
Ø w-block	(S-SVM):

Ø λ-block	(loss-augmented	parametric	energy	minimization):
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Ø A	novel	Parametric	Min-Loss	(PML)	structured	
learning	framework	for	parametric	energy	
functions.

Ø PML	learns	to	predict	multiple	outputs	using	
a	novel	loss	function.

Ø PML	bridges	the	gap	between	learning	and	
inference	for	parametric	energy	functions.

Ø PML	is	applicable	to	any	domain	that	uses	
parametric	energy	functions.

Contributions

Ø Object	proposals	reduce	an	exhaustive	set	of	
hypotheses	to	a	few	plausible	candidate	segments.

Ø Object	proposals	are	often	predictions	from	
parametric	energy	functions (CPMC	[2]	etc.)

Ø Parametric	energy	functions	can	encode	relevant	
bottom-up	grouping	cues	[4].

Ø But	no	previous	approach	exists	for	learning	to	
predict	multiple	outputs	with	parametric	energy	
functions.

Motivation
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Results

Ø We	achieve	results	comparable	with	CPMC	[2]	and	MCG	[1]
Ø We	outperform	methods	that	lack	learning,	e.g.	Selective	Search	[5]

Ø Bias	energy	to	different	locations
Ø Maximum	superpixel distance

Location- and	color-based	diversification Postprocessing

Ø Discard	non-maximum	proposals	among	proposals	
with	high	overlap.

Ø Train	SVM	on	deep	features	to	assign	an	objectness
score	to	each	proposal.Ø Bias	energy	to	different	foreground-background	color	pairs

Ø Gaussian	mixture	model	of	superpixel colors

Ø The	appearance	cue	discourages	division	of	similar	
colors	and	textures:

Ø The	closure	cue	discourages	gaps	along	boundaries:

Ø The	symmetry	cue	discourages	division	of	symmetric	
parts:

Ø The	energy	is	normalized	by	area	by	a	factor	λ:

Ø Evaluate	multiple	predicted	segments	against	one	
correct	ground	truth	segment.

Ø Loss	function	ideally	expresses	a	“min”:

Ø Inner	loss	function	measures	the	error	of	a	single	
predicted	segment:

Ø Upper	bound	for	inner	loss	function	(hinge	loss):

Ø Upper	bound	for	loss	function	(min-hinge	loss	[3]):

Ø Regularized	training	objective:
Ø Nonnegative	weights	and	nonnegative	

λ coefficients	guarantee	a	small	set	of	
solutions	from	parametric	maxflow.

Ø One	prediction	for	a	specific	λ:

Ø A	set	of	predictions	over	a	range	of	λ:

Parametric	energy	function

Multiple-output	prediction
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