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Abstract
This paper examines the combinations of two
decision-making models. The first, district-voting,
is a commonly used method both for political elec-
tions (in the US, UK, Canada etc,), as well as in any
setting with multiple groups: each district or group
have an election, and the election results are aggre-
gated in a second stage. The second model is that
of iterative voting. In iterative voting, participants
are assumed to adapt their vote to the current situ-
ation as they see it (e.g., via polls). Voters attempt
to increase the chance the winner will be a candi-
date they prefer, and in order to do so, they vote
differently than they believe.
We show that while some voting rules are known to
converge when using iterative voting, the process
no longer converges when using iterative voting in
district-based elections. However, we use simula-
tions to compare the election outcomes using multi-
ple voting rules and multiple distributions, showing
which voting rules result in higher quality winners,
and which voting rules seem to be less suited for
district-base iterative voting.

1 Introduction
Voting, as a method to aggregate the various views of agents
– human or artificial ones – is a crucial part in any sys-
tem which relies on multiple diverse and independent agents,
as their viewpoints need to be combined to create a coher-
ent outcome. A particularly interesting subset of aggrega-
tion methods are district-based elections. In such elections,
the agents are divided into several parts (commonly called
“districts”), and their votes are combined first in each dis-
trict, which then submits its election outcome to a second
stage, that chooses the most common outcome as the final
result. Much district-based election research, even its compu-
tational parts [Bachrach et al., 2016; Lewenberg et al., 2017;
Borodin et al., 2018] take its inspiration from political elec-
tions – district-based elections choose country leaders (as in
Westminster system countries, where the districts are parlia-
mentary constituencies) or can create new laws (e.g., the US
Congress). However, district-based elections are applicable
in non-political settings as well – organizational decisions,

for example, may be decided by a vote between the heads
of the organization’s sub-units, each with its own decision
process; a sensor array with different types of sensors (each
type reaching its own combined reading); and other settings
in which agents have a natural division between them.

Understanding how individual preferences interact with
a voting system – in particular one as relatively little ex-
plored as district-based one – is of paramount importance
to all participants, both voters and potential winners. How-
ever, the Gibbard-Satterthwaite theorem [Gibbard, 1973;
Satterthwaite, 1975] showed that under any reasonable vot-
ing system, voters might be incentivized to misreport their
preferences. In order to understand the voting behavior of
agents we wish to find the stable states (or Nash equilibria),
for each election – states in which voters, after strategizing
and knowing the outcome, do not wish to further change their
votes. However, the standard Nash equilibrium can be an un-
satisfactory solution concept when it comes to voting. For
example, if one candidate was universally loathed and ranked
last by all voters’ private beliefs, the state where it is all vot-
ers’ top choice is a Nash equilibrium, despite being quite an
unlikely voting outcome.

Instead, the iterative voting model was suggested by [Meir
et al., 2010], and it considers a subset of Nash equilibria:
those reachable by an iterative process, in which voters may
change their vote (one at a time) to make the outcome more
preferable to them. This model does not shy away from the
inevitable strategic voting by agents, and attempts to stay
grounded in what voters might plausibly do. The solution
concept suggested by this model (and the papers that fur-
thered investigated the model) is that when starting from
truthful preferences, the equilibrium reached by the process
of iterative voting might represent a more plausible idea of a
potential end state of the election.

This paper wishes to combine these two research strains –
district-based voting as a common setting for decision mak-
ing, and iterative voting as a useful analytical tool of possi-
ble voter behavior. Such a combination has some relevance
in political settings (e.g., US presidential elections, in which
the districts are the states, and the iterative dynamic is due
to polling), but it might be more interesting exploring it in
organizational settings: small organizational units trying to
reach a decision, conducting internal debate (which often in-
corporates an implicit iterative dynamic) on a set of options,



with each unit reporting its decision, and they are ultimately
aggregated. Such a dynamic can be seen in various organi-
zations, for example, the decision processes in some youth-
groups (similar to boy and girl scouts) in some countries, ag-
gregating decisions from local branches.

The combination of district and iterative voting is not al-
ways smooth – known results from iterative voting litera-
ture do not necessarily apply in district-based settings, which
can introduce unintuitive behavior among voters. Consider a
voter whose preferred candidate is uncompetitive in their dis-
trict, but a strong candidate in other districts. They may prefer
to vote for a more locally competitive candidate which is not
competitive in other districts, and thus deprive their preferred
candidate’s competition of a district representative, even if it
means their own district is represented by a candidate they
dislike. This non-monotone logic does not hold in previously
studied iterative voting systems, increasing voters’ array of
possible strategies. Other voters, on the other hand, might be
less concerned with the identity of the winning candidate in
the district elections, but rather focus on electing a represen-
tative they feel will be a strong advocate for them. In this
work we examine both types of voters:

• Globally minded voters: These voters are concerned
with the overall winner outcome. Hence, they will vote
strategically to ensure a preferred candidate holds a plu-
rality of the districts, even if this means they are repre-
sented by an inferior candidate.
• Locally minded voters: These voters are concerned

with their local representative, they will vote strategi-
cally to ensure their preferred candidate represents them,
even if this means the overall winner will not be to their
liking.

We begin by showing that previously known results on
the convergence of iterative voting no longer hold in district-
based settings. We then empirically study these equilibria by
employing simulations of iterative voting, comparing various
voter distributions and voting methods1.

2 Related Work
This paper joins two different research threads. The first, and
more well established, is the one of iterative model. While
work on different models involving iterative updating of pref-
erences existed before it (e.g., [Airiau and Endriss, 2009]),
the model we are exploring and expanding was introduced
in [Meir et al., 2010], which both introduced the model and
showed convergence results for plurality. Convergence for
veto (and non-convergence for other scoring rules), as well
as the importance of linear ordered tie-breaking was shown
in [Lev and Rosenschein, 2016]. Lack of convergence in
the main non-scoring rule voting mechanisms was shown in
[Koolyk et al., 2017]. [Brânzei et al., 2013] showed the rel-
ative strength of the candidates which win in iterative vot-
ing, while [Rabinovich et al., 2015] analyzed the complexity
of finding Nash equilibria reachable through an iterative pro-
cess.

1We significantly enhance and expand the code base from http:
//www.preflib.org/tools/ivs.php, initially used in [Meir et al., 2014].

The basic iterative voting model was expanded in vari-
ous ways – [Obraztsova et al., 2015b] discusses different dy-
namics that can be pursued by voters (a topic also discussed
in [Grandi et al., 2013; Koolyk et al., 2017]), while [Rabi-
novich et al., 2015] discussed lazy and truth biased voters,
and [Tsang and Larson, 2016] explored graph-related social
network concerns. [Meir et al., 2014] (followed up by [Meir,
2015; Lev et al., 2019]) suggested a more elaborate model,
encompassing uncertainty by voters as to what state they are
in. [Obraztsova et al., 2015a] used a similar idea to deal with
the myopia of voters.

The second research thread this paper connects to is one
on district-voting, which has to do with the effect districts
have on voting outcomes. While this has been explored
with regards to political contexts (usually, country specific)
in political science, history and law (e.g., [Erikson, 1972;
Schuck, 1987; Wang, 2016]), it has only recently garnered
interest in computational fields. [Bachrach et al., 2016] deals
with the fundamental representability issues raised by using
districts, while most other papers deal more specifically with
gerrymandering – the manipulation of electoral districts to
the benefit of some candidate [Bervoets and Merlin, 2012;
van Bevern et al., 2015; Lewenberg et al., 2017; Pegden et
al., 2017; Borodin et al., 2018]. [Lev and Lewenberg, 2019]
examined an iterative process in the context of districts, but
it only dealt with agents moving between districts, but that is
not a possibility in many settings, where the available strategy
has to do with who the ultimate winner is.

3 Preliminaries
An election consists of a set of voters V of size n and a
set of candidates (or options) C of size m. In our case,
our voters are divided between a set of districts D =
{D1, D2, . . . , Dk}. We shall assume the district sizes are
equal, so n is divisible by k. Let π(C) be the set of all linear
orders of the elements of C, and each vote v ∈ V is asso-
ciated with such an order �v∈ π(C), which determines the
internal (and unchanging) preference order of each agent over
the candidates.

The voting system in each district uses a function f̃ :
(π(C))

n
k → 2C , which takes as an input all of the district’s

voters’ votes (which do not necessarily have to match their
internal preferences), and outputs a set of candidates. Then, a
function t : 2C → C is used to break ties and select a single
winner. Hence, the winner in each district is determined by
f : f̃ ◦ t. Finally, the ultimate election winner is determined
in a second stage, which choses the candidate that won most
districts (i.e., plurality)2.

We shall explore the following voting rules (the f̃ above):

Plurality Each voter gives a single point to a particular can-
didate. The candidate with the most points is the winner
(or winners).

Veto Each voter gives a point to all candidates except one
(which the voter is “vetoing”). The candidate with the

2Naturally, other voting methods may be considered here, but we
chose the system analyzed in previous district-voting literature, and
which seems to be the one commonly used.

http://www.preflib.org/tools/ivs.php
http://www.preflib.org/tools/ivs.php


most points is the winner (or winners).
Borda Each voter gives a set of points to candidates, such

that if there arem candidates, the candidate ranked at the
ith location (1 being most favored) getsm− i points. So
the top candidate gets m − 1 points, the second ranked
gets m − 2, decreasing point by point until the penulti-
mate candidate gets 1 point, and the least favored candi-
date gets 0 points. The candidate with the most points is
the winner (or winners).

Copeland Each candidate is given a score based on how
many candidates it beat in pairwise comparisons. So for
a candidate c ∈ C, it gets a point for every candidate
c′ ∈ C such that |{v ∈ V |c �v c

′}| > |{v ∈ V |c′ �v

c}|, and loses a point for every candidate c′ ∈ C such
that |{v ∈ V |c �v c

′}| < |{v ∈ V |c′ �v c}|. The can-
didate with the maximal score is the election winner (or
winners).

STV (Single Transferable Vote) Each voter submits their
full ranking, but only their first choices are examined
at first, and added up for each candidate (as in plurality).
Until there is a candidate which receives 50% or more of
the vote, the candidate which received the fewest votes is
eliminated, and those voting for them will transfer their
vote to the highest candidate in their ranking that has not
yet been eliminated.

The voting rules above include examples of scoring rules
(in which voters allocate points – as in plurality, veto and
Borda) and of tournament-based rules (based on pairwise
comparisons – like Copeland). The tie-breaking rule (t) we
shall use throughout this paper is the one used in almost all
previous iterative voting and district-voting papers – lexico-
graphic (i.e., there is a linear order – an element of π(C) –
that determines the tie-breaking).

One further definition we shall note is that of the Condorcet
winner. This candidate is supported by a majority of voters
compared to any other candidate. That is, candidate c ∈ C is
a Condorcet winner if for any other candidate c′ ∈ C, c 6= c′,
|{v ∈ V |c �v c′}| > |{v ∈ V |c′ �v c}|. A Condorcet
winner does not necessarily exist, and is not guaranteed to be
a winner by many voting rules even when it does, but it can be
viewed as a “good”, or desirable, winner, which can be used,
in some instances as a proxy to how good of a candidate is
being selected.

3.1 Iterative Voting without Districts
The iterative voting model is one which tries to describe the
dynamic by which voters change their vote to maximize their
utility (determined by how high in their own internal rankings
the ultimate winner is), according to what others are voting.
Once knowing what is the election outcome, the voters know
which candidates are viable, and if they can change the out-
come, they change their vote so they can make someone they
prefer over the current winner victorious. That is, if the cur-
rent vote by all voters is ~p, with voter v ∈ V voting pv (and
the vector of other voters except v being ~p−v), then v can
make a move if there is a vote a ∈ π(C), a 6= pv such that
f(~p−v, a) �v f(~p). If there are multiple such moves then the
best response move is v’s most favorable outcome, that is, a

vote a ∈ π(C) is a best response if f(~p−v, a) �v f(~p), and if
there is no vote b ∈ π(C) such that f(~p−v, b) �v f(~p−v, a).

If this process ends in a state such that no voter wants
to change their vote, it is a stable state, also called a Nash
equilibrium (though note that not all Nash equilibria may be
reachable by such a process). If for a particular voting rule the
iterative process always converges to a stable state, we say the
voting rule converges. Otherwise, for non-converging voting
rules, there are settings where the iterative process may never
end.

So far, on regular, non-district iterative voting, the follow-
ing theorems are known
Theorem 1 ([Meir et al., 2010] Theorem 3). Iterative plural-
ity (with deterministic tie-breaking), when voters are myopic
(i.e., only examine the current state, and not predict ahead)
and pursue a best-response strategy, will always converge to
a Nash equilibrium.
Theorem 2 ([Lev and Rosenschein, 2016] Theorem 3). Iter-
ative veto (with deterministic tie-breaking), when voters are
myopic (i.e., only examine the current state, and not predict
ahead) and pursue a best-response strategy, will always con-
verge to a Nash equilibrium.
Theorem 3 ([Lev and Rosenschein, 2016] Theorem 4). For
any scoring rule except plurality and veto, iterative voting,
even with deterministic tie-breaking, and even when voters
are myopic (i.e., only examine the current state, and not pre-
dict ahead) and pursue a best-response strategy, have cases
in which they will not converge to a Nash equilibrium.
Theorem 4 ([Koolyk et al., 2017] Theorems 1-6). Even with
deterministic tie-breaking, and when voters are myopic (i.e.,
only examine the current state, and not predict ahead) and
pursue a best-response strategy, iterative maximin, iterative
Copeland, iterative Bucklin, iterative STV, iterative second-
order-Copeland, and iterative ranked pairs3 will all have
cases in which they will not converge to a Nash equilibrium.

4 Iterative Voting in District-Based Settings
Model

When considering what are voters aiming for in district-based
settings we examine two options:
Global These voters, as in the “regular”, non-district, ver-

sion of iterative voting, wish to make the overall winner
as favorable to them as possible. Hence, they will choose
a vote that, regardless of what happens in their own dis-
tricts, makes the global winner someone they prefer.

Local These voters are only concerned with which candidate
wins their own district, and their strategic moves does
not take into considerations which candidate is the over-
all winner.

If all voters are local, then district-based elections are ba-
sically run as k separate elections, as no voter changes their
vote depending on who the overall winner is. All results re-
garding iterative elections hold in this case, as the districts are
not inter-connected, as far as voters are concerned.

3We do not define voting rules which are not examined in this
work.



However, when voters are global, their strategic consider-
ations change. In particular, moves which would not have
been rational in non-district iterative voting become plausi-
ble. For example, voters may chose to vote for a candidate
they dislike, and prefer the current winner over, as it would
effect the overall winner’s identity in a way they prefer (see
Example 5).
Example 5. We have 3 districts (each using plurality) and 3
candidates, a, b, and c (ties broken lexicographically). In one
of them, the winner is candidate a, and in another the winner
is candidate b. In the third district bn2 c+ 1 voters vote for c,
and the rest vote for b. Hence, the winner of this district is
candidate c, and the overall winner is candidate a.

Suppose voter v, in the third district, has the preference
order c � b � a. If this voter is a local voter, they do not
change their vote, as their favorite candidate is the district
winner, and they only care for that. However, if v is a global
voter, they will change their vote to b, making the district win-
ner b (which, in their preferences is a worse candidate than
c which the previously voted for), making the overall winner
candidate b, which they prefer over the previous overall win-
ner, candidate a.

5 Convergence
For local voters, all previous convergence results (Theo-
rems 1, 2, 3, 4) still hold. Hence, iterative plurality or iterative
veto in district-based elections will converge to Nash equilib-
ria with local voters, and other scoring rules (and well known
non-scoring rules) will not converge.

When voters are global, any non-convergence result still
holds (Theorems 3, 4) since all candidates may have the same
number of districts supporting them, and one single district’s
winner will determine the outcome. In this case, this district’s
global voters care about the district’s outcome, as it will de-
termine the overall winner. So global voters behave like local
voters, and if they might end up in a cycle, so will global
voters. We formalize this understanding in a theorem:
Theorem 6. When voters are global or local, and are pursu-
ing a myopic best-response strategy, for any scoring rule that
is not plurality or veto, and for maximin, Copeland, Bucklin,
STV, second-order-Copeland, and ranked pairs, iterative vot-
ing in district-based elections has cases where they will not
converge to a Nash equilibrium, and they will end up in a
cycle.

For the convergence results, however, for iterative plurality
and veto, we need to show if these still hold. Sadly, they do
not:
Theorem 7. When voters are global and are pursuing a my-
opic best-response strategy, both iterative plurality and itera-
tive veto in district-based elections have cases where they do
not converge to Nash equilibria and may end up in a cycle.

Proof. We begin with the proof for iterative plurality. The
construction here is somewhat similar to one given in [Meir
et al., 2010] for non-convergence of non-best-response strate-
gies. However, in our construction, the voters use best-
response strategies, which under district-voting end up as be-
ing non converging.

Consider a setting with 9 districts, each with 11 voters,
and 4 candidates – a, b, c, d (using lexicographic tie-breaking.
Each of a, b, d have the support from 2 districts, while candi-
date c has the support from three districts, making c the global
winner. An overview of the cycle can be seen in Figure 1.

We shall look at agents in three districts. Districts I + II,
currently supporting candidate d, and district III, currently
supporting candidate c. District I is composed of one a voter,
3 voters supporting b, 3 voters supporting c, and 4 voters sup-
porting candidate d. District I has a voter x, whose preference
order is a � b � c � d.

District II is composed of one b voter, 3 voters supporting
a, 3 voters supporting c, and 4 voters supporting candidate d.
District II has a voter y whose preference order is d � a �
b � c.

District III is composed of one d voter, 3 voters supporting
a, 3 voters supporting b, and 4 voters supporting c. District
III has a voter z whose preference order is c � b � a � d.

Let us now examine these voters moves:

1. Voter x, who changes their vote to b, making the global
winner candidate b (since they cannot change their dis-
trict to have a as the winner, making b the winner is their
best option).

2. Voter y is now able to change their vote to a (as it prefers
a winning to b, and it cannot make its favorite, candidate
d the winner), making that candidate the winner of dis-
trict II, and also the global winner.

3. Voter z can now change their vote to candidate b, making
it the district winner as well as the global winner.

4. Voter x now changes their vote to c, making it district
I’s winner, but it allows the global winner to become a
(agent x cannot make a the winner of its district, and a
is preferable to b as a global winner for this voter).

5. Voter z reverts to its truthful vote, for c, making in the
winner of district III, and the global winner as well.

6. Voter x now reverts to voting for candidate b (as it did in
step 1), making a the global winner.

7. We are now back in the state at the beginning of step 3,
and steps 3-6 can repeat ad-infinitum.

The example for iterative veto is quite similar (and follows
the same overview, in Figure 1), only containing slightly dif-
ferent voters to allow for similar strategic changes (which dis-
trict votes for which candidates). Therefore, district I is com-
posed of 1 voter vetoing d, 2 voters vetoing b, 2 voters vetoing
c, and 6 voters vetoing a. We consider two voters in this dis-
trict – x′ with the preference order b � d � c � a and x with
the preference a � b � d � c.

District II is composed of 1 voter vetoing d, 2 voters ve-
toing a, 3 voters vetoing c, and 5 voters vetoing b. We
consider one voter in this district – y with the preference
d � a � b � c.

District III is composed of 1 voter vetoing c, 2 voters ve-
toing b, 3 voters vetoing a, and 5 voters vetoing d. We con-
sider one voter in this district – z whose preference order is
c � b � a � d.

Let us now examine these voters moves:



a

b

c c

b

a d

d

c

voter x

a

b

c c

b

a d

b

c

winner: c winner: b

voter y
a

b

c c

b

a a

b

c

winner: a

voter z

a

b

c c

b

a a

b

b

winner: b

voter x

a

b

c c

b

a a

c

b

winner: a

a

b

c c

b

a a

c

c

winner: c

voter z

voter x

Figure 1: An overview of the voters causing the cycle for both plu-
rality and veto in iterative voting when using district-based elections.
Each box is a district, with the letter on it representing the district
winner. Voter x in District I makes a change, leading voter y, in
district II to make another. Then, a cycle begins, with voters x and
voter z (from district III) with alternating moves.

1. Voter x′, who changes their veto to d, makes b district I
winner and also the global winner.

2. Voter y is now able to change their veto to d, making a
the district and global winner (as it prefers a winning to
b, and it cannot make its favorite, candidate d the win-
ner).

3. Voter z can now change their vote to veto candidate c,
making candidate b the district winner as well as global
winner.

4. Voter x now changes their veto to b, making c the district
I’s winner, but allowing the global winner to become a
(agent x cannot make a the winner of its district, and a
is preferable to b as a global winner for this voter).

5. Voter z now vetoes b, making c the winner of district III,
and the global winner as well.

6. Voter x now vetoes candidate c, making candidate b the
district winner and candidate a the global winner.

7. We are now back in the situation at the beginning of
step 3, in which agent z had an incentive to veto c, and
steps 3-6 can repeat ad-infinitum.

We note that theorem 7 does not really require all voters to
be global, but only 3 global voters in 3 different districts. If
we allow for starting at a non-truthful state, we need only 2
global voters in 2 different districts.

6 Simulation Setup
In an effort to better understand the properties of equilibria
arising from iterative voting, we turn to simulations. In order
to better perceive the impact of voter type and voting rule on
iterative voting we focus on a particular setting of the param-
eters, 25 voters divided into 5 equal sized districts with the
same 5 candidates competing in each district.

Voter profiles are generated by sampling from either a uni-
form distribution over all preferences or from a uniform dis-
tribution over all single-peaked preferences. Moreover, we
consider both games containing only globally minded voters
and games containing only locally minded voters. For each

combination of voting rule, voter preference type (uniform
or single-peaked) and voter aims (global or local) we sam-
ple 1000 sets of preferences. Since iterative voting is a non-
deterministic process, we run the game until convergence 200
times (terminating a run after 1000 steps). We use a determin-
istic tie-breaking rule.

If a locally minded voter has more than one response pro-
file which leads to the same winner in their district they will
opt to take the profile with the closest Kendall-tau distance4

to their current profile. If a globally minded voter has more
than one response profile which can lead to the same global
winner they will break ties by opting for the profile which
leads to their most preferred winner within their district (sub-
sequent ties are also broken using the Kendall-tau distance to
their current profile).

7 Results
We examine the simulation results in two regards: how in-
volved was the iterative process, and what is the quality of
the outcome. Using this we can better understand systems
which already work in this manner, better comprehend their
outcomes (and how they are reached). We can also view the
problem with a mechanism design approach, seeing which
voting systems are most suitable for a district-based system.

7.1 The Iterative Process
The first issue to note is that despite the theoretical results,
in no case did a simulation end up in a cycle. That is, de-
spite Theorems 6 and 7 that convergence is not guaranteed,
in almost all cases, convergence was reached, and in the few
where it was not, it was because number of states exceeded
our threshold limits, and even that number was not large (it
was less than 1% in almost all cases – mostly significantly
less – apart from Borda global voters, uniformly distributed,
where 5% of runs timed out after 1000 moves). This is con-
sistent with what was observed in [Koolyk et al., 2017], in
which voting rules which were shown to not converge, did not
actually end up in a cycle in any randomly-created preference
set and dynamic. In general, Borda based systems struggled
most with convergence, with 20%-40% of election settings
having at least one run (each setting had 200 runs) which
failed to converge (other voting rules had far less issues, in
many cases no run timed-out at all).

In almost every setting the iterative process settled into
equilibrium within twenty steps on average. Once again, a
noticeable exception were variants of Borda which averaged
a few hundred steps. The iterative process was relatively fo-
cused, and on average, for each election setting, about half
of the candidates won no equilibrium at all. Overall, voters
with single-peaked preferences tended to have fewer winners
in each setting, and we conjecture that the existence of a Con-
dorcet winner in each district tended to limit the opportunities
for iterative voting in the single-peaked preferences case.

As described earlier, the district-based settings introduce a
non-monotone nature to the iterative process. For local vot-
ers, this is inadvertent – they do not care for the overall win-

4The Kendall-tau distance between two profiles a, b ∈ π(C) is
the number of pairwise disagreements between a and b.
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ner, but their moves may change the winner’s identity. How-
ever, global voter moves (see Figure 3) may change the out-
come of their own district’s winner in a deliberate way to hurt
a different candidate, rather than to strengthen their desired
candidate (a destructive move, rather than a constructive one).
In all cases (except veto with single-peaked preferences) con-
structive moves were the majority, although in many cases
these constructive moves came at the cost of a worse local
winner. Destructive moves were not entirely uncommon, con-
stituting at least 20% of the moves in any setting. The equiv-
alent data of how locally minded voters impacted the global
winner indicate that only rarely was the share of moves that
hurt the overall winner above 30%. However, this also has
to do with cases where local voters’ manipulation had no ef-
fect on the overall winner, when the district winner was not a
winner or a runner-up in the overall election.

7.2 Winner Quality
In this section we will examine the quality of the winner
found by the iterative voting process. How one measures
quality can be tricky since there is no agreed upon defini-
tion. This is further complicated by the different voting rules,
each with a different goal. For example, Copeland’s method
rewards candidates who win in pairwise matchups, and cares
little for the margin of victory.

One way of measuring quality, used in [Thompson et al.,
2013; Koolyk et al., 2017], is how often the truthful win-
ners emerges after iterative voting. The truthful winner is the
candidate the mechanism intended to pick, if they reemerge
as the winner it indicated the voting rule achieved its goal
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Figure 4: How the Condorcet winner emerges or disappears in runs
where iterative voting took place and a Condorcet winner existed.

despite the voters’ strategizing. For globally minded voters,
the truthful winner reemerged 40% to 50% of the time. The
variance seems to be a function of the voting rule and not
the distribution (veto was something of an exception). This
seems consistent with the results of [Koolyk et al., 2017],
which found the voting rule tended to determine how often
the truthful winner was the iterated winner5. Interestingly, lo-
cally minded voters, who do not optimize for the global win-
ner, exhibited a similar pattern where the voting rule often
determined how the truthful winner emerged as the iterated
winner. It was slightly more common for the truthful winner
to be the final winner, but this difference seems to be caused
by local moves having no impact on the global winner.

Another metric for winner quality is the Borda score of
the winner ([Koolyk et al., 2017; Bachrach et al., 2016;
Meir et al., 2014] all used this as a measure of quality). We
are interested in the change in Borda score between the ini-
tial (truthful) winner and final winner. Unsurprisingly most
settings with globally minded voters saw a high fraction of
increasing Borda scores (see Figure 2). Surprisingly, in most
settings with locally minded voters there was a large frac-
tion of increasing Borda scores. The main exception were all
variants of Borda, which saw a higher fraction of decreasing

5Their work adjusted voter’s response dynamics, also comparing
them between single-peaked or uniform distributions.



scores6 (as did veto with uniform voters).
A possible partial explanation for the high fraction of in-

creasing Borda scores with globally minded voters, espe-
cially in single-peaked cases, has to do with Condorcet win-
ners7 (their existence is guaranteed in the single-peaked case).
There appears a positive correlation between a high fraction
of increasing Borda scores and a high ratio of starting with a
non Condorcet winner and moving to the Condorcet winner
vs starting with the Condorcet winner and moving to a non
Condorcet winner (see Figure 4).

As a final metric we examine the Condorcet winner, this
candidate, preferred by a majority in all pairwise matchups,
is a generally desirable candidate (when they exist). We con-
sider the case where an overall Condorcet winner existed (i.e.,
when all voters, from all districts were examined together).
As can be seen in Figure 4, in almost all cases it was more
likely to start with a non Condorcet winner and end with the
Condorcet winner than the reverse (starting with the Con-
dorcet winner and finishing with a non Condorcet winner).
This is despite having at least one alternative strong candidate
(the truthful winner) and that the district-based elections we
study are not Condorcet-consistent. This was fairly promi-
nent with globally minded voters with single-peaked prefer-
ences using plurality and STV. Borda was again the excep-
tion, as with globally minded voters it was more likely to
leave the Condorcet winner than to find them.

8 Discussion
We explored how district-based elections, a commonly used
election mechanism, work when voters employ iterative vot-
ing, updating their vote according to what they learn of the
vote outcomes. This solution concept raises potential end-
states for elections which try to avoid obviously impossible
or unreachable states (as Nash equilibria sometimes are). We
explore how the district-based structure changes the conver-
gence results, and show both an answer for this (there is a
change – convergence which was assured in the non-district
case is no longer guaranteed), as well as showing that in many
cases it does not matter, as simulations do not end up in a cy-
cle, indicating these are edge cases.

The simulations themselves help us focus on which voting
systems are desirable or appropriate for such settings. Some-
what surprisingly, the Borda system with globally minded
voters, despite having starting off with relatively high qual-
ity winner ends up as being rather mediocre in our setting – it
is common for overall winners to be worse than in the starting
position (using all of our criteria – is the outcome the truthful
winner; the Borda score of the winner; and how likely it is to
end up with a Condorcet winner). On the upside, both plural-
ity and STV8 seem to have very desirable properties for these

6This is not as obvious as it sounds – the winner is not necessarily
the candidate with the highest Borda score, due to the district-based
system. [Bachrach et al., 2016] showed the Borda score of the global
winner can be about 1

m2 (in our case – 1
25

) of the candidate with the
highest Borda score.

7The Condorcet winner need not have the highest Borda score,
but they tend to have a relatively high one.

8Incidentally, both systems used in district-based voting in the

elections, with STV doing especially well with an electorate
sampled from a single-peaked distribution.

This work is the first step in better understanding district-
based elections. While most research focused on manipula-
tions of the districts themselves, here we try to better grasp
the dynamics which shape these elections outcomes. There
is plenty more to do – from a wider variety of voter distribu-
tions, through heterogenous voter population, to an examina-
tions of more voting dynamics: we have examined (as most
iterative-voting simulations have) the behavior and outcomes
of a best response strategy, but other dynamics might yield
further insights into the effects of districts on voters behav-
ing iteratively. Finally, merging these simulations with other
concepts suggested for district-based elections (such as the
“price of districting”, suggested by [Bachrach et al., 2016])
might lead to further interesting results.
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