since distortion is a worst-case notion, we have that when I ⊆ I ′, φI(f) ≤
φI′(f) for every voting rule f .

Standard voting rules choose the winning candidate independently of party
affiliations. These include rules such as plurality, Borda, and STV. We refer
readers to Brandt et al. [9] for a detailed list of various voting rules, but we
shall just define several which we shall mention along the way:

Plurality Each voter gives a single point to its top-ranked candidate. The
candidates with the highest scores are the winners (and a tie-breaking
rule is used to determine a single one).

Borda Each voter gives m − 1 points to their top-ranked candidate, m − 2
to their second ranked candidate, and so on: m − i points are given to
the candidate ranked i. The candidates with the highest scores are the
winners (and a tie-breaking rule is used to determine a single one).

STV (Single Transferable Vote) Each voter gives a single point to its top-
ranked candidate. If no candidate has more than n

2 points, the candidate
with the lowest score (if there are several – a tie-breaking rule is used) is
eliminated, and all voters who gave their point to that candidate give their
point to the highest-ranked candidate according to their preference which
has not been eliminated. The process continues until there is a candidate
with more than n

2 points.

Maximin Each candidate a ∈ A is assigned a score – minb∈A |{i ∈ V |a �i b}|
– which represents its core support in any pairwise election. The winners
are the candidates with the highest such score (and a tie-breaking rule is
used to determine a single one).
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Copeland For each candidate a ∈ A we define a set Aa+ = {b ∈ A|n2 − |{i ∈
V |b �i a}| > 0}, the candidates it beats in a pairwise election, and Aa− =
{b ∈ A|n2 − |{i ∈ V |a �i b}| > 0}, the candidates it is beaten by in a
pairwise election. Each candidate’s score is |Aa+| − |Aa−|. The winners are
the candidates with the highest score (and a tie-breaking rule is used to
determine a single one).

The final two voting rules are Condorcet consistent : when there is a candi-
date that can beat any other one in a pairwise election (i.e., a candidate a ∈ A
such that |{i ∈ V |a �i b}| > n

2 for any b ∈ A), that candidate (the Condorcet
winner) will be the election winner. We note that such a candidate is not
guaranteed to exist.

We call a voting rule affiliation-independent if f(E) = f(E′) when elections
E and E′ differ only in their party affiliation functions. Since an affiliation-
independent voting rule f that ignores party affiliations, we have φIα

m,sep-Rk
(f) =

φIα
m,Rk

(f). All of the above-mentioned rules, in addition to being affiliation-

independent, share the property of being unanimous, i.e., they return candidate
a when a is the top choice of all voters.

3.2. Stages and Primaries

Given an affiliation-independent voting rule f , voting systems with primaries
employ a specific process to choose the winner, essentially resulting in a different
voting rule f̂ that operates on a given election E = (V,A,

−→� , π) as follows:

1. First, it creates two primary elections: for p ∈ {−1, 1}, define Ep =
(Vp, Ap,

−→�p, πp), where
−→�p denotes the preferences of voters in Vp over

candidates in Ap, and πp : Vp → {p} is a constant function.

2. Next, it computes the winning candidate in each primary election (primary
winner) using rule f : for p ∈ {−1, 1}, let a∗p = f(Ep).

3. Finally, let Eg = (V,
{
a∗−1, a

∗
1

}
,
−→�g, π) be the general election, where

−→�g
denotes the preferences of all voters over the two primary winners. The
winning candidate is f̂(E) = maj(Eg), the majority candidate, preferred
by a majority of voters. This is what most voting rules become when
dealing with only 2 candidates3.

This setting resembles systems employed by the main US, Canadian and
other countries’ parties, in which a party’s members vote on their party’s can-
didates to select a winner of their primary4. In other systems, such selection
could be a multi-stage process. While we assume for now that every voter votes

3If one of the parties has no affiliated candidates, then the primary winner of the other
party becomes the overall winner. In a setting with more than 2 parties, or where each party
nominates several candidates, the general election can use f to determine the outcome (or use
some other voting process).

4Sometimes each party uses a different voting rules, but in this paper, we are mainly
interested in comparing the direct vs. primary cases. However, as will be seen below, the
distortion bounds we prove still hold when parties’ voting rules are different.
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in the general election, in Section 8 we show that our results hold as long as at
least a constant fraction of the voters participate in the general election.

Given an affiliation-independent voting rule f , the goal of this paper is to
compare its performance under the direct system, in which f is applied on the
given election directly, to its performance under the primary system, in which
f̂ is applied on the given election instead. Formally, given a family of instances
I and an affiliation-independent voting rule f , we wish to compare φI(f) and

φI(f̂) (henceforth, the distortion of f with respect to I under the direct and
the primary systems, respectively).

4. Small Primaries are Terrible

As defined above, in a family of instances Iαm,M, we require that at least α
fraction of voters be affiliated with each party, i.e., np ≥ αn for each p ∈ {−1, 1}.
In other words, each primary election must have at least αn voters.

We first show that when a primary election may have very few voters (α = 0),
every reasonable voting rule has an unbounded distortion in the primary system,
even with respect to our most stringent family of instances Im,sep-R.

Theorem 1. For m ≥ 2, φIm,sep-R(f̂) = ∞ for every affiliation-independent
unanimous voting rule f .

Proof. Consider an instance I ∈ Im,sep-R in which voter 1 is located at 0 and
affiliated with party −1, while the remaining n− 1 voters are located at 1 and
affiliated with party 1. All m candidates are affiliated with party −1: one is at
0, and the rest are at 1.

The candidate a∗ at 0 becomes the primary winner of party −1, and trivially
becomes the overall winner. Its social cost is C(a∗) = n − 1. In contrast, an

optimal candidate aOPT at 1 has social cost C(aOPT) = 1. Hence, C(a∗)
C(aOPT) =

n− 1. Since the number of voters n is unbounded, φIm,sep-R(f̂) =∞.

Theorem 1 continues to hold even if we require that at least a constant
fraction of candidates be affiliated with each party: we could simply move a
constant fraction of the candidates from 1 to 3 and assign them to party 1, and
the proof would still hold.

On the other hand, if we require that at least a constant fraction of voters
be affiliated with each party, the result changes dramatically.

5. Large Primaries are Never Much Worse than Direct Elections

In this section, we show that if at least a constant fraction of all voters
are affiliated with each party, then for every affiliation-independent voting rule
f , we can bound the distortion of f̂ in terms of the distortion of f for every
instance. Note that this is stronger than comparing the worst-case distortions
of f and f̂ over a family of instances,
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The key challenge in bounding the distortion of f̂ is that in each primary,
only the voters of the party are discarding candidates, thus the distortion of f ,
φ(f), only bounds the damage to the social cost of these voters. But we want
to understand the damage to the social cost of all voters, not only those of one
particular party. The following lemma shows that this can still be achieved if the
primary is large (i.e., at least a constant fraction of the voters are affiliated with
each party). More generally, the lemma bounds the distortion of an election in
terms of the distortion of the voting rule and the fraction that voted.

Lemma 2. Let I = (V,A,M, ρ, π) be an instance. Let I ′ = (V ′, A′,M, ρ, π) be a
sub-instance in which a subset of voters V ′ ⊆ V vote over a subset of candidates
A′ ⊆ A. Let |V ′| ≥ α · |V | for α > 0. Let a∗ be the winner in I ′ under voting
rule f . If C is the social cost function under instance I, then

C(a∗) ≤ 1− α+ φ(f, I ′)

α
· min
a∈A′

C(a).

Proof. Denote θ = φ(f, I ′) (hence θ ≥ 1). Recall that CX denotes the social cost
with respect to a set of voters X (thus, C = CV ). Let n = |V | and n′ = |V ′|.

Fix a ∈ A′. Due to the definition of distortion, we have CV ′(a
∗) ≤ θ ·CV ′(a).

We want to bound C(a∗) in terms of C(a). Note that

C(a∗) = CV ′(a
∗) + CV \V ′(a

∗)

≤ θ · CV ′(a) + CV \V ′(a) + (n− n′) · d(a, a∗)

≤ θ · C(a) + (n− n′) · d(a∗, a), (1)

where the second transition holds due to the triangle inequality and the final
transition holds because θ ≥ 1. We also have d(a∗, a) ≤ d(a∗, i) + d(i, a) for any
i ∈ V ′. Summing over all i ∈ V ′ and averaging, we get

d(a∗, a) ≤ CV ′(a
∗) + CV ′(a)

n′

≤ 1 + θ

n′
· CV ′(a) ≤ 1 + θ

n′
· C(a). (2)

Substituting Equation (2) into Equation (1), and using n−n′
n′ ≤

n(1−α)
αn =

1−α
α , we get

C(a∗) ≤ θ · C(a) + (n− n′) · 1 + θ

n′
· C(a) ≤

(
θ +

1− α
α

(1 + θ)

)
· C(a)

=
1− α+ θ

α
· C(a),

as needed.

Given an instance I = (V,A,M, ρ, π) and party p ∈ {−1, 1}, we say that
Ip = (Vp, Ap,M, ρp, πp) is the primary instance of party p, where ρp and πp are
restrictions of ρ and π to Vp∪Ap. The primary election Ep of party p is precisely
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the election corresponding to instance Ip. Let a∗p be the primary winner of party
p under voting rule f , and np = |Vp| ≥ αn. Recall that C denotes the overall
social cost under instance I. We can immediately bound C(a∗p) in terms of
mina∈Ap C(a) by applying Lemma 2 using Ip as the sub-instance.

Corollary 3. Let a∗p denote the primary winner of party p. Then

C(a∗p) ≤
1− α+ φ(f, Ip)

α
· min
a∈Ap

C(a).

It now remains to compare the social cost of the general election winner a∗

to the social costs of the primary winners. Note that the voting rule used in
the general election is the majority rule, which can be thought of as plurality
for two candidates. Anshelevich et al. [12] show that the distortion of plurality
for m candidates is 2m − 1. Substituting m = 2, we get that the distortion of
the majority rule is 3, which yields the desired comparison.

Corollary 4. Let a∗−1 and a∗1 be the two primary winners and a∗ ∈
{
a∗−1, a

∗
1

}
be the winner of the general election. Then,

C(a∗) ≤ 3 ·min
{
C(a∗−1), C(a∗1)

}
.

By combining Corollaries 3 and 4, we immediately get the following result.

Theorem 5. Let I = (V,A,M, ρ, π) be an instance. For p ∈ {−1, 1} and
α > 0, let Ip be the primary instance of party p and np = |Vp| ≥ αn. Let
aOPT ∈ arg mina∈A C(a) be a socially optimal candidate. Then,

φ(f̂ , I) ≤ 3 ·
1− α+ φ(f, Iπ(aOPT))

α
≤ 3 ·

1− α+ maxp∈{−1,1} φ(f, Ip)

α
.

Proof. Let p = π(aOPT) denote the party with which the socially optimal can-
didate aOPT is affiliated. Then, Corollary 4 implies that C(a∗) ≤ 3 ·C(a∗p), and

Corollary 3 implies that C(a∗p) ≤
1−α+φ(f,Ip)

α · C(aOPT). Combining the two
inequalities, we get that

φ(f̂ , I) =
C(a∗)

C(aOPT)
≤ 3 · 1− α+ φ(f, Ip)

α
,

as needed.

For each family of instances I that we study, it holds that for every instance
I ∈ I, both its primary instances, if seen as direct elections, are also in I (since
the party division has no effect on the direct election distortion). Hence, we can
convert the instance-wise comparison to a worst-case comparison.

Corollary 6. For α > 0, k ∈ N, family of instances I ∈
{
Im,?, Im,Rk , Im,sep-Rk

}
,

and affiliation-independent voting rule f , we have

φI(f̂) ≤ 3 · 1− α+ φI(f)

α
.
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Since φI(f) ≥ 1 by definition, we can write φI(f̂) ≤ 6
α · φI(f). In other

words, for every affiliation-independent voting rule f , its distortion under the
primary system is at most a constant times bigger than its distortion under the
direct system, with respect to every family of instances that we consider.

Notice that we do not use the assumption that both parties use the same vot-
ing rule f in their primaries: if each party p uses a different voting rule fp, then
maxp∈{−1,1} φ(f, Ip) in Theorem 5 can simply be replaced by maxp∈{−1,1} φ(fp, Ip).
Thus, the distortion under the primary system can still be bounded in terms
of the largest distortion of the two primary election systems. Additionally, we
show in Section 8 (and Appendix A) that two other assumptions we made so
far — every voter participates in one of the two primaries and every voter par-
ticipates in the general election — can be relaxed without significantly affecting
our results. The proof of this generalized version is almost as straightforward
as the proof of Theorem 5 courtesy of Lemma 2.

6. Large Primaries are not Better Without Party Separability

In the previous section we showed that a voting rule does not perform much
worse under the primary system than under the direct system. Now we show
that it does not perform any better either, at least in the worst case over all
instances with at most m candidates. The result continues to hold even if we
require each party to have at least a constant fraction of the voters.

Note that this result is weaker than Theorem 5 because it is a worst-case
comparison instead of an instance-wise comparison. However, it still applies to
all voting rules f . It applies to any metric that does not require separability of
parties, in particular to Im,? and Im,Rk .

Theorem 7. For α ∈ [0, 0.5], k ∈ N, M∈
{
?,Rk

}
(i.e. when the metric space

does not require party separability), and affiliation-independent voting rule f ,

we have φIαm,M(f̂) ≥ φIαm,M(f).

Proof. We shall denote Iαm,M as I. We want to show that for every instance

I ∈ I, there exists an instance I ′ ∈ I such that φ(f̂ , I ′) ≥ φ(f, I). This would
imply the desired result.

Fix an instance I = (V,A,M, ρ, π) ∈ I. Let aOPT ∈ A denote an optimal

candidate in I, and a∗ = f(EI). Note that φ(f, I) = CI(a∗)
CI(aOPT)

. Construct

instance I ′ = (V ′, A,M, ρ′, π′) as follows:

• Let V ′ = V ∪ Ṽ , where Ṽ is a new set of voters and |Ṽ | = |V |.

• Let ρ′(x) = ρ(x) for all x ∈ V ∪A, and ρ(x) = ρ(aOPT) for all x ∈ Ṽ . That
is, ρ′ matches ρ for existing voters and candidates, and the new voters are
co-located with aOPT.

• Let π′(x) = −1 for all x ∈ V ∪A, and π′(x) = 1 for all x ∈ Ṽ . That is, all
existing voters and candidates are affiliated with party −1, while all new
voters are affiliated with party 1.
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First, let us check that I ′ ∈ I. Since I has m candidates, so does I ′. Further,
in I ′, we have |V ′−1| = |V ′1 | = |V ′|/2, which satisfies the constraint corresponding
to every α ∈ [0, 0.5]. Hence, we have I ′ ∈ I.

Let us apply f̂ on I ′. One of its primary instances, I ′−1, is precisely I. Hence,
the primary winner of party −1 is f(I ′−1) = f(I) = a∗. Because there are no
candidates affiliated with party 1, a∗ becomes the overall winner.5

Next, CI
′
(a∗) ≥ CI(a∗) because V ⊂ V ′. Also, CI

′
(aOPT) = CI(aOPT)

because aOPT has zero distance to all voters in V ′ \ V . Together, they yield

φ(f̂ , I ′) =
CI
′
(a∗)

CI′(aOPT)
≥ CI(a∗)

CI(aOPT)
= φ(f, I), (3)

as desired.

Our proof establishes a slightly stronger result than stated in the theo-
rem: instead of showing φIαm,M(f̂) ≥ φIαm,M(f), we actually show φI0.5m,M(f̂) ≥
φIαm,M(f).

7. The Advantages of Party Separability

The analysis for Im,sep-Rk is not as straightforward as in the previous section.
In the proof of Theorem 7, we co-located the new voters affiliated with party
1 and aOPT affiliated with party −1. This was allowed because non-separable
metrics like ? and Rk place no constraints on the embedding.

With Iαm,sep-Rk , we need the voters and candidates affiliated with one party
to be separated from those affiliated with the other. Hence, this operation of
putting all of one party’s voters at the location of aOPT belonging to another
party would be allowed only if, in the original instance I, aOPT is on the bound-
ary of the convex hull of ρ(V ∪ A). While this is not the case for all instances,
we only need this in at least one worst-case instance for f , i.e., for at least one
I ∈ Iαm,sep-Rk with φ(f, I) = φIα

m,sep-Rk
(f). Equation (3) would then yield the

desired result. More generally, it is sufficient if, given any ε > 0, we can find an
instance I such that φ(f, I) ≥ φIα

m,sep-Rk
(f)− ε and aOPT is at distance at most

ε from the boundary of the convex hull of ρ(V ∪A).
Interestingly, Anshelevich et al. [12] show that this is indeed the case for

plurality and Borda voting rule (see the proof of their Theorem 4). Thus, we
have the following.

Proposition 8. Let f be plurality or Borda. Then, φI0.5m,sep-R(f̂) ≥ φIm,?(f).

5Even if we require each party to have at least one affiliated candidate, the proof essentially
continues to hold. In this case, we can add one candidate affiliated with party 1 that is located
sufficiently far from all the voters, ensuring that a∗ still becomes the overall winner. This
would show φIα

m+1,M
(f̂) ≥ φIα

m,M
(f) because instance I′ may now have m+ 1 candidates.
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However, known worst cases for the Copeland rule [12] and STV [14] do not
satisfy this requirement. It is unknown if these rules admit a different worst
case that satisfies it.

This raises the question if Proposition 8 holds for all affiliation-independent
voting rules. We shall shortly answer this negatively.

More precisely, we construct an affiliation-independent voting rule f such
that φIαm,sep-R

(f̂) � φIαm,sep-R
(f) for every α > 0. That is, with large primaries,

f performs much better under the primary system than under the direct sys-
tem, when voters and candidates are embedded on a line and the separability
condition is imposed.

Note that instances in Im,sep-R are highly structured. For instance, it is
known that when voters and candidates are embedded on a line, there always
exists a weak Condorcet winner [38], and selecting such a candidate results
in a distortion of at most 3 [12]. Hence, we have φIm,sep-R(f) = 3 for every
Condorcet-consistent, affiliation-independent voting rule f .6

Our aim in this section is to construct an affiliation-independent voting rule
ffail that with respect to Im,sep-R has an unbounded distortion in the direct
system, but at most a constant distortion in the primary system.

Definition 1. Let ffail be an affiliation-independent voting rule that operates
on election E = (V,A,

−→�) as follows. Let A = {a1, . . . , am}, and t = (m+ 1)/2.

• Special Case: If m ≥ 9, m is odd, n ≥ m2, and
−→� has the following

structure, then return a1.

1. For voter 1, a1 �1 . . . �1 am.

2. For voter 2, am �2 . . . �2 a1.

3. For voter 3, at−1 is the most preferred, and
am−2 �3 a1 �3 am−1 �3 am.

4. For voter 4, at+1 is the most preferred, and
a3 �4 am �4 a2 �4 a1.

5. For j ∈ [m− 2], for voter i = 4 + (2j − 1),
aj+1 �i aj+2 �i aj , and for voter i′ = 4 + 2j,
aj+1 �i′ aj �i′ aj+2.

6. For every other voter v, at is the most preferred.

• If E does not fall under the special case, then apply any Condorcet con-
sistent voting rule (e.g., Copeland).

Note that m being odd ensures that t is an integer, and m ≥ 9 ensures that
a1, a3, at−1, at, at+1, am−2, and am are all distinct candidates. The significance
of n ≥ m2 will be clear later.

We will now establish that a worst-case instance of ffail falls under the special
case; for this instance, we need to show that at is socially optimal; that ffail

6Anshelevich et al. [12] also proved that no affiliation-independent (deterministic) voting
rule can have distortion better than 3, even with respect to Im,sep-R.
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returns a1 on this instance; and most importantly, that the structure of
−→�

ensures that the optimal candidate at is sufficiently far from both the leftmost
and the rightmost candidates.

We prove this last fact in the following lemma.

Lemma 9. Let I = (V,A,M, ρ, π) ∈ Im,sep-R be an instance for which the
corresponding election EI falls under the special case of ffail. Then the following
holds.

1. Either ρ(a1) ≤ . . . ≤ ρ(am), or ρ(a1) ≥ . . . ≥ ρ(am), or |ρ(A)| = 2.

2. If |ρ(A)| 6= 2, min {d(at, a1), d(at, am)} ≥ d(a1,am)
4 .

Proof. Since voter 1 ranks am last and preferences are single peaked on the line,
am is at one edge of the candidate ordering. Similarly, since voter 2 ranks a1
last, candidate a1 is also at the edge of the candidate ordering (i.e., ρ(a1) =
maxa∈A ρ(a) or ρ(a1) = mina∈A ρ(a) and ρ(am) = maxa∈A ρ(a) or ρ(am) =
mina∈A ρ(a)). If ρ(a1) = ρ(am), this means voters 1 and 2 are located in an
equal distance from all candidates (which means all candidates are located in
the same location, or some are at some distance from voters 1 and 2, and the
rest are at the same distance in the other direction from these voters).

Assume |ρ(A)| > 2 (this also means ρ(a1) 6= ρ(am) and ρ(v1) 6= ρ(v2)), we
wish to show the order of candidates is as voter 1 ordered them, i.e., ρ(a1) ≤
. . . ≤ ρ(am) or ρ(a1) ≥ . . . ≥ ρ(am). If voter 1 is further away from all candi-
dates (i.e, if ρ(a1) = maxa∈A ρ(a), then ρ(v1) > ρ(a1); if ρ(a1) = mina∈A ρ(a),
then ρ(v1) < ρ(a1)), the ordering of the candidates is as voter 1 orders them.
Otherwise, let ` be the smallest index such that ρ(a1) 6= ρ(a`), then ρ(v1) may
be between ρ(a1) and ρ(a`). If d(v1, a1) < d(v1, a`), once again, the ordering of
candidates is as voter 1 ordered them. If d(v1, a1) = d(v1, a`), for any `′ > `,
ρ(a`′) 6= ρ(a1), as that contradicts voter 2’s vote (a`′ �2 a` �2 a1). There-
fore, ρ(`′) is either at ρ(`), or further away from ρ(a1), meaning that candidates
locations are ordered in the order voter 1’s ordered them.

For the second condition, we will show that d(at, a1) ≥ d(a1,am)
4 . By sym-

metry, we also obtain d(at, am) ≥ d(a1,am)
4 . Assume |ρ(A)| 6= 2, and with-

out loss of generality, let ρ(a1) ≤ . . . ≤ ρ(am) from the first condition. We
show that either ρ(a1) = . . . = ρ(am) or ρ(a1) < . . . < ρ(am). If not, then
we can find three consecutive candidates aj , aj+1, and aj+2 such that either
ρ(aj) = ρ(aj+1) < ρ(aj+2) or ρ(aj) < ρ(aj+1) = ρ(aj+2). Both of these op-
tions are impossible in our case due to the existence of voters with preferences
aj+1 � aj � aj+2 and aj+1 � aj+2 � aj .

If ρ(a1) = . . . = ρ(am) the second condition is trivially true. Suppose
ρ(a1) < . . . < ρ(am). Because voter 3 (resp. 4) prefers candidate at−1 (resp.
at+1) the most, we have ρ(v3) ∈ (ρ(at−2), ρ(at)) (resp. ρ(v4) ∈ (ρ(at), ρ(at+2)).
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We can now show

d(a1, am) ≤ d(a1, v4) + d(v4, am)

≤ 2d(a1, v4) (∵ am �4 a1)

≤ 2d(a1, am−2) (∵ ρ(at) < ρ(v4) < ρ(am−2))

≤ 2(d(a1, v3) + d(v3, am−2))

≤ 4d(a1, v3) (∵ am−2 �3 a1)

≤ 4d(a1, at). (∵ ρ(a1) < ρ(v3) < ρ(at))

This concludes the proof.

Theorem 10. For m ≥ 9 and constant α ∈ (0, 0.5], φIαm,sep-R(f̂fail) is upper

bounded by a constant, whereas φIαm,sep-R(ffail) is unbounded.

Proof. First, we show that φIαm,sep-R(ffail) is unbounded. Consider the following

instance I = (V,A,M, ρ, π). Let V = {v1, . . . , v2n} (where n ≥ m2), A =
{a1, . . . , am} (m being odd), andM = (R, d) with d being the Euclidean distance
on the line.

The embedding function ρ is as follows. For ` ∈ [m], ρ(a`) = `−1
m−1 ; that

is, candidates a1 through am are uniformly spaced in [0, 1] with ρ(a1) = 0 and
ρ(am) = 1.

Fix ε < 1/m2. The voters are embedded as follows.

ρ(v1) = ρ(a1)− ε,
ρ(v2) = ρ(am) + ε,

ρ(v3) = ρ(at − 1) + ε,

ρ(v4) = ρ(at + 1)− ε,
ρ(v4+(2j−1)) = ρ(aj+1) + ε ∀j ∈ [m− 2],

ρ(v4+2j) = ρ(aj+1)− ε ∀j ∈ [m− 2],

ρ(vj) =
1

2
∀j ≥ 2m+ 1.

Finally, in the party affiliation π, since we are just showing how bad the
distortion of direct elections are and f is affiliation-independent, the party affil-
iation is not important, and the outcome is independent of π, so we can assign
it in any way such that half the voters are of one party and half are of the other.
This construction is all we need since I ∈ I0.5m,sep-R ⊆ Iαm,sep-R for all α ∈ (0, 0.5].

Next, it is also easy to check that election EI falls under the special case of
ffail. Hence, ffail(E

I) = a1. Note that C(a1) ≥ (2n − 2m) · |0 − 1
2 | > n − m

because a1 is at distance 1
2 from all but 2m voters located at 1

2 . In contrast,
C(at) ≤ 2m · 1 because at is at zero distance from all but 2m voters (and its
distance from those 2m voters is at most 1). Thus, φ(ffail, I) ≥ (n −m)/2m.
Since n is unbounded, φIαm,sep-R(ffail) is also unbounded.

Finally, we show that φIαm,sep-R(f̂fail) is upper bounded by a constant. Fix
an instance I ∈ Iαm,sep-R. For notational simplicity, we refer to the number of
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candidates in I as m, though the proof below works if it is less than m, too.
First, assume |ρ(A)| 6= 2 (we will handle the case |ρ(A)| = 2 later). Without
loss of generality, assume that ρ(a1) ≤ . . . ≤ ρ(am), and that for a fixed q ∈ [m],
candidates a1, . . . , aq are affiliated with party −1 and the rest are affiliated with
party 1.

Let I−1 and I1 be the primary instances corresponding to I. Let aOPT be
an optimal candidate for I. Without loss of generality, suppose it is affiliated
with party −1.

In the proof of Theorem 5, φ(f̂ , I) depends only on the distortion of f on the
primary instance of the party that aOPT is affiliated with. Hence, if primary
election EI−1 does not fall under the special case of ffail, then ffail applies a
Condorcet-consistent rule on I−1, ensuring that φ(f, I−1) is at most 3. In this

case, by Theorem 5, φ(f̂ , I) is also upper bounded by a constant.
Suppose EI−1 falls under the special case of ffail. Let t = (q + 1)/2 and

d−1 = d(a1, aq). Then, by Lemma 9, min {d(at, a1), d(at, aq)} ≥ d−1/4. From
now on, we shall use asymptotic notation liberally for simplicity.

Recall that there is a set of voters S ⊂ V−1 whose top candidate was at, and

|S| = |V−1| − 2q = Ω(|V−1|) = Ω(n),

where the second transition holds because in the special case, |V−1| ≥ q2, and
the final transition holds because |V−1| ≥ αn.

Note that for every i ∈ S and j ∈ V1, d(i, j) ≥ d−1/8. And |V1| ≥ αn.
Hence, we have Ω(n) pairs of voters (i, j) such that d(i, j) ≥ d−1/8. Further,
d(aOPT, i) + d(aOPT, j) ≥ d(i, j). Hence, it follows that

C(aOPT) = Ω(n) · d−1. (4)

Let a∗ = f̂(I). If a∗ = a∗−1 = a1, then we have

C(a∗) ≤ C(aOPT) + n · d(a∗, aOPT)

≤ C(aOPT) + n · d−1 = O(C(aOPT)),

yielding a constant upper bound on φ(f̂fail, I) = C(a∗)/C(aOPT).
On the other hand, if a∗ = a∗1, we have

C(aOPT) ≥ C(a1)− n · d(a1, aOPT)

≥ n

2

d(a1, a
∗)

2
− n · d−1

≥ n

2

d(aOPT, a
∗)

2
−O(C(aOPT)).

Here, the second transition follows because in the general election, at least n/2
voters vote for a∗ over a1 and d(a1, aOPT) ≤ d−1, and the final transition follows
from Equation (4). This implies

C(aOPT) = Ω(n · d(aOPT, a
∗)). (5)
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On the other hand, we have

C(a∗) ≤ C(aOPT) + n · d(aOPT, a
∗) = O(C(aOPT)),

where the last transition follows due to Equation (5). Hence, we again have the

desired constant upper bound on φ(f̂fail, I).
Finally, if ρ(A) = {x1, x2} (w.l.o.g., x1 < x2), due to separability, we have

two options:

1. ρ(A−1) = x1 and ρ(A1) = x2: Therefore, aOPT ∈ {a∗−1, a∗1}, and since
a∗ is the majority winner, a∗ = aOPT, and the distortion is 1.

2. ρ(A−1) = {x1, x2} and ρ(A1) = x2: If aOPT ∈ {a∗−1, a∗1}, then it is
similar to the previous case. Otherwise, this means ρ(aOPT) = x1 and
ρ(a∗−1) = ρ(a∗1) = x2. Separability means the voters of party 1 lie in
{x|x ≥ x2}, so C(aOPT) ≥ |V1| ·d(x1, x2) ≥ α ·n ·d(x1, x2). While C(a∗) ≤
C(aOPT) + |V−1| · d(x1, x2) ≤ C(aOPT) + n(1 − α)d(x1, x2). Combining
these two equations we get the distortion is 1+2α

α .

8. Extension to Multiple Parties and Multi-Stage Systems

So far, we analyzed the primary system as an alternative to the direct system,
but in a restricted model that had the following assumptions:

• There are two parties.

• Every candidate belongs to exactly one of the two parties.

• Each party holds a primary election, and every voter votes in exactly one
of the two primaries.

• The two primary winners compete in a general election, where every voter
votes and the majority rule is used to decide the winner.

In practice, it is common for all of these assumptions to be violated. Often,
there are multiple parties and independent voters or candidates (who do not
participate in any primary); also, in the general election, only a fraction of the
voters may show up to vote. Further, we wish to explore scenarios which involve
more complex decision processes that extend beyond a 2-stage system. For
example, subsets of parties’ electorate decide on the candidates for the party,
which the party then further cuts down in an iterative process, presenting a
single candidate for the general elections.7

7For example, in the British party system, after candidates for party leadership announce
their candidacy, the parties’ Members of Parliament cull down the number of candidates (in
the Labour party to 6 candidates at most; in the Conservative party to 2 candidates). The
“surviving” candidates are put forward to the party membership, and the winner in each party
leads their respective parties in the general election.
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Nr, Ar, fr

N1, A1, f1 Nk, Ak, fk. . .

(a) 2-stage with k parties.

Nr, Ar, fr

N1, A1, f1

N4, A4, f4 N5, A5, f5

N2, A2, f2
N3, A3, f3

N6, A6, f6 N7, A7, f7

(b) Multi-stage.

Figure 1: Examples of tree-structured primary processes.

In this section, we propose a general model that relaxes all of the afore-
mentioned restrictions, and show that even multi-stage elections with multiple
parties are not much worse than the direct system. This extends the main result
of our paper, Theorem 5, which shows this for the restricted primaries model. In
particular, we establish this through a straightforward application of Lemma 2,
which was used to establish the special case of Theorem 5, thus demonstrating
the power of this lemma.

Notice that even in the 2-stage primaries model, when we allow k parties
for k > 2, we need to decide which voting rule will be used in the general
election to decide amongst the k primary winners. This is because the majority
rule, which we used in the 2-party setting, may not give a definite answer in
an election between k candidates. We can imagine this process as a rooted tree
with k + 1 nodes and height 2, with the root node representing the general
election and its k children representing the k primaries, as shown in Figure 1a.
The following definition generalizes this model to allow arbitrary rooted trees.
Further, in the election at each node of the tree, it allows an arbitrary subset
of the voters to participate, and an arbitrary subset of candidates to be added
on top of the winners of the elections at the children nodes.

Definition 2 (Tree-Structured Primary Process). A tree-structured primary
process is a rooted tree, in which each node t has an associated tuple (Vt, At, ft)
such that ∪tAt = A. The elections are conducted leaves-to-root: in the election
at each node t, voters in Vt ⊆ V vote over candidates in At ⊆ A as well as
the winners of the elections at the children of node t, and voting rule ft is used
to select a winner a∗t . Formally, if N(t) is the set of children of node t, then
the election at node t is over the set of candidates At ∪ {a∗t′ : t′ ∈ N(t)}. The
winner of the election at the root node is declared the overall winner under this
process.

An example of a more general tree-structured process is shown in Figure 1b.
Crucially, note that we do not impose any restriction on the subsets of voters

and candidates at the different nodes of the tree; they can overlap arbitrarily.
In other words, each voter may participate in the elections at an arbitrary
subset of the nodes, and the same holds for the candidates. The only restriction
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we impose is that every candidate must participate in at least one election
(∪tAt = A). This is because if a candidate does not participate in any election,
it becomes impossible to bound the social cost of the winner in terms of the
(entirely unknown) social cost of this candidate.

Therefore, in the 2-stage primary process, this model allows independent
voters and candidates. But moreover, it also allows more complex, multi-
stage decision-making processes (such as in the British party system, suggested
above).

We now show that an analogue of Theorem 5 holds for this more general
model.

Theorem 11. Let I be a tree-structured primary process. Let αt = |Vt|/|V |
denote the fraction of voters participating in the election at node t. Let a∗ and
aOPT denote the winner and a socially optimal candidate, respectively, and let
(t1, . . . , tk) denote a path from the root to a node tk such that aOPT ∈ Atk .
Then,

C(a∗) ≤

(
k∏
i=1

1− αti + φ(fti)

αti

)
· C(aOPT).

Thus, if P is the set of all root-to-leaf paths in I, then the distortion under this

process is at most max(t1,...,tk)∈P
∏k
i=1

1−αti+φ(fti )
αti

.

Proof. First, we observe that there always exists a node tk with aOPT ∈ Atk
because we have assumed that ∪tAt = A. As in the statement of the theorem,
let (t1, . . . , tk) be a path from the root to such a node. Let N(t) denote the set
of children of node t.

For each i ∈ [k − 1], applying Lemma 2 to the election at node ti, we get

C(a∗ti) ≤
1− αti + φ(fti)

αti
· min
a∈Ati∪{a

∗
t :t∈N(ti)}

C(a) ≤ 1− αti + φ(fti)

αti
· C(a∗ti+1

),

(6)
where the last transition holds because ti+1 ∈ N(ti). Similarly, applying Lemma 2
to the election at node tk, and noticing that aOPT ∈ Atk , we get

C(a∗tk) ≤ 1− αtk + φ(ftk)

αtk
· C(aOPT). (7)

Combining Equations (6) and (7), we get the bound with aOPT. The second
bound, when the path to aOPT is not known is a trivial consequence of the first
bound, simply going over all possible paths.

To understand this result, let us assume that for some constant α > 0, αt ≥ α
for each node t, i.e., at least a constant fraction of the voters participate in each

election. Then, using the fact that φ(f) ≥ 1 implies 1−α+φ(f)
α ≤ 2

α · φ(f),
we get that the distortion of the tree-structured primary process is at most
max(t1,...,tk)∈P(2/α)k

∏k
i=1 φ(fti). Note that while the distortion is exponential

in the height of the tree (a.k.a. the number of stages), in practice it is common
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to use a process with few stages. On the other hand, the important observation
is that the distortion is independent of the width of the tree.

Another important observation is what Theorem 11 implies for the 2-stage
primary process illustrated in Figure 1a, which allows independent voters and
candidates and any number of parties. Suppose we use the same voting rule
f in all the primaries and in the general election, and suppose that at least α
(resp. γ) fraction of the voters participate in each primary (resp. in the general
election). Then, the distortion of the overall process is at most 4

αγφ(f)2. While,
somewhat surprisingly, this is independent of the number of parties, we would
expect α to be a decreasing function of the number of parties, and hence the
distortion bound would linearly grow in the number of parties.

9. Using Simulations to Go Beyond Worst Case

So far we compared the distortion of a voting rule under the direct and
primary systems, taken in the worst case over a family of instances. In practice,
such worst-case instances may not arise naturally. In this section, we investigate
the distortion of a voting rule under the direct and primary systems, in the
average case over simulated instances. Our simulations focus on the two-stage,
two-party primary process which has been main setting in this paper. We
generate the simulated instances by varying a number of parameters; to keep
the number of simulations reasonable, when varying one parameter, we use
default values of the other parameters8:

Total voters The number of voters n: default = 500, range = 100 to 2100 in
increments of 200.

Total candidates The number of candidates m: default = 50, range = 10 to
210 in increments of 20.

Independent voters The percentage of voters who are independent (i.e., do
not vote in any party primary): default = 0%, range = 0% to 90% in
increments of 10%.

Independent candidates The percentage of candidates who are independent
(i.e., are not a candidate in any party primary): default = 0%, range =
0% to 90% in increments of 10%.

Party voter balance The percentage of voters who are affiliated with party
−1: default = 50%,9 range = 10% to 90% in increments of 10%.

8As we observe later, the dimension of the metric space had perhaps the most significant
effect on the distortion. To verify that this was not an artifact of the default values of the
other parameters, we varied the dimension along with every other parameter. Our figures,
however, are generated with the default value for the dimension.

9When there are no independent voters in these simulations, by default we split voters
equally between the two parties.
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Party candidate balance The percentage of candidates who are affiliated
with party −1: default = 50%,10 range = 10% to 90% in increments
of 10%.

Metric space dimension The dimension k of the Euclidean metric space [0, 1]k:
default = 4, range = {1, 4, 7, 10}.

For a given combination of the parameter values, we generate random in-
stances as follows. First, we place a set V of n voters at uniformly random
locations in [0, 1]k. Next, if the ratio of the number of voters in the two par-
ties is supposed to be x : (1 − x), we find a hyperplane dividing voters into
this x : (1 − x) ratio. Due to symmetry, we simply find a threshold t on the
kth coordinate such that the locations of x fraction of the voters (call this set
V−1) have kth coordinate at most t, while the locations of the rest (call this set
V1) have kth coordinate at least t. We do not set voter affiliations yet. Next,
if the ratio of the number of candidates in the two parties is supposed to be
x : (1 − x), then we place dx ·me candidates (call this set A−1) uniformly at
random on one side of the hyperplane, and the remaining candidates (call this
set A1) uniformly at random on the other side. Finally, if x% of the voters
(resp. candidates) are supposed to be independent, then we choose x% of the
voters (resp. candidates) — rounded down — from V−1 and V1 each (resp. from
A−1 and A1 each), remove them from the respective sets, and distribute them
at uniformly random locations in [0, 1]k.

Once the locations of the voters and candidates are fixed, we create two
instances. In one instance (called “split”), we assign V−1 ∪ A−1 to party −1,
and assign V1∪A1 to party 1. In this instance, we have party separability. In the
other instance (called “random”), we assign |V−1| voter and |A−1| candidates
chosen uniformly at random to party −1, and among the rest, assign |V1| voter
and |A1| candidates chosen uniformly at random to party 1. In this instance,
we do not have party separability. This allows us to compare the effect of party
separability on the distortion. We run five voting rules — plurality, Borda, STV,
maximin, and Copeland — on both instances under the direct and primary
systems, and measure the distortion. Note that the distortion of the direct
system would be identical for party separable and random instances because the
two instances only differ in party affiliations. Thus, for each rule, we obtain three
numbers: Direct, Primary-split, and Primary-random. For each combination of
parameter values, we repeat this 1000 times and take the average distortion.

Borda, which is a positional scoring rule like plurality, surprisingly tracks the
Condorcet-consistent rules Copeland and maximin. This provides some support
to a long line of papers in the literature establishing that Borda is “close to being
Condorcet consistent” [39, 40, 41, 42, 43].
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Primary
is better

Direct
is better

No significant
difference

plurality split 183 7 18
plurality random 203 0 5
STV split 8 178 22
STV random 152 13 48
Borda split 2 202 4
Borda random 8 179 21
maximin split 0 207 1
maximin random 0 208 0
Copeland split 0 207 1
Copeland random 0 208 0

Table 1: The table shows the number of settings (out of 208) in which each of primary and
direct systems leads to a lower average distortion than the other. Statistical significance is
measured using a paired t-test with p = 0.05.

9.1. Primary versus Direct: Summary

We now present our results comparing the primary and direct systems. Our
experiments result in 208 settings (combination of parameter values). For each
setting, we compare the average primary distortion and the average direct dis-
tortion of each voting rule under each party affiliation model (split or random),
and evaluate which system results in a better average distortion. For statistical
significance, we use the paired t-test with p = 0.05. The results are presented
in Table 1.

Without party separability (i.e. in the random case), our theoretical results
indicate that primary is no better than direct in the worst case (Theorem 7).
While this is also true in our experimentally generated average cases for Borda,
Copeland, and maximin, we see that for plurality and STV, primary almost
always outperforms direct in the average case.

With party separability (i.e. in the split case), direct outperforms primary
for all voting rules except plurality. While our theoretical result shows that for
plurality direct also outperforms primary in the worst case (Proposition 8), we
see that this is not true in the average case.

It is also interesting to see that for STV, party separability significantly
affects which system works better.

9.2. Primary versus Direct: Margins

Table 1 shows the number of settings in which each system outperforms the
other, but it does not tell us about the margin by which it outperforms. It could
very well be the case that when one system outperforms the other, it does so by

10When there are no independent candidates in these simulations, by default we split the
candidates equally between the two parties.
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(a) plurality-split (b) plurality-random (c) STV-split

(d) maximin-split (e) maximin-random (f) STV-random

Figure 2: These histograms show the difference between the average distortion under the
primary system and that under the direct system.

a large margin, whereas when the latter outperforms the former, it only does so
by a small margin.

To investigate this, we look at the the difference between the average dis-
tortion under the primary system and the average distortion under the direct
system. The results for plurality, STV, and maximin are given in Figure 2. The
figures for Borda and Copeland are omitted because they were similar to the
figures for maximin.

The results are quite varied. In some cases where primary mostly outper-
forms direct (e.g. in plurality-split or plurality-random), primary sometimes
outperforms direct by a large margin whereas direct only outperforms primary
by a small margin. But we see that the opposite is also true (e.g. in maximin-
split). Hence, neither system seems to have a significant advantage over the
other in terms of the difference in average distortions.

9.3. Effect of Varying Parameters on the Distortion of Primary

While the direct system and its distortion have long been studied in the com-
putational social choice literature, the primary system has not received much
attention. We now take a closer look at the distortion under the primary system,
and how it is affected by different parameters.

9.3.1. The Number of Voters

Figure 3 shows the effect of the number of voters. Initially, the average
distortion decreases as the number of voters increases (presumably because the
effect of outliers is reduced), but it quickly flatlines as the number of voters
grows further. This is not surprising: with an infinite number of voters, it
should converge to the distortion with respect to the underlying distribution.
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(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 3: The average distortion under the primary system as a function of the number of
voters.

9.3.2. The Number of Candidates

(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 4: The average distortion under the primary system as a function of the number of
candidates.

The number of candidates has a more interesting effect on the average dis-
tortion, depicted in Figure 4. For plurality and STV, the average distortion
grows with the number of candidates, which mimics the worst-case behavior.
For Borda, Copeland, and maximin, the average distortion grows in the split
case, but shows minimal change in the random case. In the random case, the
behavior of Borda, Copeland and mamimin is so similar that their distortions
overlap in the figure.

9.3.3. The relative number of voters in each party

The relative size of the parties has an interesting effect on the average distor-
tion. As both sub-figures of Figure 5 show, there is a striking difference between
cases where parties were separated and not separated. In general, when parties
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(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 5: The average distortion under the primary system as a function of the fraction of
the 500 voters in the first party.

were not separated, the relative size of parties, in terms of voters, did not have
a large impact on distortion11. On the other hand when parties are separated,
distortion tends to increase as the number of voters in each party becomes more
balanced, this is especially evident when using the Condorcet consistent rules
(and Borda).

9.3.4. The number of candidates in each party

(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 6: The average distortion under the primary system as a function of the fraction of
the 50 candidates in the first party.

As Figure 6 shows, in most cases the average distortion of the primary
election was not impacted by the relative size of parties, in terms of the number
of candidates. The only exception to this were the Condorcet consistent rules

11In the non-separable case, the distortion for STV does increase slightly as the number of
voters in each party becomes balanced.
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(and Borda) which show a slight decrease in distortion as the parties became
closer in terms of number of candidates.

9.3.5. The Percentage of Independent Voters

(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 7: The average distortion under the primary system as a function of the percentage of
independent voters.

The effect of independent voters is also interesting. With more independent
voters, we would expect the average distortion to increase because the indepen-
dent voters become more important in the general election, but do not get a
voice in selecting the primary winners over which they are asked to vote. In
Figure 7, we see that the average distortion increases in each case; however,
the effect is mild except in the extreme region where more than 80% voters are
independent.

9.3.6. The Percentage of Independent Candidates

(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 8: The average distortion under the primary system as a function of the percentage of
independent candidates.
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There are two reasonable interpretations of how independent candidates may
impact the average distortion. On the one hand, if the primary winners are
desirable candidates, having too many independent candidates in the general
election can hurt by overshadowing them. On the other hand, if the primary
winners are not desirable, then independent candidates can serve as viable al-
ternatives. In Figure 8, we see that this non-trivial effect shows up in the case
of plurality and STV. For Borda, Copeland, and maximin, we once again see a
dramatic difference between the split and random cases.

9.3.7. The Dimension of the Metric Space

(a) Borda, Copeland, and maximin (b) Plurality and STV

Figure 9: The average distortion under the primary system as a function of the dimension of
the party embedding.

Perhaps the most consistent pattern across all our simulations was the im-
pact of the dimension the parties were embedded in had on the average primary
election distortion. As Figure 9 shows as the dimension of the embedding in-
creases the distortion goes down in all. While Figure 9 only shows the distortion
curve with the default values for each variable we encountered similar patterns in
all settings. Increasing the dimension while holding all other variables constant
consistently led to lower distortions.

10. Discussion

Our paper initiates the novel quantitative study of multi-stage elections (and
their comparison to single-stage elections), but leaves plenty to explore. Some
directions are fairly straightforward extensions of our results. The most straight-
forward question is to tighten our bounds. Beyond that, it is important to
consider whether or not our results on the benefit of primaries over direct elec-
tions that hold with respect to a synthetic voting rule could also hold for more
common voting rules (e.g., STV) or not. Moreover, our results contrasting sep-
arable and non-separable metric spaces might possibly be extended to spaces
which are “nearly-separable”, or more generally, we might consider a suitable
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parameterized definition of party separation and study how results change as
the paramterer is changed to force more or less separation. There is also the
question of explaining the trends we observe in the average case, which some-
times differ from our worst-case results. In particular, we would like to have a
good understanding as to why plurailty and STV differ so dramatically (as in
the experimental results summarized in Table 1) with regard to the party sep-
aration model. A next step would be to study realistic distributional models of
voter preferences and candidate positions in the political spectrum, and analyze
their effect on distortion.

Other extensions are seemingly more involved. The multi-stage process offers
various directions of exploration. With regard to the multi-party tree model
(Defintion 2) in section 8, what tree-graph structures produce better results?
What are voting rule combinations that work well together? Examining the use
of multiple and different voting rules as Narodytska and Walsh [44] do for two-
step voting (though without candidate elimination between stages) is an enticing
direction. For example, plurality might be used in the general election, while
STV might be used by the parties in their primaries. It would be interesting
as well to examine manipulations by parties, by candidates, and by voters in
primary systems. In particular, it is reasonable to believe that candidates may
strategically shift, to some extent, their location following the primaries, to
make themselves more appealing to the general electorate. Another topic where
more research is needed is investigating multi-winner elections in party elections
(e.g., in party lists, in countries where this is common).

We believe that the study of multi-stage elections and party mechanisms
can not only contribute novel theoretical challenges to tackle, but can also bring
research on computational social choice closer to reality and increase its impact.
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Appendix A. Reduction to Primaries

In Section 5, we show that the distortion of any voting rule is not much
worse under the primary system (given that the primaries are large) than under
the direct system. However, this analysis assumes a restricted primary system
in which each voter participates in exactly one of two primaries and all voters
participate in the general election. In Section 8, we introduce a more relaxed
primary system and show that the result continues to hold. However, this result
bounds the distortion of a voting rule under the relaxed primary system in terms
of its distortion under the direct system (see Theorem 11).

In Section 7, we show that for some voting rules, their distortion under the
restricted primary system can be much better than their distortion under the
direct system. For such voting rules, can we relax the assumptions, but instead
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of reducing to the direct system, reduce to the restricted primary system? In
other words, can we bound their distortion under the relaxed primary system
in terms of their distortion under the restricted primary system, given that
the latter is known to be much better than their distortion under the direct
system? In this section, we show that this is possible for a milder relaxation
than in Section 8.

We extend our formal framework as follows. Recall that so far, we denoted
an instance by I = (V,A,M, ρ, π), where V is a set of n voters, A is a set of
candidates, and party affiliation π : V ∪ A → {−1, 1} maps every voter and
candidate to one of the two parties. We further assumed that each voter v
participates in the primary of party π(v) as well as in the general election.

In the extended framework, we denote an instance by I = (V,A,M, ρ, π, τ).
Here, the party affiliation function π : V ∪ A → {−1, 0, 1} is allowed to map a
voter to 0, which indicates that the voter does not participate in either party’s
primary election. This incorporates not only independent voters, but also voters
affiliated with a party that do not participate in the party’s primary election.
We still require that π(a) ∈ {−1, 1} for every a ∈ A, i.e., that every candidate
is affiliated with a party and participates in that party’s primary election. We
also have the additional function τ : V → {0, 1}, which maps each voter to 1 if
the voter participates in the general election, and to 0 otherwise. This relaxes
the assumption that all voters participate in the general election.

Finally, recall that for α ∈ (0, 0.5], we defined a family of instances Iαm,M
such that in every instance I ∈ Iαm,M with n voters, at least αn voters are
affiliated with each party (and participate in that party’s primary election). In
the relaxed framework, for α ∈ (0, 0.5], β ∈ (0, 1], and γ ∈ (0, 1], we define

a family of instances Iα,β,γm,M such that in every instance I ∈ Iα,β,γm,M with n
voters, at least αn voters participate in each primary election, at least βn of
voters participated in the primaries (obviously, β ≥ 2α), and at least γn voters
participate in the general election. Formally, we require |π−1(p)| ≥ αn for each
p ∈ {−1, 1}, |π−1(−1)∪π−1(1)| ≥ βn and |τ−1(1)| ≥ γn. Note that the relaxed

family Iα,β,γm,M includes all instances from the restricted family Iαm,M, which are
obtained when β = γ = 1.

While our restricted framework required that π(v) ∈ {−1, 1} and τ(v) = 1
for every voter v, the extended framework allows the following possibilities.

1. π(v) = 0 and τ(v) = 1: the voter does not participate in either primary
but participates in the general election.

2. π(v) ∈ {−1, 1} and τ(v) = 0: the voter participates in a primary election
but does not participate in the general election.12

3. π(v) ∈ 0 and τ(v) = 0: the voter does not participate in any election,
primary or general.

Our goal is to show that for any voting rule f and constants α, β, γ > 0, the

12While data indicates that almost all voters who participate in the primary elections also
participate in the general election [28], we consider this possibility for the sake of completeness.
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distortion of f under the primary system in the relaxed framework (φIα,β,γm,M
(f̂))

is no more than a constant times higher than in the distortion in the restricted
framework (φIαm,M(f̂)); the fact that φIα,β,γm,M

(f̂) ≥ φIαm,M(f̂) follows trivially

from the fact that the relaxed framework is strictly more general than the re-
stricted framework.

We begin by noticing that Lemma 2, applied on the general election in this
framework, yields the following comparison between the social cost of the general
election winner and the social cost of the two primary winners. Here, we use
the fact that the distortion of the majority rule is 3 [12].

Corollary 12. Consider an instance I ∈ Iα,β,γm,M where α, β, γ > 0. In the

primary system, let a∗−1 and a∗1 be the two primary winners, a∗ ∈
{
a∗−1, a

∗
1

}
be

the winner of the general election, and â ∈
{
a∗−1, a

∗
1

}
\ {a∗}. Then,

C(a∗) ≤
(

4

γ
− 1

)
· C(â).

We are now ready to prove the main result of this section.

Theorem 13. For every choice of M, m ∈ N, affiliation-independent voting
rule f , and constants α, β > 0,

φIα,β,γm,M
(f̂) ≤

(
4

γ
− 1

)(
1 +

4

β

)
· φIαm,M(f̂).

Proof. Consider an instance I = (V,A,M, ρ, π, τ) ∈ Iα,β,γm,M with n voters in the
relaxed framework. Recall that function π : V ∪A→ {−1, 0, 1} dictates whether
each voter participates in the primary of party −1, in the primary of party 1,
or in neither primary. Similarly, function τ : V → {0, 1} dictates whether each
voter participates in the general election.

Let us now construct an instance I = (V ,A,M, ρ, π) ∈ Iαm,M in the restricted

framework as follows: We set V =
(
π−1(−1) ∪ π−1(1)

)
∩V ; that is, we keep the

voters who participate in the primaries in I, and delete the voters who do not.

Note that |V | ≥ βn. Let π : V ∪ A → {−1, 1} be the restriction of π to V ∪ A
(note that π does not map any voter in V to 0, and cannot map any candidate

in A to 0). Note that at least αn ≥ α|V | voters participate in each primary
election; hence, this is a valid instance of Iαm,M.

Crucially, note that instances I and I match in the set of voters that par-
ticipate in each primary election. They only differ in the set of voters that
participate in the general election.13 Hence, the primary winners in instances I

and I must be identical.

13In the general election of I, we removed voters who participated in the general election
but not in the primaries in I, and added voters who participated in the primaries but not in
the general election in I.
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Let a−1 and a1 denote the primary winners of parties −1 and 1, respectively,

in both I and I. Let aOPT ∈ arg mina∈A C
I(a) and aOPT ∈ arg mina∈A C

I (a)

denote the socially optimal candidates in I and I, respectively, and let a∗ and

a∗ denote the winners of the general elections in I and I, respectively. Hence,

φ(f̂ , I) = CI(a∗)
CI(aOPT)

and φ(f̂ , I) = CI (a∗)

CI (aOPT)

.

For any candidate a, we have

βn · d(aOPT, a) ≤ |V | · d(aOPT, a) ≤
∑
i∈V

d(i, aOPT) + d(i, a)

= CI (aOPT) + CI (a)

≤ 2CI (a),

where the first transition follows because |V | ≥ βn, the second transition follows
from the triangle inequality, and the final transition holds because aOPT is the

socially optimal candidate in I. Hence, for every candidate a, we have

d(aOPT, a) ≤ 2

βn
CI (a). (A.1)

Now, we have

CI(a∗) ≤
(

4

γ
− 1

)
CI(a∗) =

(
4

γ
− 1

)∑
i∈V

d(i, a∗)

≤
(

4

γ
− 1

)
·
∑
i∈V

d(i, aOPT) + d(aOPT, a
∗)

≤
(

4

γ
− 1

)
·
(
CI(aOPT) + n ·

(
d(aOPT, aOPT) + d(aOPT, a

∗)
))

≤
(

4

γ
− 1

)
·
(
CI(aOPT) + n ·

(
2

βn
CI (aOPT) +

2

βn
CI (a∗)

))
≤
(

4

γ
− 1

)
·
((

1 +
2

β

)
CI(aOPT) +

2

β
CI (a∗)

)
, (A.2)

where the first transition follows from the fact that both a∗ and a∗ are primary
winners in I and from Corollary 12, the third and the fourth transitions follow
from the triangle inequality, the fifth transition uses Equation (A.1), and the

final transition uses the fact that CI (a) ≤ CI(a) for any candidate a since the
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set of voters in I is a superset of the set of voters in I. Finally, we have

φ(f̂ , I) =
CI(a∗)

CI(aOPT)

≤
(

4

γ
− 1

)
· 1

CI(aOPT)

((
1 +

2

β

)
· CI(aOPT) +

2

β
· CI (a∗)

)

≤
(

4

γ
− 1

)
·

(1 +
2

β

)
+

2

β
· CI (a∗)

CI(aOPT)


≤
(

4

γ
− 1

)
·

(1 +
2

β

)
+

2

β
· CI (a∗)

CI (aOPT)


=

(
4

γ
− 1

)
·
((

1 +
2

β

)
+

2

β
· φ(f̂ , I)

)
≤
(

4

γ
− 1

)(
1 +

4

β

)
φ(f̂ , I),

where the first transition uses Equation (A.2), and the second transition uses

the fact that CI(aOPT) ≥ CI (aOPT) ≥ CI (aOPT). Thus, we have the desired
result.

Since having independent voters in the general election and having voters
who only participate in the primaries cannot improve the distortion of a voting
rule under the primary system, our earlier results which establish that primaries
are no better than direct elections (Theorems 1 and 7) continue to hold in this
extended framework. Additionally, we proved that the existence of such voters
can make the distortion under the primary system worse by at most a constant
factor (which depends on β and γ). Hence, our earlier results which establish
that primaries cannot be much worse than direct elections (Theorem 5) or that
primaries can be significantly better than direct elections (Theorem 10) also
continue to hold in this extended framework.
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