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2011

Given a collection of unsupervised captioned images of cluttered scenes, we learn shape

models of object categories by finding image features that co-occur with words. Instead

of relying on prior object localization (e.g ., bounding boxes), we use perceptual grouping

cues of closure, continuity, and proximity to learn a parts-based model of spatially related

contours from cluttered images. We implement a recently proposed framework that

learns a graph model part-by-part subject to grouping constraints, and extend it with

bottom-up segmentation cues for part initialization. We show that shape features are

more effective than appearance features (e.g ., SIFT) at modelling object categories and

present encouraging results on the ETHZ dataset.
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Chapter 1

Introduction

Most object recognition methods are trained with labelled bounding boxes or segmenta-

tions to separate out background and other objects. A more realistic and scalable learning

scenario would be to mine collections of captioned images for the visual appearances of

object categories and their names without any manual supervision. Difficulty in such an

endeavour, however, arises from the high level of ambiguity in cluttered images—the key

to this problem is the repetition of visual features and caption language across multiple

images, leading to a visual-linguistic correspondence, e.g ., between a word and a subset

of image features. In this paper, we address the problem of learning shape representations

of named object categories from captioned images without bounding boxes.

In merging shape recognition with captioned image data, we extend and apply a recent

framework proposed by Jamieson et al . [11]. In this framework, an object is modelled

as a graph over object parts (vertices) constrained by pairwise spatial relations (edges).

Each part is a local invariant image feature, and detection is done by matching features

under spatial constraints. Initially, a given word w is used to group those images likely to

yield a consistent subset of image features. By using an a priori grouping cue of proximity

between object parts, the learning algorithm efficiently finds a structured configuration

of features that maximally co-occurs with the word w across a set of captioned images.
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Chapter 1. Introduction 2

Whereas object categories have sometimes been modelled with distinctive appearance

features (Fergus et al . [6], Crandall & Huttenlocher [4]) or grouped using such features

(Lee & Grauman [13]), surface characteristics of colour and texture are generally not

specific to categories. Studies in visual perception (Biederman & Ju [3]) have shown

that household objects presented in full-colour photographs provide no advantage over

line-drawings with respect to latency of recognition. Shape representations, which were

common in early computer vision research, have re-emerged in the last few years in cate-

gory recognition. Local invariant features that encode only image contours are available,

and make possible a direct application of the framework of Jamieson et al . [11].

Our application of the framework to shape categories involves the following contribu-

tions. We have augmented the learning procedure with bottom-up segmentations as an

additional grouping cue to focus search on promising image contours, thus eliminating

the need for bounding boxes. Multiple segmentations are extracted per image to reduce

dependency on any specific one, and the region boundaries are used only as initial cues,

rather than hard constraints on the model as in other approaches. Secondly, in applying

the framework to shape features, we have designed a more stable version of kAS local

contour features [7] by defining a canonical ordering of geometric components, and show

that they are more effective than appearance features (e.g ., SIFT) for categorization.

Finally, we have adapted proximity grouping to contours by taking into account their

long, curvilinear nature.

Following a review of related work in Section 2, we continue in Section 3 with an

overview of Jamieson’s framework and its application. A description of the object model

and its constituent contour parts and spatial relations is found in Section 4, followed

by object detection in Section 5. The learning algorithm is covered in Sections 6 and

7, which describe the co-occurrence objective and the learning algorithm. We conclude

with a discussion of encouraging results and future directions.



Chapter 2

Related work

Approaches to shape-based object category recognition have often been supervised or

semi-supervised with manual class labelling and bounding boxes, e.g ., Shotton et al .

[18], Ferrari et al . [9]. Other approaches do not assume any supervision, but use dis-

tinctive appearance features (Kim et al . [12]), sometimes in conjunction with contours

(Lee & Grauman [13]). More recently, Payet & Todorovic [17] showed that shape alone

is sufficiently distinctive for unsupervised learning by finding clusters of spatial config-

urations of contours. Distinct object categories are automatically found over cluttered

images via a probabilistic colouring of a graph over matching pairs of contours and spa-

tial relations. While our visual representation also consists only of contours, we take an

integrated approach where categorization is guided by both bottom-up segmentation and

image caption text. In particular, the presence of linguistic regularities across captioned

images provides a comparatively efficient way to initialize visual clusters.

Language-vision integration seeks correlations between words and visual features in a

set of image-text pairs. Barnard et al . [1], and Duygulu et al . [5] learned distributions over

words and visual features of segmented regions described by colour, texture, appearance,

and global shape. A single image segmentation, however, is prone to error as a grouping

mechanism. Even when oversegmented regions are merged (Barnard et al . [2]), grouping

3



Chapter 2. Related work 4

is still limited by the accuracy of region boundaries. Jamieson et al . [11] does not rely on

bottom-up segmentation, and instead learns correspondences between words and spatial

configurations of appearance features by grouping nearby features together. Recognition

approaches that exclude language have also relied on bottom-up segmentation for group-

ing, and reduce dependency on any one segmentation via multiple segmentations. Russell

et al . [17], used text analysis methods to rank regions from multiple segmentations per

image, where regions were described by their interior appearance. Gu et al . [10] used a

region tree segmentation with a richer description including contours. In comparison to

these methods, we use the boundaries of multiple segmentations only as initial cues for

promising image contours, and do not limit learning or recognition to their accuracy.

Since we model objects as a graph over related parts, we briefly review other graphical

models. While Fergus et al . [6] and Crandall & Huttenlocher [4] learn graph models from

weakly supervised images, graphs are constrained to a star structure. Shotton et al . [18]

and Opelt et al . [16] learn centroid-voting shape-based parts, although a subset of training

images are assumed to be labelled. In using the framework of Jamieson et al . [11] we

learn from unsupervised captioned images a graph representation of local shape with no

structural constraints.



Chapter 3

Overview of approach

Given a word w, a corresponding visual representation of an object is learned by maximiz-

ing the co-occurrence score C(w,M) with respect to the object model M , over captioned

images. The object model M is a flexible graph representation (Figure 3.1) over object

parts (contour features) with pairwise spatial relations, providing local representation for

matching under occlusion and local variations. Since objects are spatially coherent, we

require the graph to be connected, but impose no further constraints on the connectivity

and number of parts. Part relations add distinctiveness and coherence to an otherwise

structureless bag-of-features model, which is more likely to yield accidental detections.

Relations are spatially invariant, allowing the model to inherit the spatial invariance of

f1

f2

f3

f5

f4

Figure 3.1: An object is modelled as a graph over spatially related parts, which are local

invariant features, e.g ., F = {f1, . . . , f5}.
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Chapter 3. Overview of approach 6

Figure 3.2: The learning procedure starts with a small set of spatially related local

features (far left), and iteratively expands by a related feature until the co-occurrence

score converges.

constituent parts. Objects are detected efficiently by using spatial relations to prune the

search for a set of matching image features.

Due to high scene variability, learning a parts-based model from unlabelled images is

potentially very expensive. The framework of Jamieson et al . [11] reduces this complex-

ity using 1) a greedy learning procedure that constructs the model part-by-part, and 2)

a grouping constraint based on feature proximity. The learning algorithm greedily con-

structs a model part-by-part (Figure 3.2), where each iteration finds one additional part

given existing parts. Thus, the model grows from a small, weak set of related parts, to a

larger, more distinctive set. The iterative nature of learning allows proximity constraints

to be applied in a straightforward manner: a new part is learned from only those features

in the vicinity of existing parts. By constraining model parts to be in close proximity

to each other, image features likely to be mutually irrelevant are efficiently disregarded.

The initial set of parts is learned by finding clusters of similar feature neighbourhoods.

A major extension of the framework is an additional grouping cue for initialization

using multiple bottom-up segmentations. This is a natural way to focus search on image

contours that are likely to correspond to object boundaries a priori. Subsequent parts are

not constrained to segmentations, and thus our approach is not limited by the accuracy of

bottom-up segmentation. Furthermore, the initial segmentation constraint is of benefit

to the greedy learning algorithm, in which model parts remain unchanged once they
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are added. Clearly, it is important to add only object parts to the model, and this is

particularly difficult in the early stages due to the low specificity of shape: we are hoping

to find only small contour portions that are relevant and stand out from background

clutter across images. The effect of using multiple bottom-up segmentations is to bring

out the potential regularities, making them easier to find and ensuring that the model

grows from a good initialization.

Model growth converges when no more parts can be added that increase the co-

occurrence score C(w,M). Although this criterion does not guarantee that the complete

bounding and interior contours of an object are learned, it ensures that parts are collec-

tively distinctive to maximally distinguish between images with and without w in their

captions.



Chapter 4

Object model

In this section we describe the local invariant geometric contour features that constitute

the model parts F = {f1, . . . , fT}, and the relations S = {Sfi,fj} that encode the change

in spatial properties between parts.

It will be useful below to distinguish a model feature from an image feature, hence we

use f to refer to the former, and φ to refer to the latter. Despite the notational difference,

both f and φ refer to the contour feature described in this section.

4.1 Local invariant contour features

We represent local contours with geometric, invariant descriptors derived from a lineariza-

tion of edgel chains, which are very similar to kAS features [8]. Given edgels from the Pb

detector [15], we obtain a linearization via the Contour Segment Network by Ferrari et

al . [7] which chains edgels together, bridges edgel chains over potential contour gaps, and

partitions the resulting chains into linear segments. The result is a branching network

of line segments linked between endpoints and junction points. Contour descriptions are

obtained by grouping linked line segments together. An overview of feature extraction is

shown in Figure 4.1.

Ferrari et al . [8] extract kAS features by taking all groups of k linked line segments.

8



Chapter 4. Object model 9

Figure 4.1: The feature extraction process from 1) image pixels, to 2) contour edgels,

to 3) overlapping line segments at multiple scales, 4) from which one extracted contour

feature is highlighted in red (consisting of 3 line segments).

Since links exist between endpoints as well as junction points, kAS features describe

a rich set of contour configurations including paths, T-, and Y-junctions. With such

a variety of shapes, however, comes the difficulty of defining a stable internal ordering

of segments. The centroid- and axis-based ordering used by kAS is neither stable nor

robust to changes in orientation, and could negatively affect performance when detection

is feature-based. We obtain a stable continuity-based ordering while keeping a sufficiently

expressive set of shapes. By extracting only paths of line segments, a canonical ordering

is achieved1. Furthermore, this ordering is orientation-independent, leading directly to

rotation-invariance, if desired.

Our feature descriptor φ is identical in form (but not in order) to that of kAS features

[8]. It is a vector encoding of k line segments, denoted s1, . . . , sk such that si precedes

si+1 in a path (we use k = 3). Each segment is described by its relative position ~pi,

orientation ψi, and length `i:

φ = (~p2, . . . , ~pk, ψ1, . . . , ψk, `1, . . . , `k). (4.1)

Relative positions are measured with respect to the first segment position ~p1, which is

1The ordering is canonical up to the two possible directions in a path. The disambiguation of these
two possibilities is discussed in Appendix B.1.
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therefore omitted. (If rotation-invariance is desired, orientations are measured relative

to ψ1, which would also be omitted.) The descriptor φ is scale-invariant with respect to

the distance z between the furthest two segment midpoints, i.e., the relative positions

and lengths are normalized by z. Contour similarity accounts for shape deformation and

is measured using the kAS distance [8] between two contour descriptors φ and φ′:

d (φ, φ′) = wr

k∑
i=2

||~p′i − ~pi||+ wψ

k∑
i=1

∠ (ψ′i, ψi) + wl

k∑
i=1

|log (`′i/`i)| . (4.2)

Feature matching and clustering (Sections 5, 7) are facilitated with a codebook Q of

feature codewords (or “visual vocabulary” [19]), where each image feature φ is quantized

into its nearest representative q ∈ Q at extraction time. By pre-computing feature

distance at the codeword level, recognition and learning is more efficient. Construction

of the codebook via clustering of background image features is described in Appendix

B.2.

4.1.1 Multi-scale image representation

Significant changes in contour curvature leading to distinct features may arise from per-

ceptually insignificant changes. For example, viewpoint distance, object size, or local

changes in scale or detail can result in qualitatively different linearizations, and hence

features that are not repeatable. To increase the chance that regularities are found,

we compute linearizations at multiple scales to yield a multi-scale image representation.

(Due to practical limitations, linearizations were computed over rescaled images.) Unlike

a layered representation that handles only global image variation (e.g ., image pyramid),

we allow different model parts to match at different scales by mixing features from dif-

ferent scales together (Figure 4.1). Our image representation is thus a rich set of contour

features that increases matching availability in its redundancy.
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Figure 4.2: Distance (u12) and relative orientation (v12) components of the spatial relation

between two image contour features φ1 and φ2. Green circles indicate the underlying

edgel-chains of each contour, which have been linearized into adjoining segments.

4.2 Pairwise spatial relations

Each contour has spatial properties with respect to image coordinates, namely its position

~x and scale s in the image. Spatial properties are defined identically to those of kAS

features: position is the average midpoint of all line segments, and scale is the value z,

defined above. (A rotation-invariant version also has an image orientation θ, defined as

the orientation of the first line segment, ψ1.) The spatial relation between two features

φi and φj is a vector Sφi,φj encoding the change in spatial properties

Sφi,φj = (uij, vij, wij) (4.3)

with components of distance uij, direction vij, and relative scale wij. Figure 4.2 illus-

trates selected feature relations. To preserve feature invariance, each component itself is

spatially invariant. The distance uij between features is normalized by λ = min(si, sj),

hence

uij =
||~xj − ~xi||

λ
. (4.4)
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The direction vij of φj with respect to φi, measured in [0, 2π), is given by

vij = arctan(~xj − ~xi), (4.5)

and change in scale wij is given by

wij =
sj − si
λ

. (4.6)

Aside: Relations between rotation-invariant features require an additional degree of

freedom for feature orientation with respect to the image. This can be achieved as in

Jamieson et al . [11], where direction is captured by two headings vij, vji as follows:

vij = ∠(θi, arctan(~xj − ~xi)) (4.7)

vji = ∠(θj, arctan(~xi − ~xj)). (4.8)

This completes the description of image features and pairwise relations, carrying over

to model features F = {f1, . . . , fT} and relations S = {Sfi,fj}. We do not require

M = (F, S) to be a complete graph so that spatial relations can be described at a

simpler, local level. Edge redundancy (i.e., beyond a spanning tree), however, is useful

for maintaining model coherence under partial matching (e.g ., due to occlusion).



Chapter 5

Object occurrence

An occurrence of an object M = (F, S) is found by selecting a subset of image features

that match part-wise to model features F subject to spatial constraints S, as shown in

Figure 5.1. Only a subset of model features may be matched (e.g ., due to occlusion).

Detection is performed efficiently by exploiting the spatial constraints between model

parts via pruning. We score detections as in Jamieson et al . [11], though here we attempt

a more concise formulation by incorporating partial matching into the likelihood model.

For notation, let h be a mask over model features indicating which ones are matched,

and let F (h) ⊂ F indicate the subset of matched model features, and S(h) ⊂ S the

model relations induced by F (h). A (partial) match is denoted by Φ = {φf : f ∈ F (h)},

where φf indicates correspondence to the model feature f .

5.1 Detection score

The detection score D(M,Φ) ∈ [0, 1] is defined in terms of a common formulation com-

bining similarity to the object model M and dissimilarity to a constant background model

B via the likelihood ratio

p(Φ|M)

p(Φ|B)
. (5.1)

13



Chapter 5. Object occurrence 14

Figure 5.1: Example detections annotated with the line segment representation of contour

features. Feature positions (~x’s) are indicated with black vertices, and edges indicate

spatial relations. Not all features are matched due to imperfect recall.

We define D(M,Φ) as the posterior probability of the object, which is an increasing

function of the likelihood ratio as shown below:

D(M,Φ) = p(M |Φ)

=
p(Φ|M)p(M)

p(Φ|M)p(M) + p(Φ|B)p(B)

=
1

1 + p(Φ|B)
p(Φ|M)

p(B)
p(M)

. (5.2)

We assume independence among model components and factor the object likelihood

p(Φ|M) into a part matching term, a spatial relation term, and a term for partial match-

ing, respectively:

p(Φ|M) = p(Φ|F )p(Φ|S)p(h|M). (5.3)

The feature and spatial terms factor into their respective components:

p(Φ|F ) =
∏

f∈F (h)

p(φf |f) (5.4)

p(Φ|S) =
∏

(fi,fj)∈S(h)

p(Sφfi ,φfj |Sfi,fj). (5.5)
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Feature probabilities p(φf |f) are modelled with a Gaussian distribution with variance σ2
f .

Spatial relations p(Sφfi ,φfj |Sfi,fj) are also Gaussian-distributed around mean (uij, vij, wij)

with diagonal variances (σ2
u, σ2

v, σ2
w). Partial matches are assumed to arise from features

that independently match with probability α ∈ [0, 1], hence the following factorization

of p(h|M) in Equation 5.3:

p(h|M) = α|F (h)|+|S(h)|(1− α)|F (h)|+|S(h)|. (5.6)

Spatial relations in the exponents in Equation 5.6 reflect independence among model

components, so the first factor corresponds to the matched portion of the model, and the

second factor the unmatched portion (with the bar indicating set complement).

The background likelihood of a match similarly factors into three terms:

p(Φ|B) = p(Φ|fB)p(Φ|SB)p(h|B) (5.7)

where

p(Φ|fB) =
∏

f∈F (h)

p(φf |fB) (5.8)

p(Φ|SB) =
∏

(fi,fj)∈S(h)

p(Sφfi ,φfj |SB). (5.9)

The background feature likelihood p(φ|fB) represents how likely φ occurs accidentally,

which we have approximated with a uniform distribution (alternatives are discussed in

Appendix A.2). Background distance and relative scale are Gaussian-distributed with

(wide) variances σ2
bu, σ

2
bv, while background direction is uniformly distributed over [0, 2π).

The term p(h|B) is the likelihood that the whole model is unmatched, thus

p(h|B) = α|F |+|S|. (5.10)

Substituting the object and background likelihoods into the ratio (Equation 5.1), the

complete likelihood ratio is

p(Φ|M)

p(Φ|B)
=

(
1− α
α

)|F (h)|+|S(h)| ∏
f∈F (h)

p(φf |f)

p(φf |fB)

∏
(fi,fj)∈S(h)

p(Sφfi ,φfj |Sfi,fj)
p(Sφfi ,φfj |SB)

. (5.11)
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The three components of Equation 5.11 can be interpreted as 1) the penalty for un-

matched features, 2) the likelihood ratio for matched features, and 3) the likelihood ratio

for relations between matched features, respectively.

5.2 Detection algorithm

In a cluttered image with thousands of features, it is impractical to consider all possible

matches to different subsets of parts. Rather, a match (Φ,h) of a given model M = (F, S)

is found using the relational constraints S to efficiently prune the search space. We only

give an overview here, and refer the reader to Algorithm 1 and Jamieson et al . [11] for

details.

Algorithm 1: finding a detection (Φ,h) of model M = (F, S) in image I

((fi, fj), (φfi , φfj))← find best matching edge(I,M)

if no edge found then return (∅,0)

Φ← {φfi , φfj}

h← 0;hi, hj ← 1, 1

while
∑

h < |F | do
((f, fk), (φf , φfk))← find best edge expansion(I,M,Φ) such that φf ∈ Φ

if no expansion found then break

Φ← Φ ∪ {φfk}

hk ← 1

end

if D(Φ,h) > t then return (Φ,h); else return (∅,0)

Detection is performed greedily by first seeking for the best matching pair of adjacent

model vertices, then iteratively expanding the match along edges incident to the currently

matched subgraph. The matching criterion at each step is to maximize the likelihood

ratio (Equation 5.11), with α set to 1
2

so that there is no penalty for partial matching in
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intermediate steps. In mathematical notation, suppose that Φ(0) = {φfi , φfj} is initially

the best matching pair of adjacent model vertices (fi, fj, and their relation). Each

subsequent iteration, indexed by τ , expands the previous match Φ(τ−1) by considering

each edge incident to the features in Φ(τ−1). The best matching adjacent feature φk is

added to obtain Φ(τ) = Φ(τ−1)∪{φk}. A match stops expanding (i.e., is pruned) when no

such edge increases the likelihood ratio, or when no more edges are available (in which

case the match is complete). The final match (Φ,h) is scored with D(M,Φ). Multiple

detections in an image are found by restricting subsequent searches to remaining image

features. Matches whose bounding boxes overlap more than 20% are disambiguated by

removing the lower-scoring match.



Chapter 6

Object co-occurrence with word

Our learning objective is to maximize the co-occurrence score C(w,M) of the object

model M with a given word w, where occurrences are determined via object detection

(Section 5) and caption string matching. Perfect co-occurrence over N images would

allow us to conclude with high confidence that the word and visual representation are in

correspondence, but this is a highly unlikely scenario due to factors arising from word

ambiguity, object occlusion and orientation, and reliability of the captions. Jamieson’s

framework uses a naive Bayes model to determine the posterior probability that w and

M are in correspondence, given their observations over N images. We indicate word

observations by

w = {w1, . . . , wN}, (6.1)

where wn is 1 if the word w occurs in the caption of the nth image, and 0 otherwise.

Observations of the object via M are indicated by

m = {m1, . . . ,mN}, (6.2)

where mn is a confidence score in [0, 1]. If M is not detected in the nth image, mn is

0; otherwise, mn is equal to D(M,Φ). When there are multiple detections in the image,

object occurrence is indicated by the maximum of the detection scores.

18
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We evaluate the likelihood of the observed values under two hypotheses: 1) correspon-

dence, p(w,m|G), and 2) non-correspondence p(w,m|H). Under non-correspondence,

observations of the word and object are mutually accidental, thus the likelihood factors

independently:

p(w,m|H) =
N∏
n=1

p(wn|H)p(mn|H) (6.3)

The probabilities p(wn|H) and p(mn|H) are determined empirically from training data

by frequency of word and object detection, respectively.

Under correspondence, observations of a word and object are expected to correlate

with one another. To model this probabilistically, we introduce a conditional hidden

variable o ∈ {0, 1}N , where on is 1 if the object is present in the scene, and 0 otherwise:

p(w,m|G) =
N∏
n=1

p(wn,mn|G)

=
N∏
n=1

∑
on

p(wn,mn|on)p(on|G)

=
N∏
n=1

∑
on

p(wn|on)p(mn|on)p(on|G) (6.4)

In Equation 6.4 the probabilities p(wn|on = 1) and p(wn|on = 0) express the un-

certainty of word occurrence depending on whether the object is present. Words may

have multiple meanings corresponding to different objects, and there may be multiple

synonymous names for an object. As with words, detections of objects do not necessarily

correspond to the presence of the object in the scene. When an object is present, the

probability p(mn|on = 1) accounts for uncertainty in detecting the object, which may

be fully or severely occluded, or captured from an unusual viewpoint. The probability

p(mn|on = 0) accounts for accidental detections of an object that is absent from the scene.

We set p(on|G) to 0.5, and give further details of p(wn|on) and p(mn|on) in Appendix

A.1.

We can now define the co-occurrence score C(w,M) as the posterior probability of

correspondence p(G|w,m), given priors p(G) and p(H), and the likelihoods as defined
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above:

C(w,M) = p(G|w,m)

=
p(w,m|G)p(G)

p(w,m|G)p(G) + p(w,m|H)p(H)
. (6.5)

In the following section we use C(w,M) as a scoring function to find a model M that

maximally co-occurs with a word w over captioned images.



Chapter 7

Learning co-occurring object models

An object model M that corresponds to w is learned in a greedy part-by-part process,

beginning with a small, initial model M (0) and iterating over successively larger models

M (1),M (2), . . . ,M (τ), . . . until C(w,M (τ)) converges. Each expansion of the model is

learned over image subregions defined in the vicinity of previous model detections, thus

focusing search on only those features likely to be related to the object. Learning is

summarized in Algorithm 2 and the iterative step is illustrated in Figure 7.1.

7.1 Part expansion

Each iteration takes as input the model M (τ−1), and learns a larger model M (τ) such that

co-occurrence is (maximally) increased:

C(w,M (τ)) > C(w,M (τ−1)). (7.1)

Greediness arises from the larger model being a supergraph of the given model:

M (τ) = M (τ−1) ∪ E. (7.2)

The model expansion E consists of a new part f ∗ (a vertex) that is spatially related (via

edges) to the parts of M (τ−1):

E = (f ∗, {Sfi,f∗}). (7.3)

21



Chapter 7. Learning co-occurring object models 22

Figure 7.1: Instances of M (τ) are detected with many false positives. Detections on

images captioned with w yield candidate expansions, from which one is selected to obtain

M (τ+1). The co-occurrence of M (τ+1) is higher due to fewer false positive detections.

7.1.1 Proximity constraint

Learning complexity is reduced by identifying image features that are non-accidentally

grouped by proximity to the given model, and restricting learning to these features. The

neighbourhood N(·) of a contour feature φ is the set of contour features within a maximum

spatial distance of q, measured by dnbh(φ, ·):

N(φ) = {φ′ : dnbh(φ, φ′) < q}. (7.4)

Distance between contours is defined in terms of their long, curvilinear structure. Intu-

itively, two contours that together span a large part of an image but are touching have

zero distance between them. We thus define the distance dnbh(·, ·) between two contours

as the minimum distance between their underlying image edgels. In practice (due to

practical issues with the linearization software), we compute an approximation using

dnbh(φ, φ′) ≈ min
s∈{s1,...,sk}
t∈{s′1,...,s′k}

dline(s, t), (7.5)
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Algorithm 2: Learning model M from captioned images {In}Nn=1 given word w

τ ← 0

{I+
n }N

+

n=1 ← {In : w in caption}

{J+
n }N

+

n=1 ← {{φ ∈ I+
n : φ masked by segmentation boundaries}}

M (0) ← initialize({J+
n })

{ΦM(0)} ← detect({I+
n },M (0))

repeat
τ ← τ + 1

{J+
n }N

+

n=1 ← {N(Φ) : Φ ∈ {ΦM(τ−1)}}

{Ec}Cc=1 ← expansion-candidates({J+
n })

M (τ) ← arg maxCc=1C(w,M (τ−1) ∪ Ec)

until M (τ−1) converged;

return M := M (τ−1)

where the si’s are the line segments of the respective features (Section 4.1) and dline(·, ·)

is the distance between two lines. The maximum contour distance q is linear in the

scale of φ, thus allowing contours with a larger spatial extent to have a spatially larger

neighbourhood.

We restrict expansion learning to features that are in proximity to instances of M (τ−1).

An instance neighbourhood J (an image subregion) is defined by taking the union of the

neighbourhoods of matching features. Note, however, that not all instance neighbour-

hoods may contain an example of an expansion. For example, false positive detections

do not correspond to true object instances, and so are not expected to yield consistent

features nearby. As models grow in size, however, the increase in distinctiveness reduces

the rate of false neighbourhoods, thus allowing learning to bootstrap on successively more

reliable spatial constraints.

A further constraint arises from our multi-scale image representation. Recall from

Section 4.1.1 that features are combined from multiple linearizations to increase repeata-
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bility across local variations. To ensure that expansions represent novel object parts, the

neighbourhood N(φ) omits contour features that completely overlap with φ.

7.1.2 Expansion learning

The instance neighbourhoods {Jn} are taken to be a set of independent image subre-

gions containing examples of expansions. Learning is restricted to images whose captions

contain the word w, as other images are not expected to contain object instances. The

two components of an expansion E = (f ∗, {Sfi,f∗}) are learned in succession by 1) find-

ing recurring features via codebook voting, then 2) using mean-shift to identify stable

relations to existing features of the model.

Given the set of instance neighbourhoods {Jn}, the voting space N|Q| counts occur-

rences of codewords in each J ∈ {Jn}. To ensure that regularities are found across

(rather than within) neighbourhoods, each neighbourhood J ∈ {Jn} contributes a max-

imum of one vote per codeword q ∈ Q. Codewords with the most votes are selected to

be candidates f ∗1 , . . . , f
∗
c for the new part f ∗, where c ≤ 50.

A new part f ∗ is selected for an expansion by learning its relations {Sfi,f∗} to the

given model. Pairwise relations are modelled independently and learned in succession.

We first seek a stable relation to one of the model features whose neighbourhood contains

f ∗. Examples for spatial relations, S = (S1, . . . , SK), are drawn from the instance neigh-

bourhoods {Jn}, and comprise the data for density estimation. Each Sk ∈ S is a spatial

relation vector (Equation 4.3) encoding distance, relative scale, and relative orientation.

A spatial relation mode is found using mean-shift over S by initializing with points of

high density, and accepted if its score exceeds a minimum threshold. This procedure

is repeated with respect to other model features. If there is no acceptable mode for a

particular model feature, then no relation exists to that feature.

This completes a list of expansion candidates E1, . . . , Ec, from which a selection is

made to maximize the learning objective C(w,M (τ)). We choose the expansion E such



Chapter 7. Learning co-occurring object models 25

that M (τ) := M (τ−1) ∪E has the highest co-occurrence, or, if there is no such expansion

due to convergence, then the final model M := M (τ−1) is returned.

7.2 Part initialization

The initial model M (0) represents a small portion of an object’s contours that is learned

without any prior spatial information. To ensure that a relevant model is initialized from

noisy images, we derive boundary hypotheses from multiple segmentations to constrain

initialization over only a subset of promising image features (Figure 7.2). While a range

of structures are possible with varying levels of distinctiveness, we initialize a graph of

two related parts, i.e., M (0) = ({f1, f2}, Sf1,f2).

7.2.1 Bottom-up segmentation constraint

The Superpixel Closure segmentation algorithm by Levinshtein et al . [14] uses a gap-to-

area criterion to select a contiguous region of superpixels for figure-ground segmentation.

Multiple segmentations at different image scales and locations, corresponding to different

hypothetical objects, are obtained by varying a weight parameter. Given a set B of

boundary edgels, we are interested in any contour feature φ that is within a minimum

distance dbnd(B, φ) to the boundary. To obtain only those contours that fall entirely in

the immediate vicinity of the boundary we use the Hausdorff distance:

dbnd(B, φ) = max
e∈edgels(φ)

(
min
b∈B
||e− b||

)
. (7.6)

As shown in Figure 7.2, initial part learning is restricted to image boundary features,

obtained by thresholding the distance dbnd(·, ·) to multiple segmentation boundaries.
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Figure 7.2: Initial segmentation constraint: 1) extracted image features, 2) figure-ground

segmentation hypotheses, and 3) image features masked by the boundary hypotheses.

7.2.2 Initial learning

In a procedure similar to the iterative step, image features are restricted according to

constraints, and parts are learned via codebook voting and mean-shift. Given features

masked by boundary hypotheses, an initial model M (0) = ({f1, f2}, Sf1,f2) is learned by

1) finding recurring feature pairs via codeword voting over a joint vote space N|Q|×N|Q|,

and 2) mean-shift over the induced relation examples.
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Evaluation

We evaluate object localization on the benchmark dataset ETHZ [7] which contains 5

shape categories appearing in 255 cluttered scenes. In this evaluation, image category

labels are treated as image captions. It is possible to simulate caption noise by random

re-assignment of a subset of category labels, although we have not done so in our ex-

periments. A random half of the images (per category) were used as training examples,

from which we extracted bottom-up segmentations and learned the models without us-

ing bounding boxes. For each category, up to 20 models were learned from independent

initializations, from which the one with the highest co-occurrence score was selected.

Performance is evaluated on the test set (the remaining half) using precision and recall.

Thresholded detections are counted as true positives when the detection bounding

box BBd overlaps at least 50% with the ground truth bounding box BBgt, where overlap

is measured by intersection-over-union (BBgt ∩ BBd)/(BBgt ∪ BBd). The detection

bounding box BBd is defined with the following observation in mind: ground truth

bounding boxes capture not only correct localization, but also the correct spatial extent

of the object. Because our learned models do not always correspond to the entire object

boundary, BBd needs to be defined so that localization can be evaluated independently of

object completeness. (For example, if only a portion of a Giraffe was learned, localization

27
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Figure 8.1: Example detections of the 5 ETHZ categories in cluttered images. Detections

are annotated with the line segment representation of contours.



Chapter 8. Evaluation 29

Apple Logo Bottle Giraffe

Figure 8.2: Examples of prototype bounding boxes for each model. Models are shown in

their line segment representation.

performance would be systematically lower due to smaller bounding boxes.) As shown in

Figure 8.2, this is accomplished by associating a full object bounding box (a prototype of

BBd) with each model via its parts. Each part stores an estimate of BBd relative to itself,

and detected parts yield the actual BBd via the average of the estimates. The estimates

of BBd themselves are obtained from training data by taking relevant model detections

and finding the average transformation from part bounding boxes to the ground truth

bounding boxes. Note that bounding boxes are used only for evaluation purposes, and

are learned after training the object models.

Results in Figure 8.3 show significant differences in performance over the 5 categories.

The best precision and recall was achieved on the Apple Logos, which often appear nicely

segmented with only slight changes in orientation, while the worst-performing were the

Giraffes and Swans, which come with articulation and shape deformation. Annotation

on novel images presents a significant challenge as shown in the performance decrease.

To demonstrate the advantage of shape features, we present a comparison with the SIFT
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(a) Training performance over all images.
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(b) Annotation performance on 50% of images.

Figure 8.3: Precision-recall of ETHZ shape categories under two conditions: (a) perfor-

mance on training images using the entire dataset, and (b) performance on novel images

by models trained on 50% of the dataset.
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Figure 8.4: Comparison with Jamieson et al . [11] under model-word co-occurrence (no

localization), over the entire ETHZ dataset.
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feature model of Jamieson et al . [11] in Figure 8.4. As expected, higher co-occurrence

is achieved with shape features. This is especially evident for Bottles and Mugs, where

appearance features could not be found that were stable across images. It is interesting

to note that among the learned appearance models were company slogan text for Apple

Logos (which did not appear with each logo); skin texture for Giraffe images (which had

higher co-occurrence than our shape model); and water ripples for Swan images.

Results in Figure 8.5 show that adding bounding box supervision to all stages of

learning improves the performance of every category, though only marginally. Insight

into this may be gained by considering our bottom-up segmentation constraint, which

is sufficiently strong to yield regularities that already appear within bounding boxes.

Furthermore, the closed region specified by a bounding box is only a stronger form of

proximity grouping already inherent in our learning approach.

Future tests: It would be beneficial to know how well our approach performs under

such supervised conditions, hence we intend to compare with the state-of-the-art in the

immediate future. We expect to only approach the performance of Ferrari et al . [9] due to

the absence of a more refined shape model, but achieve similar results compared to their

first stage of learning, which performs only Hough voting over kAS features. Additionally,

by depriving the state-of-the-art of bounding boxes, we expect to show comparatively

better performance, as well as demonstrate the reliance on bounding boxes in other

systems. Finally, a direct comparison with kAS features is also necessary to evaluate our

descriptor stability improvements.

Limitations of our approach: Since expansions derive from the detections of pre-

decessor models, final performance is dependent on the performance of predecessors.

While initial models are expected to yield a precision increase as they grow to be more

distinctive, an initial low recall can be a limiting factor for subsequent expansions. Low

recall may be due to missing features (e.g ., image clutter or occlusion causing contours

to break), but there is generally a deficiency in capturing within-category and viewpoint
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Figure 8.5: Comparison with the addition of bounding box supervision during training.
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variation. Unexpected feature representations can arise from shape deformation or slight

changes in viewpoint that transform image curvature with unstable contour lineariza-

tion. Breakpoints may jump from place to place, causing lines to suddenly merge, split,

or cover substantially different contour segments. We have addressed a subclass of these

variations via multi-scale linearization (Section 4.1.1), thus increasing feature repeatabil-

ity across a range of scales, although it was impractical to cover instances appearing at

very small scales (e.g ., Apple Logos).

The shape representation is prone to low precision in the following way. Because

contour fragments are spatially interrelated only via their midpoints, there is weak con-

tinuity between the ends of multiple contour fragments. This is true at the model level,

where the relation between two matching contour features may be numerically similar

even though the two contours are mutually discontinuous (e.g ., due to false positive

features from clutter). Similarly, weak continuity exists at the feature level, where line

segments do not necessarily coterminate, despite our efforts to restrict configurations to

paths (Section 4.1, and details in Appendix B.1).

Lack of precision is ultimately mitigated by the distinctiveness of final models, but the

greedy nature of the learning procedure requires that smaller, intermediate models also

satisfy a certain level of distinctiveness. Preliminary tests with less distinctive, rotation-

invariant features show that an initial model of only two parts, M (0) = ({f1, f2}, Sf1,f2),

may not provide enough precision for weaker features, and thus hinder learning by prop-

agating the same problem to the next expansion. Note that our inclusion of bottom-up

segmentations relaxes the initial need for distinctiveness because they help bring out the

regularities. Even so, this was insufficient for rotation-invariant features, and so it would

have been necessary to use other approaches such as grouping more line segments together

(with k > 3) to obtain more distinctive features, or reducing greediness by initializing

and expanding larger chunks of parts.
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Conclusions and future work

We have presented an approach for learning category shape from captioned images in

an unsupervised manner, and demonstrated encouraging results on the ETHZ dataset.

By using shape information from bottom-up segmentations, we achieve a natural and

powerful alternative to supervised learning with bounding boxes, without being limited

by segmentation accuracy. We have also introduced a contour feature derived from

the kAS feature with stability improvements, and shown that shape features are more

effective than appearance features for object categorization.

An immediate priority is a thorough quantitative evaluation. To summarize the future

tests outlined in Section 8, we intend to compare performance with the state-of-the-art

under commonplace supervised conditions (e.g ., Ferrari et al . [9]), and also expect to show

superior performance when the state-of-the-art is deprived of bounding box supervision.

A direct comparison with kAS features [9] is also needed to evaluate our contour features.

Finally, a variety of possible extensions follow from the multiple approaches that we

integrated:

• A number of additional perceptual grouping methods can be integrated, e.g ., sym-

metry, repetition, and continuity. In particular, continuity alone can be exploited

for a more focused expansion guide along the boundary of an object.

35



Chapter 9. Conclusions and future work 36

• The word representation can be made more flexible, e.g ., by allowing objects to

have multiple names (possibly a hierarchical description), and using context to

disambiguate words with multiple meanings. However, a more integrated learning

algorithm would be necessary to carry out the simultaneous grouping of words and

visual features.

• Recognition performance could be improved by incorporating a refinement stage,

such as that by Ferrari et al . [9]. While kAS-like features allow for efficient discovery

of regularities, a finer and more concise object representation would be less sensitive

to within-category variation.

• The overall design and performance could potentially be improved by reducing

greediness in both learning and detection. While greedy algorithms are optimal for

problems that have a greedy structure, it is not clear that this assumption applies

or is necessary to the current extent for this task.



Appendix A

Probability model parameters

A.1 Co-occurrence score

The likelihood that a word w occurs when the object is present in the scene, p(w|o = 1),

can be determined from ground truth data if available, otherwise it may be specified per-

word. The likelihood when the object is absent from the scene, p(w|o = 0), is similarly

determined. We use p(w|o = 1) = 0.99 and p(w|o = 0) = 0.01.

The likelihood of a model instance m given object presence in the scene is more

complicated to determine. Since m ∈ [0, 1], the likelihood p(m|o) is continuous and may

not be easy to obtain from ground truth data. However, we can specify the endpoint

probabilities, p(m = 1|o) (and thus p(m = 0|o) = 1−p(m = 1|o)), as was done for words,

and then assume a linear interpolation between them (and checking that the density sums

to 1). This linear relation reflects the expectation that when the object is in the scene,

high confidence detections are more likely than low confidence ones, while the opposite

is true when the object is absent.

37
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A.2 Detection score

The background feature likelihood p(φ|fB) represents the natural frequency of occur-

rence in background images. While the φ exists in the space of all possible contours,

some contours occur more frequently than others, while others occur more rarely and

are thus more distinctive. For simplicity, however, we have approximated the density

with a uniform distribution. A more accurate distribution could have been obtained by

considering the variances of individual codewords.

The background mean distance µbu and mean relative scale µbv, and their variances

σ2
bu, σ

2
bv are determined empirically by sampling from feature neighbourhoods. The prior

probabilities of the object and background models, p(M) and p(B), respectively, are

determined empirically from training data by counting word occurrence.



Appendix B

Computational details

B.1 Line segment ordering

Two issues arose in the restriction of line segment grouping to paths, whose motivation

is given in Section 4.1. First, our line segment ordering is canonical, but only up to the

two path directions. Contour similarity needs to be invariant to these two possibilities,

so we compute similarity twice for each pair of features (φ1, φ2), once with respect to

the forward encoding of φ2, and once with respect to the backward encoding of φ2. The

direction is disambiguated by choosing the highest of the two similarities. Both encodings

are pre-computed for each feature. (For rotation-invariant features, the spatial relation

encoding between φ1 and φ2 depends on the ordering of both features through θ1 and

θ2. Disambiguation of the relation encoding is provided by the ordering of the respective

common codewords.)

Secondly, we were unable to group line segments directly from the linearization since

our kAS software version did not document internal data. Instead, we restricted grouping

to paths by taking a subset of extracted kAS features. The “pathness” of a kAS fea-

ture is a soft notion because line segments are linked rather than coterminating, and line

segments were often found to be only “almost” coterminating. We determined the “path-

39
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ness” of a configuration of line segments by finding the best path through the segments,

where the total gap length required to bridge the path across segments was minimized.

Each kAS feature was given a continuity score between 0 and 1 based on the total gap

length, and the feature subset was chosen by thresholding the score at 0.75.

B.2 Codebook construction

Our codebook is constructed by finding clusters of similar contour features from back-

ground images (all images in the ETHZ dataset). Features are clustered using the K-

means algorithm, and each cluster is represented by the centre-most member in kAS

distance. The target number of clusters is set to K = 700. We found that the exact

choice of K had little effect on performance; however, we manually examined codewords

to verify that their neighbours were visually neither too similar nor too dissimilar.

By using K-means clustering we make the assumption that our contour features are

comparable with Euclidean distance between descriptor vectors (Equation 4.1). Due to

the circular angle space and component weights in the kAS distance function, however,

more accurate clustering results could have been obtained with kAS distance directly,

e.g ., with spectral clustering or a clique partitioning approach.

B.3 Distance computations

In a typical image with thousands of contour features, distance computations for neigh-

bourhoods (dnbh(φ, φ′)), overlap, and boundary hypotheses masks (dbnd(B, φ)) are ex-

pensive. The number of distance computations is quadratic in the number of features,

and each distance computation is quadratic in the number of their respective edgels. We

compute distances efficiently by assigning contour edgels to spatial bins corresponding

to a grid over the image. Pairwise distances between bins are pre-computed, effectively

creating a look-up table for edgel distances.
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