
Thesis Proposal:
A Theory of Lazy Time and Space

Albert Y. C. Lai

February 27, 2003

Abstract

We propose a thesis on our theory of lazy time and space. It will
be along the line of:

1. (Introduction) The convenience of lazy evaluation in program-
ming and the problem of predicting time and space costs of lazy
programs. Previous work on this front.

2. (Background) Hehner’s theory of programming, on which our
theory of lazy time and space will be built as an add-on, at least
at the onset.

3. Our add-on theory of lazy time and space: intuition, main idea,
examples, comments. (Questions raised in the comments are
further elaborated and answered in subsequent chapters.)

4. Some kind of soundness proof of our theory.

5. Porting our theory to other theories of programming than Hehner’s.

6. A detailed account of the connection between our theory and
previous work on lazy time and space.

7. As much as is appropriate and relevant, perhaps some newly
discovered connection among temporal theories, data refinement
(simulation), and abstract interpretation. This stems from some
observations made in the examples in Chapter 3.

8. Conclusion and new questions.

This proposal motivates the problem, explains our theory of lazy time
(the space counterpart is similar), mentions and compares with previ-
ous related work, and concludes with an outline of work to do.

1



1 Introduction

Some programming languages support lazy evaluation, meaning an expres-
sion may be left unevaluated until computational decisions and progress rely
upon it, and then it will be evaluated and the value memoized. Lazy evaula-
tion is important because, on the theoretical side, it approximates the call-by-
need or call-by-name aspects of certain lambda calculi, and on the practical
side, it offers certain conveniences and simplifications in the design of pro-
grams and data structures. But the task of determining the amount of time
and space used by a lazy program, even just asymptotically, has been largely
a black art.

Here are some of the recent works on the problem (the final thesis will
list all or almost all), but there are only a handful, sprinkled here and there
over the last decade. Wadler [7] has a theory of lazy time based on domain-
theoretic strictness analysis, addressing the call-by-need aspect but not the
memoization aspect; its root in domain theory causes it to be somewhat
complicated. Bakewell and Runciman [1] has an operational semantics for
calculating space usage of Haskell programs; the operational nature implies
every prediction has to be a whole-program analysis, making compositional
reasoning difficult.

Our theory of lazy time is simpler and more fundamental, requiring only a
twist in the mental model of binary relations. It addresses both call-by-need
and memoization. It is an add-on to some known theories of programming
and correctness, requiring no new logic, analysis method, or proof technique.
It supports compositional reasoning as much as the host theory of program-
ming does. Our theory of lazy space is similar to our theory of lazy time,
borrowing from the way Hehner’s eager space theory resembles his eager time
theory [5].

We have conceived the time theory and tried it on a few generalizable
examples; the report of these constitutes the bulk of this proposal. To round
up a complete account of this theory, including the space part, there is more
work we will do: proving its soundness, adapting it to various theories of
programming, and connecting our theory with related work to give a sense
of unification. In working one of the examples, and in fact during the whole
duration of investigation, we seemed to see some connection among temporal
theories, data refinement (simulation), and abstract interpretation; we would
like to develop this connection and report the results if relevant and appro-
priate. Thus we propose a thesis consisting of the foregoing. Please refer to

2



the abstract for the proposed structure.
The rest of the proposal is organized as follows. Section 2 summarizes

Hehner’s theory of programming and time [3, 4], for the purpose of hosting
our add-on theory of lazy time. Section 3 describes, exemplifies, and com-
ments on the relevance of our theory of lazy time, noting further work along
the way. (It also makes passing mention of space.) Section 4 briefly connects
our theory with Wadler’s theory and well as backward dataflow analysis.
Section 5 concludes and names further work for the thesis.

2 Background

2.1 A Theory of Eager Timing

To unify reasoning of running time with reasoning of program behaviour,
Hehner suggests introducing a state variable t into the program in question
for time accounting [2]. This variable can be thought of as a ghost variable
that exists on paper but not in the computer; or it can be thought of as a
counter present in the computer. Either way, its presence permits us to both
add values to it at time-consuming points of the program, and postulate and
prove the gross change to its value caused by the whole program. For exam-
ple, to prove that summing n numbers does not use more than n additions,
we insert t:= t+1 near each summing operation in the algorithm, then prove
that the whole algorithm increases t by at most n.

Although this theory was invented in the context of Hehner’s theory of
program correctness [3], it easily ports to other theories of program correct-
ness. This wide applicability derives from the status of t as just a state
variable not unlike other state variables such as the accumulator holding
the sum. Whichever theory of correctness is used to prove things done to
the accumulator, the same theory can be used to prove things done to t.
More importantly, this method of time analysis inherits all the properties
of the theory used—strengths, weaknesses, and tradeoffs. In particular, if
the theory supports compositional reasoning, then time analysis also enjoys
compositional reasoning: static time analysis does not have to degenerate to
global analysis. As well, if the theory trades precision for automation, then
time analysis can also trade precision for automation.

The previous paragraph muse on the characteristics of the Hehner method
of time analysis because we will suggest methods of lazy time analysis that

3



have some of these characteristics.

2.2 A Theory of Programming

Although the theory of eager timing in the previous subsection is not re-
stricted to any particular theory of programming, our theory of lazy timing
will start out being restricted to one. This section reviews Hehner’s theory
of imperative programming and associated notations, which will be used in
the next section to describe our theory of lazy timing. Details can be found
in [4, 3].

A specification is a boolean expression relating pre-values of state vari-
ables with their post-values.1 Pre-values are denoted by the names of the
variables themselves like x, y, and t, and post-values by adding primes to
names like x′, y′, and t′. Sometimes we also use σ to stand for x, y, t together
and σ′ for x′, y′, t′ together. As such, the theory is mostly a relational theory,
the only difference being notational: we write σ′ = σ when a relation theorist
would write λσ, σ′ ·σ′ = σ or {(σ, σ′)|σ′ = σ}. The relational nature is pivotal
to our lazy timing theory in the next section.

Some specifications correspond directly to program constructs and are
given special synonyms:

ok = σ′ = σ

x:= E = x′ = E ∧ y′ = y ∧ t′ = t

P . Q = ∃σ′′ · (substitute σ′′ for σ′ in P ) ∧ (substitute σ′′ for σ in Q)

The first is “do nothing” or the identity relation, the second is an assign-
ment statement or total function, and the third is sequential composition or
relational composition.

Refinement is defined as universal implication or relational inclusion:
problem P is refined by solution S iff ∀σ, σ′ · P ⇐ S. For convenience and
without loss of soundness, often we just state and prove P ⇐ S instead. The
solution may use the problem as a component, which translates to recursion
or looping in execution.

There will be lists and list operations in the examples in the rest of this
paper. Lists may stand for linked lists, cons lists, snoc lists, or arrays. Indexes
are zero-based. For a list L, #L is its length, L0 is its head, L[2;..5] is the slice

1There is a more general notion of specification, but we will not need it here.

4



[L2; L3; L4] (in particular L[1;..#L] is its tail), and + is the concatenation
operator.

3 Our Theory of Lazy Timing

We will describe our theory of lazy timing in imperative programming. Lazy
imperative programming is not widely known or available, so it is necessary
to define it first. It is quite similar to lazy functional programming. Lazy
functional programming means that expressions assigned to formal param-
eters are evaluated by need and memoized. Lazy imperative programming
analogously means that expressions assigned to state variables are evaluated
by need and memoized. (The corresponding lazy timing theory for functional
programming is not worked out yet, but it shall have the same flavour. Alter-
natively it may be easier to just say “translate to imperative programming,
then use the present theory”, as is exemplified in a subsequent subsection.)

Before we go into our theory of lazy timing, we explain how it is inspired
by a twist of the meaning of specifications and programs as relations. A pro-
gram can be modelled as a relation, in that the domain is the input space, the
co-domain is the output space, and the relation specifies which input values
should lead to which output values. In other words, the direction of informa-
tion flow is thought to be forward, from the domain to the co-domain. But
this needs not be so. Direction here is a matter of interpretation, not intrinsic
in the mathematics of relations. Indeed, a declarative program for finding an
even prime number can be constructed by taking a relation that nondeter-
ministically chooses a prime number, and composing it with a relation that
insists on even inputs. While the former stage tells the latter stage of a prime
number, it is the latter stage that tells the former stage to choose an even
one. Some information may flow forward, and some other information may
flow backward; in fact the backward information may constrain the forward
information. We will exploit this interpretation for our theory of lazy timing.

3.1 Basic Theory of Lazy Timing

To account for running time under lazy evaluation, we introduce the time
variable t as in Hehner [2], and in addition, for each state variable x, we
introduce a corresponding boolean usage variable ux. An interpretation (but
not the only one) of ux is this. Whereas we think of x as an input and x′ as

5



an output, the roles of ux and u′
x are reversed: u′

x is an input, using which
the program is told whether or not its x′ will be needed in the future; and
ux is output, using which the program tells whether or not it needs x from
the past. Combining this with sequential composition of programs, which
is relational composition in our case, where x′ and u′

x of one program is
identified with x and ux of the next, we have a way of propagating usage
information backward while data and time goes forward. That is to say, live
variable analysis is a backward dataflow analysis.

Thus, for a program that lazily sets variable x to the result of some
computation, we have the means to say “if x′ will be used in the future, then
this program costs 1 unit; otherwise it is free”2:

t′ = t + if u′
x then 1 else 0

If the computation is accomplished by reading from another variable y, we
also have the means to say “if x′ will be used in the future, then this program
uses y from the past; otherwise usage of y is inherited directly from the
future”:

uy = u′
x ∨ u′

y

Finally, we may add that this program does not need the past value of x:

¬ux

The above forms of expressions are suitable for specifications, but not
quite convenient in program code when we want to state “set the pre-value
of ux to false, all other variables are unchanged”. We need a notation for
backward assignment statements. Thus we introduce the backward assign-
ment operator =: with:

ux=: E ′ = ux = E ′ ∧ uy = u′
y ∧ x′ = x ∧ y′ = y ∧ t′ = t

Here E ′ is an expression that mentions no pre-values. This syntactic re-
striction avoids contradictions like ux = ¬ux without losing generality: if we
wanted E ′ to be uy ∧ x > 0, we could write u′

y ∧ x′ > 0 instead, since we
would have uy = u′

y and x′ = x anyway.
The next two subsections give examples of applying this theory. Of course

these examples cannot possibly constitute proof of soundness or consistency.
Instead they serve as materialization of the foregoing high-level depiction,
illustration of the new intuition (afterall it is an unusual mental model),
demonstration of the theory in action, and motivation for new questions.

2Okay it should also cost 1 unit for building the thunk.

6



3.2 Basic Example

Here is an example of storing the sum of an array L into s. If subsequently
the sum is not needed, the program should take no time. Also, the program
does not need the past value of s. The array L is used as a constant (read-
only), and we skip stating “L is not changed”. We assume an auxiliary global
variable n, and we can use it any way we want. For simplicity of presentation,
we omit the usage variables uL and un (but it is possible to put them back).

s′ = ΣL[0;..#L] ∧ ¬us ∧ t′ = t + if u′
s then #L else 0

⇐ us=:⊥ .
s:= 0 .
n:= 0 .
s′ = s + ΣL[n;..#L] ∧ us = u′

s ∧ t′ = t + if u′
s then #L− n else 0

s′ = s + ΣL[n;..#L] ∧ us = u′
s ∧ t′ = t + if u′

s then #L− n else 0

⇐ if #L = 0 then ok
else t:= t + if us then 1 else 0 .

s:= s + Ln .
n:= n + 1 .
s′ = s + ΣL[n;..#L] ∧ us = u′

s ∧ t′ = t + if u′
s then #L− n else 0

Initially, s is cut off from its past (¬us in the specification and us=:⊥ in
the code). In the loop, s takes on many incarnations, each depending on its
previous, so an incarnation is needed iff its previous is (us = u′

s in the loop
specification and no change to us in the loop body). So at the end, if the
final incarnation of s (the result) is needed, then all incarnations are, which
take time #L altogether; otherwise, all incarnations are skipped. (The same
story applies to un if we put it back. As for uL, we have roughly uL = u′

s∨u′
L

due to the statement s:= s + Ln; this is a very coarse-grain account of the
usage of L, and a fine-grain account is in the subsection after next.)

Here is a main program making use of the above, showing that the lazy
timing is right. It invokes the above routine to sum L and store in s, then
invokes a similar routine to sum M and store in s (thus erasing the sum of L),
then uses the latter result. The running time should be #M , not #L+#M ,

7



and the following is therefore provable:

s′ = ΣL[0;..#L] ∧ ¬us ∧ t′ = t + if u′
s then #L else 0 .

s′ = ΣL[0;..#M ] ∧ ¬us ∧ t′ = t + if u′
s then #M else 0 .

us=:>
⇒ t′ = t + #M

We should remark that although this main program uses the sum of M
just once, further uses do not incur extra costs. This is consistent with
memoization.

To demonstrate compositional reasoning, let us change the implementa-
tion of the summing routine. We use a non-tail recursion. We also use n in
a different way.

s′ = ΣL[0;..#L] ∧ ¬us ∧ t′ = t + if u′
s then #L else 0

⇐ n:= 0 .
s′ = ΣL[n;..#L] ∧ n′ = n ∧ ¬us ∧ t′ = t + if u′

s then #L− n else 0

s′ = ΣL[n;..#L] ∧ n′ = n ∧ ¬us ∧ t′ = t + if u′
s then #L− n else 0

⇐ if #L = n then u=:⊥ . s:= 0
else n:= n + 1 .

s′ = ΣL[n;..#L] ∧ n′ = n ∧ ¬us ∧ t′ = t + if u′
s then #L− n else 0 .

n:= n− 1 .
t:= t + if us then 1 else 0 .
s:= Ln + s

We dive into the recursion and cut off the past of s when we hit the bottom.
As we return, we build up incarnations of s. Each incarnation is needed iff its
next is, so the recursion specification does not constrain u′

s (it lets the future
decide), but the code after each recursive call carefully ensures us = u′

s so
that the recursive call can see the future.

After proving these new refinements, this new implementation becomes a
drop-in replacement for the old one. There is no need to re-visit the reasoning
of the main program, as details not mentioned in the specification (such as
the fate of n) were never used.

As noted, the above method is too coarse-grained for aggregate data
structures such as arrays and lists. A fine-grained variation is shown in the
next subsection.

8



3.3 Advanced Theory and Example: Lazy Infinite List

A major application of lazy evaluation is the construction of infinite data
structures to be consumed finitely. For example, an infinite cons list is created
by a fixpoint equation, and then only the first six items are used ever. The
computer should spend no more time than is necessary for the construction
of the needed prefix.

An infinite cons list of 0’s may be created by a program like

(∀i · L′i = 0) ⇐ (∀i · L′i = 0) . L:= [0]+L

The unusual position of the recursion is derived from a Haskell program for
the same task:

p :: () -> [Int]

p = ([0]++) . p

i.e., functional composition f ◦ g typically becomes sequential composition
g . f .

The lazy timing of this program cannot possibly be controlled by one
single boolean usage uL—it is too imprecise. The most precise method is to
use an infinite list U of usage variables: for each index i, U ′i is true iff L′i
will be used. The time taken up by the program should be the supremum of
i+1 over those i’s with U ′i true, or 0 if there is no such i; this is the amount
of work necessary for building the prefix L[0;..i + 1] to satisfy the demand.
(If some items in this prefix are not needed, it is still alright and necessary
to include them, as this is a cons list. Alright, the cons cells, not the items
themselves, are constructed.)

The program augmented with timing information is then:

(∀i · L′i = 0) ∧ t′ = t + if ¬∃i · U ′i then 0 else SUP i : U ′i · i + 1

⇐ (∀i · L′i = 0) ∧ t′ = t + if ¬∃i · U ′i then 0 else SUP i : U ′i · i + 1 .

L:= [0]+L .

U=: U ′[1;..∞] .

t:= t + if ¬∃i · U ′i then 0 else 1

The loop body passes backward just the tail of U , since the past furnishes
just the tail of L. The timing in the loop body says: if any item of L is
used, be it the one I contribute or one I inherit from the past, then I cost

9



1 unit, since my item will have to be constructed either way; otherwise, I
cost nothing. The above refinement can be proved by going through all four
cases: L′0 is or is not used, and some item of the tail L′[1;..∞] is or is not
used. (Two of the cases can be merged.)

The method is precise but can be tedious; for example the proof for the
above expands to at least three cases, and lots of quantifiers abound. We
can lose some precision and still prove the same conclusion. We do not need
to know the usage of each item; all we need to know here is the maximum
index. So we now switch back to using one single usage uL, but instead of a
boolean, it is now a non-negative integer standing for the length of the prefix
constructed, replacing

if ¬∃i · Ui then 0 else SUP i : Ui · i + 1

Basically, the partial order of single booleans is not precise enough, the partial
order of infinite lists of booleans is exact but too large, and the partial order
of single numbers is just right, which can be seen as an abstraction of the
exact partial order. That is to say, the effectiveness of an analysis relies on
an effective abstract interpretation. The program becomes:

(∀i · L′i = 0) ∧ t′ = t + u′
L

⇐ (∀i · L′i = 0) ∧ t′ = t + u′
L .

L:= [0]+L .

uL=: if u′
L = 0 then 0 else u′

L − 1 .

t:= t + if uL = 0 then 0 else 1

If a certain prefix of L needs to be constructed, the loop body costs one
unit for the one item it contributes, and its past is just responsible for the
remaining cost. Otherwise, all is free. The proof of this refinement involves
just two cases, and each case is trivial arithmetic.

The agreement between the simpler program using the numeric uL and
the exact program using the list U is not by kludge and luck; it is a necessary
consequence. One way to see it is, as hinted above, an abstract interpreta-
tion from the partial order over U to the partial order over uL. Another
way to see it is a data refinement (simulation) between U and uL using the
representation invariant

uL = if ¬∃i · Ui then 0 else SUP i : Ui · i + 1

10



which is again hinted above. (Okay, so we confess there is some hacking in
discovering a candidate abstraction and invariant; but once the abstraction
is validated and the data refinement worked out, the agreement between the
two programs must follow.) These realizations suggest interesting questions
connecting temporal theories, data refinements (simulations), and abstract
interpretations. We do not have time presently to write down our modest
progress on this connection, but we do intend to work it out and include
selected results in the final thesis.

Lists are not the only interesting lazy data structure. We would like to
generalize as much as possible to (co)algebraic data structures in the final
thesis.

3.4 Relevance and Applicability

We now address some itching issues on the relevance and applicability of our
theory.

3.4.1 Applicability to Other Theories of Correctness

Hehner’s theory of eager timing is applicable to all imperative theories of
correctness. Our theory of lazy timing does not seem to be as widely appli-
cable. Our theory exploits relational theories, so all we can say is our theory
is applicable to relational theories of correctness.

There is a further constraint. Most relational theories of correctness (es-
sentially except Hehner’s [3] and a version of Hoare and He’s [6]) insist on
total correctness and termination under eager evaluation. In doing so, their
notions of composition and legal relations forbid backward information flow
and lazy evaluation in an essential way. Thus our theory of lazy timing is
not that widely applicable afterall.

But this is a shortcoming of theories insisting on total correctness, not
a shortcoming of any add-on theory of lazy timing. Correctness can and
should be factored into partial correctness and timeliness. Partial correct-
ness concerns what might be delivered, and it is a declarative and safety
notion, insensitive to execution strategies. Timeliness concerns when and
whether there is a [usable] delivery, and it is an operational and liveness
notion, sensitive to execution strategies. If a theory couples tightly the two
notions together, it necessarily over-commits itself to one particular execu-
tion strategy in a rather unique manner, and nothing could possibly be done

11



to adapt it to a different execution strategy, short of a complete rewrite. But
if a theory carefully keeps the two factored, such as Hehner’s and Hoare and
He’s, then all we need to do is to pull out the chapter on eager timing and
drop in a chapter on lazy timing.

From this we can see an unnoticed applicability of our theory to predicate
transformer semantics. Instead of starting with weakest preconditions, we
may be able to start with weakest liberal preconditions and add a lazy notion
of termination and time. This is completely a conjecture now, but it is
possible to work it out and include it in the final thesis.

3.4.2 Theory vs. Reality

We observe two discrepancies between this lazy time theory with real lazy
implementations, and we briefly explain why such discrepancies are tolerable
for the sake of keeping the theory fairly simple.

The first discrepancy is that the result of the computation is always deliv-
ered in the theory, whereas it is seldom delivered in reality if it is never used.
This is analogous to the Hehner theory of eager timing [2], in which when it
comes to a non-terminating program, the theory says the output is delivered
at time infinity, while no implementation delivers at all. The defense for the
eager theory is that the hypothetical delivery cannot be observed even in
principle, so it is as good as no delivery. We can employ a similar defense
for the lazy theory: if the result is not used, whether it is delivered or not
makes no difference to the rest of the program or the observer, so delivering
it is as good as not delivering it.

The second discrepancy is that, in some implementations, time is not
spent in running the part of a program that delivers a computational result,
but rather at the end of the program where all needed results are used,
or forced; and in some other implementations, although time is spent in
parts, the direction of execution and time consumption is backward. Our
theory does not attempt to temporally simulate execution processes of some
or all implementations. It only tries to be an accounting theory, a way of
distributing or amortizing costs to parts; its sole validation or invalidation
lies in its predictions of end-to-end running times.

That last point calls for some kind of soundness proof of our theory, e.g.,
that it should be consistent with some conceivable implementation. This is
not done yet, but can be done in the final thesis.

12



3.5 Space Theory

In the foregoing, we have only covered time. This subsection covers space,
and it is brief because the major hurdle has been overcome by the usage
variables.

Hehner’s theory of space [5] adds yet another variable s to count the
amount of space in use. It is incremented at program points of memory al-
location, and decremented at program points of memory deallocation. The
value of s′ − s over the whole program gives the amount of space leak. To
further determine the maximum amount of space ever occupied, simply in-
troduce another variable m, and do

m:= max m s

at every point of increment of s.
Our lazy theory of space simply needs to adopt the same additional vari-

ables s and m. There is nothing original in this regard, and nothing original
is needed in this regard. The original idea is adding the usage variables and
using them backward; once we have that, the rest is trivial. We increment
and decrement s according to future usage, just like we incremented the time
variable t according to future usage.

4 Related Work

As hinted in the previous section when describing our theory of lazy timing,
there is some resemblance of our theory to live variable analysis. Indeed,
the live variable problem is precisely about which assignment statements can
be skipped, and its solution is precisely a backward propagation of dataflow
information. But live variable analysis approximates blindly whenever there
are branches and loops, and it does not embed dataflow variables into the
program. As a result, it also has to keep track of usage information per assign-
ment statement, not just per state variable. Our theory can be as imprecise
or precise as the user desires and the hosting theory of programming allows,
and by embedding usage information right next to assignment statements,
we only need one usage variable per state variable, which is simpler.

Wadler’s theory [7] treats call-by-need timing by using domain theory and
defining “contexts/projections” and “projection transformers”, but there is
a simpler way of explaining it in light of our theory. The problem is to

13



time f (g x). The solution is to define “projection”, a way to specify how
much of a parameter is needed (so this is like the possible values stored into
our usage variables); and a “projection transformer” h1 for each caller h,
a function mapping projections to projections for doing this: if the result
of h y is to be used in a way specified by projection α, then h1 α gives the
projection that specifies how y will be used by h, which means to specify
how the use of outputs affects the use of inputs (so this is like our u=: E ′

backward assignments). The amount of time h y takes under projection α
depends on both y and α (so this is like our t′ = t + if u′ then #L else 0
specifications), and part of it involves finding out how much time the callee y
takes under projection h1 α (so this is like our passing information backwards
through composition). Thus to time f (g x) under the projection (usage) α,
the backward expression g1 (f 1 α) is involved, just like in our theory. To con-
strast Wadler’s theory with ours, we note that our theory (or our exposition)
presents the backward flow more intuitively and directly, is simpler (projects
are functions themselves), introduces fewer definitions, handles memoization,
and covers nondeterministic specifications and programs. We also begin to
give an affirmative answer to a question in Wadler’s paper: can his theory
be adapted to space analysis?

Our theory can be likened to old methods and theories, and in this section
we have exactly done so. But in all cases, our theory is simpler and more
general, or even better, our theory explains old theories.

5 Conclusion

We have described and illustrated a simple theory of lazy timing. To under-
stand it takes no more than an unusual understanding of relations, and to
use it takes just the ordinary mathematics of relations or whichever theory
of programming is used to host our theory.

We still have to extend this theory to more infinite data structures. We
still have to bring it to more theories of imperative programming. We still
have to determine the best way of bringing it to functional programming.
We still have to prove it sound. We propose to do all these in the final thesis.

14



References

[1] A. Bakewell and C. Runciman. A space semantics for core Haskell. In
Proceedings of the Haskell Workshop, September 2000.

[2] Eric C. R. Hehner. Termination is timing. In J. L. A. van de Snepscheut,
editor, Mathematics of Program Construction, volume 375 of Lecture
Notes in Computer Science, pages 36–47, Groningen, The Netherlands,
June 1989. Springer.

[3] Eric C. R. Hehner. A practical theory of programming. Science of Com-
puter Programming, 14(2,3):133–158, October 1990.

[4] Eric C. R. Hehner. A Practical Theory of Programming. Texts and
Monographs in Computer Science. Springer, 1993.

[5] Eric C. R. Hehner. Formalization of time and space. Formal Aspects of
Computing, 10:290–306, 1998.

[6] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Pren-
tice Hall International Series in Computer Science. Prentice Hall, 1998.

[7] Philip Wadler. Strictness analysis aids time analysis. In 15’th ACM Sym-
posium on Principles of Programming Languages, San Diego, California,
January 1988.

15


