# Fundamental Theorems of Loop Invariants

Albert Y. C. Lai

Department of Computer Science University of Toronto

May 25-29, 2008

### Outline

- 1 The Theorem & History
- Proof in Predicative Programming
- Applications
- Full Versions of The Theorem

### Background

- State variables x, y; collectively called  $\sigma$ .
- Want a program for  $x' = f x y = f \sigma$ .
- Let's say while g do B od works.

We know the usual proof approach...

(assume termination)

**while** g **do** B **od** implements x' = f x y



$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$\land \forall \sigma_0, \sigma \cdot f \sigma = f \sigma_0 \land \neg g \Rightarrow x = f \sigma_0$$

#### The Question

(assume termination)

**while** g **do** B **od** implements x' = f x y



$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$\land \forall \sigma_0, \sigma \cdot f \sigma = f \sigma_0 \land \neg g \Rightarrow x = f \sigma_0$$

Does  $f \sigma = f \sigma_0$  always work?

## Fundamental Theorem of Loop Invariants

(assume termination)

**while** g **do** B **od** implements x' = f x y



$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$\land \forall \sigma_0, \sigma \cdot f \sigma = f \sigma_0 \land \neg g \Rightarrow x = f \sigma_0$$

Does  $f \sigma = f \sigma_0$  always work? Yes!

## $f \sigma = f \sigma_0$ Invariant Visually

Partition state-space by answers. Invariant: Don't cross borders.



## History (circa 1975)

 Several authors noted an easy case for while g x do x:=h x od implements x:=f x

# History (circa 1975)

- Several authors noted an easy case for while g x do x:=h x od implements x:=f x
- Basu and Misra extended to:
   while g x do x, y:=h x y od implements x'=f x
   But...



Misra

# History (circa 1975)

- Several authors noted an easy case for while g x do x:=h x od implements x:=f x
- Basu and Misra extended to:
   while g x do x, y:=h xy od implements x'=f x
   But... must init y before use



Misra

Misra mentioned the theorem. Audience showed disbelief.



"It's a theorem! It's published!"

- Misra mentioned the theorem. Audience showed disbelief.
  - "It's a theorem! It's published!"





• "Amazing! I'm going to look it up!"

- Misra mentioned the theorem. Audience showed disbelief.
  - "It's a theorem! It's published!"





- "Amazing! I'm going to look it up!"
- The proof considered execution traces.

- Misra mentioned the theorem. Audience showed disbelief.
  - "It's a theorem! It's published!"





- "Amazing! I'm going to look it up!"
- The proof considered execution traces.
- I tried a proof using refinements, but I made it too complicated.

- Misra mentioned the theorem. Audience showed disbelief.
  - "It's a theorem! It's published!"



- "Amazing! I'm going to look it up!"
- The proof considered execution traces.
- I tried a proof using refinements, but I made it too complicated.
   Dijkstra would not have liked this.



Misra visited Toronto."Wouldn't it be cool to fix my proof and show him!"



- Misra visited Toronto."Wouldn't it be cool to fix my proof and show him!"
- Ignored some assumptions. Focused on ⇒.
   Much simpler.



- Misra visited Toronto."Wouldn't it be cool to fix my proof and show him!"
- Ignored some assumptions. Focused on ⇒.
   Much simpler.

Dijkstra would have liked this.



- Misra visited Toronto. "Wouldn't it be cool to fix my proof and show him!"
- Ignored some assumptions. Focused on ⇒.
   Much simpler.
   Dijkstra would have liked this.
- The proof today is simpler yet.

#### old proof

low-level (execution) long, informal

#### new proof

high-level (refinement) short, formal

#### old proof

- low-level (execution) long, informal
- B deterministic

#### new proof

- high-level (refinement) short, formal
- B nondeterministic

#### old proof

- low-level (execution) long, informal
- B deterministic
- x' = f x f takes x as only input

#### new proof

- high-level (refinement) short, formal
- B nondeterministic
- x'=fxyf may use or ignore x,y

#### old proof

- low-level (execution) long, informal
- B deterministic
- x' = f x f takes x as only input
- y for "temp" onlyg cannot read yB must init y before read

#### new proof

- high-level (refinement) short, formal
- B nondeterministic
- x'=fxyf may use or ignore x,y
- no restriction on use of y

### Outline

- The Theorem & History
- Proof in Predicative Programming
- Applications
- 4 Full Versions of The Theorem

### **Predicative Programming**

specification,program = relation between 
$$\sigma$$
 and  $\sigma'$ 

$$ok = \sigma' = \sigma$$

$$B \cdot C = \exists \sigma'' \cdot B \sigma \sigma'' \wedge C \sigma'' \sigma'$$
if  $g$  then  $B$  else  $C = g \wedge B \vee \neg g \wedge C$ 

$$Y \text{ implements } X = \forall \sigma, \sigma' \cdot X \Leftarrow Y$$

## Loops

$$\forall \sigma, \sigma' \cdot x' = f \ x \ y \Leftarrow$$
 while  $g \$ do  $B \$ od

$$\land \forall \sigma \cdot \exists \sigma' \cdot g \Rightarrow B$$

∧ loop terminates



$$\exists W \cdot \forall \sigma, \sigma' \cdot x' = f \ x \ y \Leftarrow W \Leftarrow \mathbf{if} \ g \ \mathbf{then} \ B \cdot W \ \mathbf{else} \ ok$$
$$\wedge \forall \sigma \cdot \exists \sigma' \cdot W \ \sigma \ \sigma'$$

- I just need this much.
- Supported by different definitions.
- Timing included in B and possibly W.

Proof:

Т

#### Proof:

$$x' = f \sigma \Leftarrow g \land (B . W)$$

$$\Rightarrow \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (B . W)$$

#### Proof:

$$x' = f \sigma \leftarrow g \land (B.W)$$

$$\Rightarrow \forall \sigma, \sigma' \cdot x' = f \sigma \leftarrow g \land (B . W)$$

$$= \forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \ \sigma \ \sigma'' \land W \ \sigma'' \ \sigma')$$

#### Proof:

$$\Rightarrow \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (B . W)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land W \sigma'' \sigma')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$

$$x' = f \sigma \leftarrow g \land (B . W)$$

sequential

distribute

#### Proof:

$$\Rightarrow \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (B.W)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land W \sigma'' \sigma')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$

$$x' = f \sigma \Leftarrow g \land (B . W)$$

sequential distribute

£ \_ , W

$$\forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow W$$

#### Proof:

$$\Rightarrow \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (B.W)$$

$$\rightarrow$$
  $(0,0)$   $x=j$   $0$   $\leftarrow g \cap (B:N)$ 

$$= \forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \ \sigma \ \sigma'' \land W \ \sigma'' \ \sigma')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$

$$= \forall \sigma, \sigma'' \cdot f \, \sigma'' = f \, \sigma \leftarrow g \wedge B \, \sigma \, \sigma'' \wedge (\exists \sigma' \cdot W \, \sigma'' \, \sigma')$$

$$x' = f \sigma \Leftarrow g \land (B . W)$$

sequential distribute

$$= f \sigma \leftarrow W$$

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow W$$

factor

#### Proof:

$$\forall \sigma, \sigma' \cdot x' = f \sigma \leftarrow g \land (B \cdot W)$$
 sequential 
$$\forall \sigma, \sigma' \cdot x' = f \sigma \leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land W \sigma'' \sigma')$$
 distribute 
$$\forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$
 
$$\forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \leftarrow g \land B \sigma \sigma'' \land W \sigma'' \sigma'$$
 factor 
$$\forall \sigma, \sigma'' \cdot f \sigma'' = f \sigma \leftarrow g \land B \sigma \sigma'' \land (\exists \sigma' \cdot W \sigma'' \sigma')$$
 
$$\forall \sigma \cdot \exists \sigma' \cdot W \sigma \sigma'$$
 
$$\forall \sigma \cdot \exists \sigma' \cdot W \sigma \sigma'$$
 
$$\forall \sigma \cdot \exists \sigma' \cdot W \sigma \sigma'$$
 
$$\forall \sigma \cdot \exists \sigma' \cdot W \sigma \sigma'$$

#### Proof:

 $= \forall \sigma, \sigma' \cdot f \sigma' = f \sigma \leftarrow g \land B$ 

13 / 22

## Fundamental Theorem of Loop Invariants

#### Definition

p is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

#### **Definition**

*p* is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

In our case:

 $\forall \sigma_0 \cdot f \sigma = f \sigma_0$  is a loop invariant

#### **Definition**

*p* is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

In our case:

$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma_0 \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

#### **Definition**

*p* is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

#### In our case:

$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma_0 \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

context

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

#### Definition

p is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

#### In our case:

$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \sigma' = f \sigma_0 \Leftarrow f \sigma = f \sigma_0 \land g \land B$$

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

$$= \forall \sigma, \sigma' \cdot f \sigma' = f \sigma \leftarrow g \land B \land (\exists \sigma_0 \cdot f \sigma = f \sigma_0)$$

context

#### Definition

p is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

#### In our case:

$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \sigma' = f \sigma_0 \Leftarrow f \sigma = f \sigma_0 \land g \land B$$

context

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

$$= \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \leftarrow g \land B \land (\exists \sigma_0 \cdot f \ \sigma = f \ \sigma_0)$$

$$= \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow g \land B$$

#### Definition

p is a loop invariant  $= (\forall \sigma, \sigma' \cdot p \, \sigma' \Leftarrow p \, \sigma \land g \land B)$ 

#### In our case:

$$\forall \sigma_0 \cdot f \sigma = f \sigma_0$$
 is a loop invariant

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \sigma' = f \sigma_0 \leftarrow f \sigma = f \sigma_0 \land g \land B$$

context

$$= \forall \sigma_0 \cdot \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow f \ \sigma = f \ \sigma_0 \land g \land B$$

$$= \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \leftarrow g \land B \land (\exists \sigma_0 \cdot f \ \sigma = f \ \sigma_0)$$

$$= \forall \sigma, \sigma' \cdot f \sigma' = f \sigma \Leftarrow g \land B$$

$$- \forall \sigma, \sigma \cdot f \ \sigma = f \ \sigma \Leftarrow g \land g$$

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g \mathbf{then} B \cdot x' = f \sigma \mathbf{else} ok$  in the first place?

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g \mathbf{then} B \cdot x' = f \sigma \mathbf{else} ok$  in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (B \cdot x' = f \sigma)$$

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g$  then  $B \cdot x' = f \sigma$  else ok in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

sequential

$$= \forall \sigma, \sigma' \cdot x' = f \ \sigma \leftarrow g \land (\exists \sigma'' \cdot B \ \sigma \ \sigma'' \land x' = f \ \sigma'')$$

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g \mathbf{then} B \cdot x' = f \sigma \mathbf{else} ok$  in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land x' = f \sigma'')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \ \sigma \Leftarrow g \land B \ \sigma \ \sigma'' \land x' = f \ \sigma''$$

sequential distribute

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g$  then  $B \cdot x' = f \sigma$  else ok in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land x' = f \sigma'')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

sequential distribute context

Prove  $x' = f \sigma \Leftarrow if g then B \cdot x' = f \sigma else ok$ in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land x' = f \sigma'')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma'' \cdot f \, \sigma'' = f \, \sigma \leftarrow g \land B \, \sigma \, \sigma'' \land (\exists \sigma' \cdot x' = f \, \sigma'')$$

sequential distribute context

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g$  then  $B \cdot x' = f \sigma$  else ok in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land x' = f \sigma'')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma'' \cdot f \sigma'' = f \sigma \leftarrow g \land B \sigma \sigma'' \land (\exists \sigma' \cdot x' = f \sigma'')$$

$$= \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \Leftarrow g \land B \ \sigma \ \sigma'$$

sequential distribute

context

Prove  $x' = f \sigma \Leftarrow \mathbf{if} g \mathbf{then} B \cdot x' = f \sigma \mathbf{else} ok$  in the first place?

$$\forall \sigma, \sigma' \cdot x' = f \ \sigma \Leftarrow g \land (B \cdot x' = f \ \sigma)$$

$$= \forall \sigma, \sigma' \cdot x' = f \sigma \Leftarrow g \land (\exists \sigma'' \cdot B \sigma \sigma'' \land x' = f \sigma'')$$

$$= \forall \sigma, \sigma', \sigma'' \cdot x' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma', \sigma'' \cdot f \sigma'' = f \sigma \Leftarrow g \land B \sigma \sigma'' \land x' = f \sigma''$$

$$= \forall \sigma, \sigma'' \cdot f \, \sigma'' = f \, \sigma \leftarrow g \land B \, \sigma \, \sigma'' \land (\exists \sigma' \cdot x' = f \, \sigma'')$$

$$= \forall \sigma, \sigma' \cdot f \ \sigma' = f \ \sigma \leftarrow g \land B \ \sigma \ \sigma'$$

= Lemma

Yes!



sequential

distribute

context

## Outline

- The Theorem & History
- Proof in Predicative Programming
- Applications
- 4 Full Versions of The Theorem

# The Theorem Is Useless (A)

the hard part is inventing the function

$$s' = \Sigma L$$

$$\iff s:=0 . n:=0 . s' = s + \Sigma L[n; ..#L]$$

$$s' = s + \Sigma L[n; ..#L]$$
   
 **while**  $n \neq \#L$  **do**  $s := s + Ln . n := n + 1$  **od**

# The Theorem Is Useless (A)

the hard part is inventing the function

$$s' = \Sigma L$$

$$\iff s:=0 . n:=0 . s' = s + \Sigma L[n; ..#L]$$

#### The theorem applies here:

$$s' = s + \sum L[n; ..#L]$$
   
 **while**  $n \neq \#L$  **do**  $s := s + Ln . n := n + 1$  **od**

# The Theorem Is Useless (A)

the hard part is inventing the function

### But how did you invent this?

$$s' = \Sigma L$$

$$\Leftarrow s:=0 . n:=0 . s' = s + \Sigma L[n; ..#L]$$

### The theorem applies here:

$$s' = s + \sum L[n; ..#L]$$
   
 **while**  $n \neq \#L$  **do**  $s := s + Ln . n := n + 1$  **od**

## The Theorem Is Useless (B)

sometimes another invariant is better

### Maximum Segment Sum

$$s' = (MAX i, j \mid i \le j \le \#L \cdot \Sigma L[i; ...j])$$

$$\Leftarrow$$
 s:=0. c:=0. n:=0. while  $n \neq \#L$  do c:=(c+Ln)\(\gamma\)0. s:= s\(\gamma\)c. n:=n+1 od

## The Theorem Is Useless (B)

sometimes another invariant is better

## Maximum Segment Sum

$$s' = (MAX i, j \mid i \le j \le \#L \cdot \Sigma L[i; ...j])$$

 $\Leftarrow$  s:=0.c:=0.n:=0.while  $n \neq \#L$  do c:= $(c+Ln)\uparrow 0$ .s:= $s\uparrow c$ .n:=n+1 od

loop invariant

$$s=(MAX i, j \mid i \le j \le n \cdot \Sigma L[i; ...j])$$
  
 $c=(MAX i \mid i \le n \cdot \Sigma L[i; ...n])$   
well-motivated by heuristics

### Maximum Segment Sum

$$s' = (MAX i, j \mid i \le j \le \#L \cdot \Sigma L[i; ...j])$$

 $\Leftarrow$  s:=0.c:=0.n:=0.while  $n \neq \#L$  do c:= $(c+Ln) \uparrow 0$ .s:= $s \uparrow c$ .n:=n+1 od

loop invariant

$$s=(MAX\ i,\ j\mid i\leq j\leq n\cdot \Sigma L\ [i;...j])$$
  $c=(MAX\ i\mid i\leq n\cdot \Sigma L\ [i;...n])$  well-motivated by heuristics

loop function

$$s' = s \uparrow (MAX \ j \mid n+1 \le j \le \#L \cdot (c + \Sigma L \ [n;..j]) \uparrow (MAX \ i \mid n+1 \le i \le j \cdot \Sigma L \ [i;..j]))$$
 why bother

## The Theorem Is Meaningful

Suggestion for program design, verification, analysis:

- loop invariant from loop function
- loop function from context outside

## The Theorem Is Meaningful

Suggestion for program design, verification, analysis:

- loop invariant from loop function
- loop function from context outside

Think outside the loop!

## The Proof Is Meaningful

Two ways to prove a theorem for all programs:

## hairy

prove in executions

misses the forest for the trees

#### clean

- prove in refinements
- invoke: refinements faithful to executions

holistic, exploits structures

## Outline

- The Theorem & History
- Proof in Predicative Programming
- 3 Applications
- 4 Full Versions of The Theorem

### Full Versions of The Theorem

(assume termination)

(**while** g **do** B **od** implements  $d \Rightarrow x' = f x y \land (d \text{ invariant})$ 

$$\Rightarrow$$
  $\forall \sigma_0 \cdot d \land f \sigma = f \sigma_0$  is a loop invariant

$$\land \forall \sigma, \sigma' \cdot d \sigma' \land f \sigma' = f \sigma \Leftarrow d \land g \land B$$

$$\land \forall \sigma, \sigma' \cdot (d \Rightarrow x' = f \sigma) \Leftarrow g \land (B \cdot d \Rightarrow x' = f \sigma)$$

while g do B od implements 
$$d \Rightarrow x' = f x y$$

$$\Rightarrow \forall \sigma_0 \cdot d \Rightarrow f \sigma = f \sigma_0$$
 is a loop assertion

Also have proof in weakest preconditions, with  $\{d\}$ . [x'=f xy]