CSCC24 2025 Summer Assignment 4

Due: August 7 11:59PM

This assignment is worth 10% of the course grade.

Q1: Type Inference [10 marks]

The starter file and the file to hand in is a4-infer.txt

Show type inference steps for the following. It is intentionally incomplete; it means that you can stop after finding the generalized polymorphic type of mmap.

```
let mmap = f m \rightarrow case m of { Nothing <math>\rightarrow Nothing ; Just x \rightarrow Just (f x) } in ...
```

You may omit detailed unification steps, but do show how unify calls unify-intern for clarity. (Similar to examples in the lecture.)

Q2: Parametricity

The starter file and the file to hand in is a4-parametricity.txt.

2(a) [10 marks]

Prove that $e :: \forall b. (Int \rightarrow b \rightarrow b) \rightarrow b \rightarrow b$ satisfies

$$foldr \ op_R \ z_R \ (e \ (:) \ []) = e \ op_R \ z_R$$

for all B_R , $z_R :: B_R$, $op_R :: Int \to B_R \to B_R$.

It is simpler to use a function for the relation $\langle b \rangle$.

2(b): Comparing with Java [3 marks]

If $f :: a \rightarrow [a]$ and a test case shows f () = [()], then we know f x = [x] in general. Another point to note is that f x cannot use show x because the type of f is not Show $a \Rightarrow a \rightarrow [a]$.

In contrast, some programmers really love the fact that in Java every type has a toString() method. We will see why it sacrifices parametricity.

Implement in Java

```
<T> LinkedList<T> bad(T x)
```

such that bad returns a list of length 1 for some inputs, and the empty list for some other inputs, by exploiting x.toString().