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If only there were an IDE for proofs. . .





Useful?

Industrial perspective:

✔ unambiguous language for internal documentation

✔ critical, core fragments of code

✔ delicate hand-optimizations of originally simple algorithms

✘ not substitute for testing; not panacea

✔ good addition to toolset

? but how many colleagues will use it?



Useful?

Educational perspective:

✔ IDE for discrete math homework!

✔ clear rules of the game—no second-guessing the TA

⇒ graduates mind it less and use it more at work

✘ not substitute for other CS/SE homework!



Future Work

☞ if a step fails, want explanation/counter-example (see link #4)

☞ if a step works by automation, want details

☞ syntax+type check, informative messages, heuristics, help

☞ bridge to/from code files; proof templates

☞ model objects, pointers



Links

1. Homepage: http://www.cs.utoronto.ca/~trebla/scphEditor/

2. We model programs with the theory from:

E. C. R. Hehner, A Practical Theory of Programming.
http://www.cs.utoronto.ca/~hehner/aPToP/

3. We currently use this theorem prover at the back:

HOL: http://hol.sourceforge.net/

4. It would be nice to use a counterexample generator such as:

Alloy: http://alloy.mit.edu/
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