
Why we like programming Why we hate proofs

edit

compiledebug

instant
feedback

craving

experience
coolness

write

syntax
check

grade
(2wks)

no 2nd
chance

repellance

preplexion
frustration

If only there were an IDE for proofs. . .





Useful?

Industrial perspective:

✔ unambiguous language for internal documentation

✔ critical, core fragments of code

✔ delicate hand-optimizations of originally simple algorithms

✘ not substitute for testing; not panacea

✔ good addition to toolset

? but how many colleagues will use it?



Useful?

Educational perspective:

✔ IDE for discrete math homework!

✔ clear rules of the game—no second-guessing the TA

⇒ graduates mind it less and use it more at work

✘ not substitute for other CS/SE homework!



Future Work

☞ if a step fails, want explanation/counter-example (see link #4)

☞ if a step works by automation, want details

☞ syntax+type check, informative messages, heuristics, help

☞ bridge to/from code files; proof templates

☞ model objects, pointers



Links

1. Homepage: http://www.cs.utoronto.ca/~trebla/scphEditor/

2. We model programs with the theory from:

E. C. R. Hehner, A Practical Theory of Programming.
http://www.cs.utoronto.ca/~hehner/aPToP/

3. We currently use this theorem prover at the back:

HOL: http://hol.sourceforge.net/

4. It would be nice to use a counterexample generator such as:

Alloy: http://alloy.mit.edu/

http://www.cs.utoronto.ca/~trebla/scphEditor/
http://www.cs.utoronto.ca/~hehner/aPToP/
http://hol.sourceforge.net/
http://alloy.mit.edu/

