Albert Y. C. Lai

Department of Computer Science University of Toronto

June 10, 2008

- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

## **Programming Constructs**

- $\sigma := e$  or x, y := a, b
- P.Q
- $\bullet$  if b then P else Q
- specification S, provided refinement S 

  P
  recursion allowed

## **Operational Semantics**

Operational semantics as rewrite rules:

$$\sigma := k . \sigma := e \quad \rightarrow \quad \sigma := \langle \sigma \rightarrow e \rangle \, k$$

$$\sigma := k . \text{ if } b \text{ then } P \text{ else } Q \quad \rightarrow \quad \text{if } \langle \sigma \rightarrow b \rangle \, k \text{ then } (\sigma := k . P) \text{ else } (\sigma := k . Q)$$

$$\text{if } \top \text{ then } P \text{ else } Q \quad \rightarrow \quad P$$

$$\text{if } \bot \text{ then } P \text{ else } Q \quad \rightarrow \quad Q$$

$$S \quad \stackrel{1}{\longrightarrow} \quad P \text{ (provided } S \leftrightharpoons P)$$

Note: no order specified yet. This talk will describe two.

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L{:=}[0;1;2]\,.\,s{:=}0\,.\,Q\,0$$

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

- $\rightarrow$  s, L:=0, [0; 1; 2]. Q 0
- $\rightarrow$  s, L:=0, [0; 1; 2] . **if** 0=2 **then** ok **else** (s:= s+L0 . Q1)

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. **if** 0=2 **then** ok **else** (s:= s+L0. Q1)

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. s:= s+L0. Q1

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. **if** 0=2 **then** ok **else** (s:= s+L0. Q1)

$$\rightarrow$$
 s, L:=0, [0; 1; 2] . s := s+L0 . Q1

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 1

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. s:= s+L0. Q1

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 1

$$\rightarrow$$
 s, L:=1, [0; 1; 2]. Q 2

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. s:= s+L0. Q1

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 1

$$\rightarrow$$
 s, L:=1, [0; 1; 2]. Q 2

$$\rightarrow \quad s, L \!:=\! 1, [0;1;2].ok$$

$$Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s:=s+Ln \cdot Q(n+1))$$

$$L:=[0;1;2].s:=0.Q0$$

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 0

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. **if** 0=2 **then** ok **else** (s:= s+L0. Q1)

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. s:= s+L0. Q1

$$\rightarrow$$
 s, L:=0, [0; 1; 2]. Q 1

$$\rightarrow$$
 s, L:=1, [0; 1; 2]. Q 2

$$\rightarrow \quad s,L\!:=\!1,[0;1;2].ok$$

$$\rightarrow$$
 s, L:=1, [0; 1; 2]

## Eager Execution Defined

**①** To run S with initial value j: Start with  $\sigma := j . S$ .

## **Eager Execution Defined**

- **1** To run S with initial value j: Start with  $\sigma := j . S$ .
- At each step, use the first one applicable to the left:
  - looks like  $\sigma := k . S$ : use

$$S \stackrel{1}{\longrightarrow} \text{what refines } S$$

use the (unique) matching rule from

$$\sigma := k . \sigma := e \longrightarrow \sigma := \langle \sigma \rightarrow e \rangle k$$

$$\sigma := k . \text{ if } b \text{ then } P \text{ else } Q \longrightarrow \dots$$

$$\text{if } \top \text{ then } P \text{ else } Q \longrightarrow P$$

$$\text{if } \bot \text{ then } P \text{ else } Q \longrightarrow Q$$

$$S \stackrel{1}{\longrightarrow} \text{ what refines } S$$

## **Eager Execution Defined**

- **1** To run S with initial value j: Start with  $\sigma := j . S$ .
- At each step, use the first one applicable to the left:
  - looks like  $\sigma := k . S$ : use

$$S \stackrel{1}{\longrightarrow} \text{ what refines } S$$

use the (unique) matching rule from

$$\sigma := k . \sigma := e \longrightarrow \sigma := \langle \sigma \rightarrow e \rangle k$$

$$\sigma := k . \text{if } b \text{ then } P \text{ else } Q \longrightarrow \dots$$

$$\text{if } \top \text{ then } P \text{ else } Q \longrightarrow P$$

$$\text{if } \bot \text{ then } P \text{ else } Q \longrightarrow Q$$

$$S \stackrel{1}{\longrightarrow} \text{ what refines } S$$

**③** Stop when the whole program is just  $\sigma$ :=k.



- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

## Eager Soundness

Can prove: refinement ⇒ execution

#### **Eager Soundness**

Can prove: refinement ⇒ execution

Safety:

$$\forall n, j, k \cdot (\sigma := j.S \xrightarrow{n} \sigma := k) \Rightarrow \langle \sigma, \sigma' \to S \rangle jk$$

#### **Eager Soundness**

Can prove: refinement ⇒ execution

Safety:

$$\forall n, j, k \cdot (\sigma := j . S \xrightarrow{n} \sigma := k) \Rightarrow \langle \sigma, \sigma' \rightarrow S \rangle jk$$

Liveness:

$$("t:=t+1" inserted) \land \forall \sigma \cdot \exists \sigma' \cdot S$$

$$\Rightarrow \forall n, j \cdot (\forall \sigma' \cdot \langle \sigma \rightarrow S \rangle j \Rightarrow t' \leq t+n) \Rightarrow (\exists k \cdot \sigma := j \cdot S \xrightarrow{\leq n} \sigma := k)$$

$$\Rightarrow (\forall \sigma, \sigma' \cdot S \Rightarrow t' \leq t + f \sigma) \Rightarrow (\forall j \cdot \exists k \cdot \sigma := j \cdot S \xrightarrow{\leq f j} \sigma := k)$$

#### **Exact Precondition for Termination**

139. Define "exact precondition for termination" as  $\exists n \cdot \forall \sigma' \cdot S \Rightarrow t' \leq t+n$  Comment on whether it is reasonable.

#### **Exact Precondition for Termination**

139. Define "exact precondition for termination" as

$$\exists n \cdot \forall \sigma' \cdot S \Rightarrow t' \leq t+n$$

Comment on whether it is reasonable.

$$\forall n \cdot (\forall \sigma' \cdot S \Rightarrow t' \leq t + n) \Rightarrow (\exists k \cdot S \xrightarrow{\leq n} \sigma := k)$$

$$\blacksquare$$
  $\forall n \cdot (\forall \sigma' \cdot S \Rightarrow t' \leq t+n) \Rightarrow S$  terminates

$$=$$
  $(\exists n \cdot \forall \sigma' \cdot S \Rightarrow t' \leq t+n) \Rightarrow S$  terminates

• Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.
- Is the refinement sound? Prove  $\forall \sigma \cdot \exists \sigma' \cdot S \dots$

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.
- Is the refinement sound? Prove  $\forall \sigma \cdot \exists \sigma' \cdot S \dots$

Don't despair. Bootstrap!

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.
- Is the refinement sound? Prove  $\forall \sigma \cdot \exists \sigma' \cdot S \dots$

Don't despair. Bootstrap!

•  $S \Leftarrow \text{if } g \text{ then } B.S \text{ else } ok$  $t' \leq t + f \sigma \Leftarrow \text{if } g \text{ then } B.t' \leq t + f \sigma \text{ else } ok$ 

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.
- Is the refinement sound? Prove  $\forall \sigma \cdot \exists \sigma' \cdot S \dots$

#### Don't despair. Bootstrap!

- **③**  $S \Leftarrow \text{if } g \text{ then } B . S \text{ else } ok$  $t' \leq t + f \sigma \Leftarrow \text{if } g \text{ then } B . t' \leq t + f \sigma \text{ else } ok$
- ②  $\forall \sigma \cdot \exists \sigma' \cdot t' \leq t + f \sigma$  clearly yes. liveness theorem  $\Rightarrow \sigma := j \cdot t' \leq t + f \sigma \xrightarrow{\leq f j} \sigma := k$

- Prove  $\forall \sigma \cdot \exists \sigma' \cdot S$ ? Write an algorithm to find  $\sigma'$ .
- Is the algorithm correct? Prove the refinement.
- Is the refinement sound? Prove  $\forall \sigma \cdot \exists \sigma' \cdot S \dots$

#### Don't despair. Bootstrap!

- $S \Leftarrow \text{if } g \text{ then } B.S \text{ else } ok$  $t' \leq t + f \sigma \Leftarrow \text{if } g \text{ then } B.t' \leq t + f \sigma \text{ else } ok$
- ②  $\forall \sigma \cdot \exists \sigma' \cdot t' \leq t + f \sigma$  clearly yes. liveness theorem  $\Rightarrow \sigma := j \cdot t' \leq t + f \sigma \xrightarrow{\leq f j} \sigma := k$
- **1** Re-label execution trace:  $\sigma:=j.S \xrightarrow{\leq f j} \sigma:=k$  safety theorem  $\Rightarrow k$  is a witness  $\Rightarrow \exists \sigma' \cdot S$

- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

## **Operational Semantics**

Operational semantics as rewrite rules:

$$\sigma := k . \sigma := e \quad \rightarrow \quad \sigma := \langle \sigma \rightarrow e \rangle \, k$$

$$\sigma := k . \text{ if } b \text{ then } P \text{ else } Q \quad \rightarrow \quad \text{if } \langle \sigma \rightarrow b \rangle \, k \text{ then } (\sigma := k . P) \text{ else } (\sigma := k . Q)$$

$$\text{if } \top \text{ then } P \text{ else } Q \quad \rightarrow \quad P$$

$$\text{if } \bot \text{ then } P \text{ else } Q \quad \rightarrow \quad Q$$

$$S \quad \stackrel{1}{\longrightarrow} \quad P \text{ (provided } S \Leftarrow P)$$

New order coming up.

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$\rightarrow P1.L:=[0]^+L$$

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$\rightarrow$$
 P1.L:=[0]<sup>+</sup>L

$$\rightarrow$$
  $P2.L:=[1]^{+}L.L:=[0]^{+}L$ 

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$\rightarrow$$
 P1.L:=[0]<sup>+</sup>L

$$\rightarrow$$
  $P2.L:=[1]^{+}L.L:=[0]^{+}L$ 

$$\rightarrow$$
  $P2.L:=[0;1]^+L$ 

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$\rightarrow P1.L:=[0]^+L$$

$$\rightarrow$$
  $P2.L:=[1]^{+}L.L:=[0]^{+}L$ 

$$\rightarrow$$
  $P2.L:=[0;1]^+L$ 

$$\rightarrow$$
 P3.L:=[2]<sup>+</sup>L.L:=[0;1]<sup>+</sup>L

$$Pm \leftarrow P(m+1) . L := [m]^{+}L$$

P0

$$\rightarrow P1.L:=[0]^+L$$

$$\rightarrow$$
  $P2.L:=[1]^{+}L.L:=[0]^{+}L$ 

$$\rightarrow$$
  $P2.L:=[0;1]^+L$ 

$$\rightarrow$$
 P3.L:=[2]<sup>+</sup>L.L:=[0;1]<sup>+</sup>L

$$\rightarrow$$
 P3.L:=[0;1;2]+L

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s = 0.Q0$$

$$\rightarrow$$
 P 0 . s:=0 . if 0=2 then ok else (s:= s+L0 . Q1)

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s = 0.Q0$$

- $\rightarrow$  P0. s:=0. if 0=2 then ok else (s:=s+L0. Q1)
- $\rightarrow$  P0. s:=0. s:= s+L0. Q1

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s = 0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow P0.s:=0.s:=s+L0.Q1$$

$$\rightarrow$$
 P0. s:=0. s:= s+L0. s:= s+L1. ok

many iterations

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s:=0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:=s+L0. Q1)

$$\rightarrow P0. s := 0. s := s + L0. Q1$$

$$\rightarrow$$
 P0. s:=0. s:=s+L0. s:=s+L1. ok

$$\rightarrow$$
 P0.  $s := L0 + L1$ 

many iterations

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s = 0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:=s+L0. Q1)

$$\rightarrow P0.s:=0.s:=s+L0.Q1$$

$$\rightarrow$$
 P0. s:=0. s:=s+L0. s:=s+L1. ok

$$\rightarrow$$
 P0.  $s := L0 + L1$ 

$$\rightarrow$$
 P1. L:=[0]<sup>+</sup>L. s:=L0+L1

many iterations

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s = 0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow P0.s:=0.s:=s+L0.Q1$$

$$\rightarrow$$
 P0. s:=0. s:=s+L0. s:=s+L1. ok

$$\rightarrow P0.s = L0 + L1$$

$$\rightarrow$$
 P1.L:=[0]+L.s:=L0+L1

$$\rightarrow$$
 P1 . s, L := 0+L1, [0]+L

many iterations

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s:=0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow P0.s:=0.s:=s+L0.Q1$$

$$\rightarrow$$
 P0. s:=0. s:=s+L0. s:=s+L1. ok

$$\rightarrow P0.s := L0 + L1$$

$$\rightarrow$$
 P1. L:=[0]<sup>+</sup>L. s:=L0+L1

$$\rightarrow$$
 P1 . s, L := 0+L1, [0]+L

$$\rightarrow$$
 P2. L:=[1]<sup>+</sup>L. s, L:=0+L1, [0]<sup>+</sup>L

many iterations

$$Pm \leftarrow P(m+1) \cdot L := [m]^+ L$$
  
 $Qn \leftarrow \text{if } n=2 \text{ then } ok \text{ else } (s := s+Ln \cdot Q(n+1))$ 

$$P0.s:=0.00$$

$$\rightarrow$$
 P0. s:=0. if 0=2 then ok else (s:= s+L0. Q1)

$$\rightarrow$$
 P0. s:=0. s:=s+L0. Q1

$$\rightarrow$$
 P0. s:=0. s:=s+L0. s:=s+L1. ok

$$\rightarrow$$
 P0.  $s := L0 + L1$ 

$$\rightarrow$$
 P1. L:=[0]<sup>+</sup>L. s:=L0+L1

$$\rightarrow$$
 P1 . s, L := 0+L1, [0]+L

$$\rightarrow$$
 P2. L:=[1]<sup>+</sup>L. s, L:=0+L1, [0]<sup>+</sup>L

$$\rightarrow$$
 P2. s, L:= 1, [0; 1]<sup>+</sup>L

many iterations

Decide which variables you want.

- Decide which variables you want.
- **②** With initial value j, start with  $\sigma := j . S$

- Decide which variables you want.
- ② With initial value j, start with  $\sigma := j . S$ 
  - Stop when the rightmost looks like σ:=e and it assigns constants to variables you want.

- Decide which variables you want.
- ② With initial value j, start with  $\sigma := j . S$
- Stop when the rightmost looks like σ:=e
   and
   it assigns constants to variables you want.
- Otherwise, rewrite the rightmost, unless...

- Decide which variables you want.
- ② With initial value j, start with  $\sigma := j . S$
- Stop when the rightmost looks like σ:=e

   and
   it assigns constants to variables you want.
- Otherwise, rewrite the rightmost, unless...
- **③** Rightmost is conditional:  $\sigma:=j.R$ . **if** b **then** P **else** Q Suspend. You want variables in b. Execute  $\sigma:=j.R$  Resolve conditional. Resume.

Programming application: producer-consumer.

- Programming application: producer-consumer.
- Theoretic application: most terminating.

- Programming application: producer-consumer.
- Theoretic application: most terminating.
- Difficulty: execution time less obvious.
   I will show you how to do it.

- Programming application: producer-consumer.
- Theoretic application: most terminating.
- Difficulty: execution time less obvious.
   I will show you how to do it.

Remark: *Not* a difficulty: I/O order. Lazy execution for internal computation between two I/O actions *only*.

# Operational Semantics, Soundness, Laziness

- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

• For each state variable v,v', a usage variable  $u_v,u'_v$  (boolean).  $u_v = "v$  is used"  $u'_v = "v'$  is used" Array needs usage array.

• For each state variable v,v', a usage variable  $u_v,u'_v$  (boolean).

$$u_v = "v \text{ is used"}$$
  
 $u'_v = "v' \text{ is used"}$ 

Array needs usage array.

• 
$$x'=x \wedge y'=y \wedge t'=t \wedge u_x=e' \wedge u_y=u'_y = u_x=:e'$$

• For each state variable v,v', a usage variable  $u_v,u'_v$  (boolean).

$$u_v = "v$$
 is used"  
 $u'_v = "v'$  is used"  
Array needs usage array.

- $x'=x \wedge y'=y \wedge t'=t \wedge u_x=e' \wedge u_y=u'_y = u_x=:e'$
- Annotate assignment statements:

$$x := y+1 \cdot u_x, u_y =: \bot, u'_x \lor u'_y$$
  
 $x := x+y \cdot u_y =: u'_x \lor u'_y$ 

• For each state variable v,v', a usage variable  $u_v,u'_v$  (boolean).  $u_v = v$  is used"

$$u_v = "v$$
 is used"  
 $u'_v = "v'$  is used"  
Array needs usage array.

- $x'=x \wedge y'=y \wedge t'=t \wedge u_x=e' \wedge u_y=u'_y = u_x=:e'$
- Annotate assignment statements:

$$x := y+1 \cdot u_x, u_y =: \bot, u'_x \lor u'_y$$
  
 $x := x+y \cdot u_y =: u'_x \lor u'_y$ 

Specifications and recursive time:

$$x'>x \land y'=y \land t'=t+u'_x \times x$$
.  $t:=t+u'_x$  (abuse: treat  $u'_x$  as 0 or 1)

if 
$$y=0$$
 then  $(x:=1.u_x=:\bot)$  else  $(x:=2.u_x=:\bot)$  isn't right.

if 
$$y=0$$
 then  $\exists v_y \cdot u_y = (\forall v_y) \land \langle u_y \rightarrow x := 1 . u_x = : \bot \rangle v_y$  else ...

copy out u<sub>y</sub> from statement

if y=0 then 
$$\exists v_y \cdot u_y = (u'_x \lor v_y) \land \langle u_y \rightarrow x := 1 . u_x = : \bot \rangle v_y$$
 else . . .

- copy out u<sub>v</sub> from statement
- amend by u'<sub>x</sub> because statement sets x'

if y=0 then 
$$\exists v_y \cdot u_y = (u'_x \lor v_y) \land \langle u_y \rightarrow x := 1 . u_x = : \bot \rangle v_y$$
 else . . .

- copy out u<sub>v</sub> from statement
- amend by u'<sub>x</sub> because statement sets x'

All variables in test need amendment.

if y=0 then 
$$\exists v_y \cdot u_y = (u'_x \lor v_y) \land \langle u_y \rightarrow x := 1 . u_x = : \bot \rangle v_y$$
 else . . .

- copy out u<sub>v</sub> from statement
- amend by u'<sub>x</sub> because statement sets x'

All variables in test need amendment.

Result:

if 
$$y=0$$
 then  $x:=1$ .  $u_x$ ,  $u_y=:\bot$ ,  $(u'_x \lor u'_y)$  else ...

# **Example of Lazy Timing Refinements**

#### Consumer (entry):

$$\neg u_s \wedge u_L = (u'_L [0; ..2] \vee u'_s)^+ u'_L [2; ..\infty] \wedge t' = t + u'_s \times 2$$



# **Example of Lazy Timing Refinements**

Consumer (entry):

$$\neg u_s \wedge u_L = (u'_L [0; ..2] \vee u'_s)^+ u'_L [2; ..\infty] \wedge t' = t + u'_s \times 2$$

$$\Leftarrow$$
  $s:=0.u_s=:\perp.Q0$ 

Consumer (loop):

Qm

$$= u_s = u'_s \wedge u_L = u'_L[0; ...m]^+ (u'_L[m; ...2] \vee u'_s)^+ u'_L[2; ...\infty] \wedge t' = t + u'_s \times (2-m)$$

**ti** if n=2 then ok else  $(s:=s+Ln . u_L n=: u'_L n \lor u'_s . Q(m+1) . t:=t+u'_s)$ 

# **Example of Lazy Timing Refinements**

#### Consumer (entry):

$$\neg u_s \wedge u_L = (u'_L [0; ..2] \vee u'_s)^+ u'_L [2; ..\infty] \wedge t' = t + u'_s \times 2$$

$$\leftarrow$$
  $s:=0.u_s=:\perp.Q0$ 

Consumer (loop):

Qm

$$= u_s = u'_s \wedge u_L = u'_L [0; ..m]^+ (u'_L [m; ..2] \vee u'_s)^+ u'_L [2; ..\infty] \wedge t' = t + u'_s \times (2-m)$$

**ti** 
$$n=2$$
 then  $ok$  else  $(s := s + Ln . u_L n =: u'_L n \lor u'_s . Q(m+1) . t := t + u'_s)$ 

#### Producer:

$$t' = t + (MAX i \mid u'_L i \cdot i + 1 - m)$$

$$= t' = t + (MAX \ i \ | \ u'_L \ i \cdot i - m) \ . \ t := t + (\exists i \cdot i \ge m \land u'_L \ i) \ . \ L := [m]^+ L \ . \ u_L = : [\bot]^+ u'_L$$



# Operational Semantics, Soundness, Laziness

- Operational Semantics
- Soundness of Refinements
- 3 Lazy Execution
- Calculating Lazy Timing
- Conclusions

# Conclusions on Lazy Execution

• Lazy timing harder but tractible. Can analyze locally.

# Conclusions on Lazy Execution

- Lazy timing harder but tractible. Can analyze locally.
- Restricting accessible variables helps.

# Conclusions on Lazy Execution

- Lazy timing harder but tractible. Can analyze locally.
- Restricting accessible variables helps.
- Refinement independent of termination
  - ⇒ Choose execution, choose timing.

#### **Future Work**

- Prove soundness of lazy timing.
- Array  $u_L$  clumsy, can abstract to nat.
- Lazy spacing.
- More execution orders.