
Intuitionistic Logic And Type Theory

Albert Lai

March 2025

1 / 30



One More Talk

2 / 30



One More Talk
3 past talks on intuitionistic logic. Why one more?

Answer: They didn’t cover quantifers: ∀ and ∃.

This talk fixes that. Just One More Turn Talk.

Bonus: From ∀ and user-definable types by induction, derive the rest, plus many data
types, and equality. (What Lean and Agda do.)

3 / 30

https://lean-lang.org/
https://agda.readthedocs.io/


One More Talk
3 past talks on intuitionistic logic. Why one more?

Answer: They didn’t cover quantifers: ∀ and ∃.

This talk fixes that. Just One More Turn Talk.

Bonus: From ∀ and user-definable types by induction, derive the rest, plus many data
types, and equality. (What Lean and Agda do.)

3 / 30

https://lean-lang.org/
https://agda.readthedocs.io/


CSC/MAT A68: Introduction to Proofs And Programs

4 / 30



Intuitionistic/Constructivist Logic
Philosophy: Proofs should be constructive:

▶ Proof of A ∨ B should tell you which one it goes for.
▶ Proof of ∃ should contain an algorithm to build an example.

Cons:

▶ Loses the duality of classical logic.
E.g., A ∧ ¬A is false, but A ∨ ¬A is not true.

Pros:

▶ Gains the duality of introduction and elimination.
Every connective is characterized by introduction rules (how to prove it) and
elimination rules (how to use it to prove other things). A.k.a. Natural Deduction.

▶ Equivalent to functional programming.

5 / 30



Overview

sentence � type

proof of sentence � program/element of type

sentence type set analog
true Unit singleton set
false Empty empty set
A ∧ B A × B product
A ∨ B A ⊎ B, A + B disjoint union, sum
A→ B BA, A→ B function space
¬A, A→ false A→ Empty
∀x : A · B(x)

∏
x : A · B(x) indexed cartesian product

∃x : A · B(x)
∑

x : A · B(x) indexed sum

6 / 30



A→ B

proof program
intro Given: locally assume A,

get B.
Given: locally assume x : A,

get e : B.
Get A→ B. Get (λx : A · e) : A→ B.

elim Given A,
A→ B.

Given a : A,
f : A→ B.

Get B. Get f (a) : B.

(x variable, e may use x.)

7 / 30



A ∧ B, A × B

proof program
intro Given A, B. Given a : A, b : B.

Get A ∧ B. Get ⟨a, b⟩ : A × B.
elim Given A ∧ B. Given e : A × B.

Get A. Get fst(e) : A.
Given A ∧ B. Given e : A × B.
Get B. Get snd(e) : B.

8 / 30



A ∨ B, A + B

proof program
intro Given A. Given a : A.

Get A ∨ B. Get inl(a) : A + B.
Given B. Given b : B.
Get A ∨ B. Get inr(b) : A + B.

elim Given A ∨ B,
A→ C,
B→ C.

Given e : A + B,
fl : A→ C,
fr : B→ C.

Get C. Get cases(e, fl, fr) : C.

9 / 30



true, Unit

proof program
intro Get true. Get ⋆ : Unit.

10 / 30



false, Empty

proof program
elim Given false. Given e : Empty.

Get A. Get miracle(e) : A.

11 / 30



∀,
∏

proof program
intro Given: locally assume x : A,

get B(x).
Given: locally assume x : A,

get e : B(x).
Get ∀x : A · B(x). Get (λx : A · e) :

∏
x : A · B(x).

elim Given a : A,
∀x : A · B(x).

Given a : A,
f :
∏

x : A · B(x).
Get B(a). Get f (a) : B(a).

(x variable, e may use x.)

Math Tip: Think indexed cartesian product: index set A, family B indexed by A.

CS/SE Tip: If you prefer FP,
∏

is for you!

12 / 30



∃,
∑

proof program
intro Given a : A, B(a). Given a : A, b : B(a).

Get ∃x : A · B(x). Get ⟨a, b⟩ :
∑

x : A · B(x).
elim Given ∃x : A · B(x),

∀x : A · B(x)→ C.
Given e :

∑
x : A · B(x),

f :
∏

x : A · B(x)→ C.
Get C. Get dcase(e, f ) : C.

Math Tip:
∏

is categorical limit,
∑

is categorical colimit!

Philosophy Tip: Cocartes says: coproduct/colimit ergo sum.

CS/SE Tip: If you prefer OOP,
∑

is for you!

13 / 30



“Solution to Enrolment Inflation”
Corollary (“Solution to Enrolment Inflation”):

Math students fail 1/2 of the course.
SE students fail at least 3/4 of the course (4/4 if prefer state variables).

CS theory-inclined students rage-quit CMS because prefer English.

14 / 30



“Solution to Enrolment Inflation”
Corollary (“Solution to Enrolment Inflation”):

Math students fail 1/2 of the course.
SE students fail at least 3/4 of the course (4/4 if prefer state variables).
CS theory-inclined students rage-quit CMS because prefer English.

14 / 30



CSC/MAT/PHL 2168: Type Theory

15 / 30



Multiple Levels of Types And Why
Motivation:
N induction is ∀p : N→ Type · p(0) ∧ . . .→ ∀n : N · p(n)
N→ Type is the domain so should be a type.
“N→ Type is a type” yields Girard’s paradox.

Solved preemptively by Russell: Tower of types with levels 0, 1, 2, . . .

▶ Type 0 has N, N→ B
▶ Type 1 has Type 0, N→ Type 0
▶ Type 2 has Type 1, N→ Type 1
▶ . . .

Lean and Agda have that (and more for practicality or richness).

16 / 30



Multiple Levels of Types And Why
Motivation:
N induction is ∀p : N→ Type · p(0) ∧ . . .→ ∀n : N · p(n)
N→ Type is the domain so should be a type.
“N→ Type is a type” yields Girard’s paradox.

Solved preemptively by Russell: Tower of types with levels 0, 1, 2, . . .

▶ Type 0 has N, N→ B
▶ Type 1 has Type 0, N→ Type 0
▶ Type 2 has Type 1, N→ Type 1
▶ . . .

Lean and Agda have that (and more for practicality or richness).

16 / 30



Dependent Product
Familiar notation: “∀x : A · B(x)”, “

∏
x : A · B(x)”, “A→ B” if B doesn’t vary by x.

Unified notation: (x : A)→ B(x)
with A→ B as special case.

Intro and elim rules as before.

(x : A)→ (y : B)→ C(x, y) means (x : A)→ ((y : B)→ C(x, y))

Level:
if A : Type u and B(x) : Type v
then (x : A)→ B(x) : Type max(u, v)

17 / 30



Refresher: Defining Sets by Induction
N is the smallest set such that

▶ 0 ∈ N
▶ for all n ∈ N, s(n) ∈ N

Recall: “smallest” means no other members, has induction, can use recursion.

B is the smallest set such that: b0 ∈ B and b1 ∈ B.

Preview:

▶ Membership rules above become intro rules.
▶ Terminology: 0, s, b0, b1 are called constructors.
▶ Induction gives elim rules.

18 / 30



Refresher: Defining Sets by Induction
N is the smallest set such that

▶ 0 ∈ N
▶ for all n ∈ N, s(n) ∈ N

Recall: “smallest” means no other members, has induction, can use recursion.

B is the smallest set such that: b0 ∈ B and b1 ∈ B.

Preview:

▶ Membership rules above become intro rules.
▶ Terminology: 0, s, b0, b1 are called constructors.
▶ Induction gives elim rules.

18 / 30



Refresher: Defining Sets by Induction
N is the smallest set such that

▶ 0 ∈ N
▶ for all n ∈ N, s(n) ∈ N

Recall: “smallest” means no other members, has induction, can use recursion.

B is the smallest set such that: b0 ∈ B and b1 ∈ B.

Preview:

▶ Membership rules above become intro rules.
▶ Terminology: 0, s, b0, b1 are called constructors.
▶ Induction gives elim rules.

18 / 30



Defining Inductive Types: Overview
Declare type name, level, constructor names and types.

inductive N : Type 0 where
| z : N
| s : N -> N

Constructor types become intro rules.

Auto-generated:

▶ induction principle (good for both proofs and recursion)
elim rules are easy special cases

▶ computation rules: how to execute recursion

Marvelous details too long to fit here, but try osmosis from examples.

19 / 30



Unit
inductive Unit : Type 0 where
| * : B

Induction:
Unit.rec : (p : Unit→ Type u)→ p(⋆)→ (e : Unit)→ p(e)

Computation:
Unit.rec(p, a, ⋆) = a

20 / 30



Empty
inductive Empty : Type 0 where

(i.e., there are 0 constructors / intro rules)

Induction:
Empty.rec : (p : Empty→ Type u)→ (e : Empty)→ p(e)

Elimination just sets p := λx · A:
miracle : (A : Type u)→ Empty→ A
miracle(A, e) := Empty.rec((λx · A), e)

(No computation rule provided or needed.)

21 / 30



Booleans
inductive B : Type 0 where
| b0 : B
| b1 : B

Induction:
B.rec : (p : B→ Type u)→ p(b0)→ p(b1)→ (b : B)→ p(b)

Computation:
B.rec(p, e0, e1, b0) = e0
B.rec(p, e0, e1, b1) = e1

22 / 30



Naturals
inductive N : Type 0 where
| z : N
| s : N -> N

Induction:
N.rec : (p : N→ Type u)→ p(z)

→ ((n : N)→ p(n)→ p(s(n)))

→ (n : N)→ p(n)

Computation:
N.rec(p, base, step, z) = base
N.rec(p, base, step, s(n)) = step(n,N.rec(p, base, step, n))

Example:
m + n := N.rec((λv · N),m, (λn, r · s(r)), n)

23 / 30



Product
Need two domain parameters.

inductive Prod (A: Type u) (B: Type v) : Type max(u,v) where
| <_,_> : A -> B -> Prod A B

Induction:
Prod.rec : (A : Type u)→ (B : Type v)→ (p : A × B→ Type w)

→ ((a : A)→ (b : B)→ p(⟨a, b⟩))

→ (e : A × B)→ p(e)

Elimination derivable, e.g.,
fst(A,B, e) := Prod.rec(A,B, (λx · A), (λa, b · a), e)

Computation: Prod.rec(A,B, p, f , ⟨a, b⟩) = f (a, b)

24 / 30



Sum
inductive Sum (A: Type u) (B: Type v) : Type max(u,v) where
| inl : A -> Sum A B
| inr : B -> Sum A B

Induction:
Sum.rec : (A : Type u)→ (B : Type v)→ (p : A + B→ Type w)

→ ((a : A)→ p(inl(a)))

→ ((b : B)→ p(inr(b)))

→ (e : A + B)→ p(e)

Elimination just sets p := λe · C and re-order arguments.

Computation:
Sum.rec(A,B, p, fl, fr, inl(a)) = fl(a)
Sum.rec(A,B, p, fl, fr, inr(b)) = fr(b)

25 / 30



Dependent Sum
inductive Sigma (A: Type u) (B: A -> Type v) : Type max(u,v) where
| <_,_> : (a:A) -> B a -> Sigma A B

Induction:
Sigma.rec : (A : Type u)→ (B : A→ Type v)→ (p : (

∑
x : A · B(x))→ Type w)

→ ((a : A)→ (b : B(a))→ p(⟨a, b⟩))

→ (e :
∑

x : A · B(x))→ p(e)

Elimination just sets p := λe · C and re-order arguments.

Computation:
Sum.rec(A,B, p, f , ⟨a, b⟩) = f (a, b)

26 / 30



Equality
inductive Eq (A: Type u) : A -> A -> Type 0 where
| refl : (x : A) -> Eq A x x

Induction:
Eq.rec : (A : Type u)→ (x : A)→ (p : (y : A)→ Eq(A, x, y)→ Type v)

→ p(x, refl(x))

→ (y : A)→ (e : Eq(A, x, y))→ p(y, e)

Intro rule is reflexivity x = x.

Elimination: q(x)→ x = y→ q(y). (Set p := λw, e · q(w) in induction.)

Symmetry, transitivity, Leibniz (x = y→ f (x) = f (y)) provable (next slide).

Equality is mostly user-definable, only missing computation rules for inductive types
(require built-in auto-gen).

27 / 30



Proving Symmetry, Transitivity, Leibniz
Use reflexivity and elimination (q(x)→ x = y→ q(y)) to prove:

Symmetry:
Set q := λw · w = x
x = x→ x = y→ y = x

Transitivity:
Set q := λw · z = w
z = x→ x = y→ z = y

Leibniz:
Set q := λw · f (x) = f (w)
f (x) = f (x)→ x = y→ f (x) = f (y)

28 / 30



CSC/ECE/MAT/PHL/PHY/CHM/BIO/SOC/POL/LAW/LOL 2170:
Category Theory for Everyone!

29 / 30



Just kidding!

But see:

David Spivak (website),
Category Theory for the Sciences
Seven Sketches in Compositionality: An Invitation to Applied Category Theory

Eugenia Cheng (website),
The Joy of Abstraction: An Exploration of Math, Category Theory, and Life

30 / 30

https://dspivak.net/
https://mitpress.mit.edu/9780262028134/category-theory-for-the-sciences/
https://dspivak.net/7Sketches.pdf
https://eugeniacheng.com/
https://www.cambridgebookshop.co.uk/products/the-joy-of-abstraction

	One More Talk
	CSC/MAT A68: Introduction to Proofs And Programs
	CSC/MAT/PHL 2168: Type Theory
	CSC/ECE/MAT/PHL/PHY/CHM/BIO/SOC/POL/LAW/LOL 2170: Category Theory for Everyone!

