
Shell introduction

Historical basic shell is “sh”. Modern systems default to Bourne
Again Shell (a pun) “bash”—more features and cursor editing.

I begin with less fancy sh for fundamental understanding, then
sensible extra features in bash (e.g., arrays).

Docs in ‘man sh’, ‘man bash’, and Bash Ref. Manual. Hard to
follow for beginners, but hopefully much better after these notes.

There are others, e.g., zsh, fish, csh, tcsh.

Homework and test/exam questions specify which shell to use.
You may use other nicer shells otherwise.

1 / 60

https://www.gnu.org/software/bash/manual/html_node/index.html

Comments
A comment begins with ‘#’ and extends until end of line. Can be
whole line or begin from middle of line.

whole line comment
ls -l # comment

2 / 60

echo: The Print Command
To print stuff to stdout:
echo xxx yyy zzz

By default has newline at the end. To omit:
echo -n xxx yyy zzz

What if you want 4 spaces between xxx and yyy?

This won’t work. (Exercise: Why?)
echo xxx yyy zzz

Solutions:
echo xxx\ \ \ \ yyy zzz
echo ’xxx yyy zzz’
echo "xxx yyy zzz"
echo xxx’ ’yyy zzz
etc.

3 / 60

echo: The Print Command
To print stuff to stdout:
echo xxx yyy zzz

By default has newline at the end. To omit:
echo -n xxx yyy zzz

What if you want 4 spaces between xxx and yyy?

This won’t work. (Exercise: Why?)
echo xxx yyy zzz

Solutions:
echo xxx\ \ \ \ yyy zzz
echo ’xxx yyy zzz’
echo "xxx yyy zzz"
echo xxx’ ’yyy zzz
etc.

3 / 60

Variables
Type is string.

Set value: var=abc
Tricky: No space around ‘=’

Read value: $var or ${var}
(If uninit: get empty string.)

Why ‘${var}’ syntax provided:

v=xxx
v0=yyy
echo $v0 # yyy
echo ${v}0 # xxx0

4 / 60

Want your $ back?
What if you want the string “$v” itself, not the variable:
echo \$v
echo ’$v’
echo ’$’v
echo "\$v"

Here is what "$v" does:

Suppose
v=’Sale Receipt.pdf’

This is 2 arguments “Sale”, “Receipt.pdf”:
ls $v
i.e., shell reinterprets string under shell syntax.

This is 1 argument “Sale Receipt.pdf”:
ls "$v"
Good idea to always write like that.

5 / 60

Want your $ back?
What if you want the string “$v” itself, not the variable:
echo \$v
echo ’$v’
echo ’$’v
echo "\$v"

Here is what "$v" does:

Suppose
v=’Sale Receipt.pdf’

This is 2 arguments “Sale”, “Receipt.pdf”:
ls $v
i.e., shell reinterprets string under shell syntax.

This is 1 argument “Sale Receipt.pdf”:
ls "$v"
Good idea to always write like that.

5 / 60

Shell Scripts
Put your commands in a file, call it “myscript” say. You can run it
with

sh myscript

More savvy users go one step further:

▶ Put as first line: #!/bin/sh
▶ Set executable flag on the file:
chmod u+x myscript

▶ Run it with ./myscript

Example: print-things

6 / 60

print-things

Command Line Arguments: Positional Parameters
If I run your script with arguments:
./myscript foo bar xyz
sh myscript foo bar xyz

▶ $# is 3, the number of arguments
▶ $0 is name of script
▶ $1 is foo
▶ $2 is bar
▶ $3 is xyz
▶ $* is foo bar xyz
"$*" expands to one single word “foo bar xyz”

▶ $@ is foo bar xyz
"$@" expands to 3 words “foo”, “bar”, “xyz”

Demo: print-3-args

7 / 60

print-3-args

shift

Shift positional parameters. E.g., starting from the previous slide,
one shift causes:

▶ $# is 2
▶ $1 is bar
▶ $2 is xyz
▶ $* is bar xyz
"$*" expands to one single word “bar xyz”

▶ $@ is “bar xyz”
"$@" expands to 2 words “bar”, “xyz”

Demo: print-args

Empty-string argument and argument containing spaces:
sh print-args "" " " "hello world"

8 / 60

print-args

Command Grammar: “Simple” Commands
“simple command” = command name, arguments, optionally [file]
redirection (next slide).

Example (without redirection): tr -d 123

Command name has 4 cases, not apparent from syntax:

▶ Shell built-in command, e.g., ‘cd’
▶ Shell function (user-defined).
▶ Shell alias (user-defined) (omitted, but dead simple).
▶ Program name, e.g., ‘tr’, ‘./print-args’

9 / 60

[File] Redirection
tr -d 123 < infile > outfile
tr -d 123 0< infile 1> outfile

tr
stdin stdout

infile outfile

‘>’ erases and overwrites. To append: ‘>>’

Redirect stderr:
command 2> file

Redirect both stdout and stderr to the same file:
command > file 2>&1

10 / 60

Command Substitution
Run a command, capture its stdout, insert output data in-place:
$(command)

The data is split into words.
./print-args $(echo ’aaa bbb ccc’)
⇒ 3 arguments, spaces stripped.

If inside double-quotes, not splitted.
./print-args "$(echo ’ aaa bbb ccc ’)"
⇒ 1 argument, spaces preserved.
But tricky details for newlines, not shown.

More use cases:
echo "Time: $(date)"
x="$(date)"

11 / 60

Shell Grammar: Compound Commands Overview
Next slides explain constructs for compound commands.

Operators from highest to lowest precedence:

description operator
grouping {} ()
redirection < > >>
pipeline |
not !
and, or && ||
command list ; newline

Also if-then-else, loops.

12 / 60

Pipeline
E.g., sort | uniq

sort

stdin stdout

uniq

stdin stdout

13 / 60

[Command] List—Sequential Composition
Multiple commands can be separated by newlines (especially in
shell script files). Example:

cd B09
ls -l
cd ..

Or, a single line but separated by semicolons. Example:

cd B09 ; ls -l ; cd ..

Either way, known as “list” or “command list”, sequentially
executed: wait for one to finish before running the next.

One command but you want to split into multiple lines: Need to
escape the newlines:

echo hello B09 \
students

14 / 60

[Command] List—Sequential Composition
Multiple commands can be separated by newlines (especially in
shell script files). Example:

cd B09
ls -l
cd ..

Or, a single line but separated by semicolons. Example:

cd B09 ; ls -l ; cd ..

Either way, known as “list” or “command list”, sequentially
executed: wait for one to finish before running the next.

One command but you want to split into multiple lines: Need to
escape the newlines:

echo hello B09 \
students

14 / 60

Exit Code, Success, Failure
Commands give an exit code when done.

In C, recall “int main(...)”, return value is exit code!
Demo: ret.c

Special shell variable $? is most recent command’s exit code.

Exit codes also convey success/true and failure/false.
0 for success/true
non-0 for failure/false, e.g.,

▶ Most commands declare failure if file not found.
▶ A string search program declares failure if string not found.

Beware: ‘echo $?’ is also a command! And it succeeds. Exercise:
What does it print if you run it twice consecutively?

15 / 60

ret.c

Logical AND, OR, NOT, true, false
mkdir foo && cp myfile foo
Sequential execution, but stop upon first “false”.

mkdir foo1 || mkdir foo2 || mkdir foo3
Sequential execution, but stop upon first “true”.

(So they are short-circuiting.)

! mkdir foo
Logical not: turn 0 to 1, non-0 to 0.

Operator precedence:
‘&&’, ‘||’ same precedence (tricky!)
both lower than ‘!’

true: Always true.
false: Always false.

16 / 60

Test Commands
A whole suite of shell builtin “[expression]” commands to do
useful tests and give you exit codes for booleans.

File tests (more on man page, search for “[expression]”):

▶ [-e path]: exists
▶ [-f path]: exists and regular file
▶ [-d path]: exists and directory
▶ [-r path]: exists and readable
▶ [-w path]: exists and writable
▶ [-x path]: exists and executable
▶ [path1 -nt path2]: both exist and path1 is newer
▶ [path1 -ot path2]: both exist and path1 is older

Example: [-d lab02] || echo sadface

17 / 60

Test Commands
String comparisons:

▶ [s1 = s2]: string equality
Also ‘!=’, ‘<’, ‘>’ (need escaping/quoting)

▶ [-n string]: string not empty
▶ [-z string]: string empty

Recall $v vs "$v". You want:
["$v" = xxx]
[-n "$v"]
[-z "$v"]

Number comparisons (parsing strings to numbers):

▶ [n1 -eq n2]: integer equality
Also ‘-ne’, ‘-gt’, ‘-ge’, ‘-lt’, ‘-le’

18 / 60

Test Commands
Logical connectives, by example:

▶ [! -e path]: not
▶ ["$x" -eq 5 -a "$y" -eq 6]: and
▶ ["$x" -eq 5 -o "$y" -eq 6]: or

-a higher precedence than -o

Parentheses also supported, but need escaping or quoting.

[-d dir1 -a ’(’ -d dir2 -o -d dir3 ’)’]

19 / 60

Test Commands
Why need quoting (or backslahses) and spaces in
[! ’(’ "$x" ’>’ "$y" ’)’]
and why these are misinterpreted
[!’(’"$x"’>’"$y"’)’]
[! ("$x" > "$y")]

▶ Command name is [
▶ Expression represented as arguments.

One argument per operand/operator, separately.
▶ Last argument must be]
▶ Grammar clashes with shell grammar. Need quoting to tell

shell “not for you; pass-thru to the command”.

20 / 60

Grouping 1/2
When operator precedence doesn’t work for you, write

{ list ; }

for explicit grouping. (Recall “[command] list”.)

Example:
{ grep foo file1 ; ls ; } > file2

Again, may use newline instead of ;

Easy to miss: This looks right but is wrong, tricky!
{ grep foo file1 ; ls } > file2
Missing one last newline or ; before }

21 / 60

Grouping 2/2: Subshell
() also does grouping, plus one more thing.

(list ;)

Difference from {} by example:

{ x=hello ; cd / ; }
Effects retained afterwards. Faster.

(x=hello ; cd / ;)
Effects lost afterwards. Slower, in fact new shell process.
Hence known as “run in subshell”.

22 / 60

Operators Summary And Precedence
From highest to lowest precedence:

description operator
grouping {} ()
redirection < > >>
pipeline |
not !
and, or && ||
command list ; newline

23 / 60

Conditional Branching
Demo: if-demo

if list1 ; then
list2

elif list3 ; then
list4

else
list5

fi

Easy to miss:

▶ before “then”, need ; or newline
▶ “elif”, not “else if”

Exercise: “else if” is not wrong, but what is annoying about it?

24 / 60

if-demo

While-Loop
Demo: while-demo, print-args

while list1 ; do
list2

done

while list1 ; do list2 ; done

May use ‘break’ and ‘continue’.

Easy to miss: before “do”, need ; or newline.
These look right but are wrong:

while list1 do
list2

done

while list1 ; do list2 done

25 / 60

while-demo
print-args

Test Commands in if/while
if [$x = $y] ; then
...

fi

while [$x = $y] ; do
...

done

Easy to miss: Still need ; or newline, even though] ends the
condition.] is the last argument of the test command.

26 / 60

Arithmetic
Arithmetic is delegated to the expr program.

But most symbols need escaping/quoting, lest clash with shell
syntax.

Example: expr ’(’ 1 + 2 ’)’ ’*’ 10

Outputs answer to stdout. Usually you add command substitution
to store answer in variable or give to another command.

x=5
x=$(expr $x + 1)
echo "$(expr $x + 1)"

See link for all features. expr --help and man expr have quick
reminders.

27 / 60

https://www.gnu.org/software/coreutils/manual/html_node/expr-invocation.html

For-loop
Demo: for-demo

for var in word1 word2 ... ; do
list

done

Use $var to read the variable.

May use ‘break’ and ‘continue’.

Easy to miss: Need ; or newline before do to mark end of words.
Lest computer thinks your do is one of the words, like above.

28 / 60

for-demo

for i=0 to 3
Integer range is delegated to the seq program.

seq 0 3 outputs 0 to 3 to stdout.

Use command substitution to capture, give to for-loop.

for i in $(seq 0 3) ; do ... ; done

Demo: for-demo

See seq --help or man seq for variations.

29 / 60

for-demo

Patterns (to match filenames)

▶ ‘*’ matches any string (but doesn’t cross directory boundaries)
Example: ls a2/*.py
All python files in directory a2

▶ ‘?’ matches one character
▶ ‘[ace]’ matches “a” or “c” or “e”
▶ ‘[0-9]’ matches a digit
▶ ‘[!0-9]’ matches a non-digit

Important: Shell expands pattern to multiple pathnames before
handing to command. ls never saw “a2/*.py”; it saw “a2/foo.py”,
“a2/bar.py”, etc.

Important: If no match, the pattern stays as itself.

Good for for-loops too:
for i in *.py ; do echo $i ; done

30 / 60

Case
Pattern matching but on the string you want.

case "$var" in
*.py)

rm "$var"
;;

*.c | *.sh | myscript)
echo w00t "$var"
;;

*)
echo meh "$var"

esac

31 / 60

Small Example Script (Pg 1/2)
#!/bin/sh
dryrun=
verbose=
while [$# -gt 0]; do

case "$1" in
-n)

dryrun=y
;;

-v)
verbose=y
;;

*)
break

esac
shift

done

32 / 60

Small Example Script (Pg 2/2)
for f in "$@" ; do
case "$f" in
*.py)
[-n "$verbose"] && echo "deleting $f"
[-z "$dryrun"] && rm "$f"
;;

*)
[-n "$verbose"] && echo "not deleting $f"

esac
done

Code file: smallscript

33 / 60

smallscript

Small Example Script: Explanation
Go through arguments (meant to be filenames), delete those that
are Python files.

But if there are ‘-n’ and/or ‘-v’ at the beginning:
-n means dry-run—don’t actually delete
-v means verbose—say what is happening to each filename

Page 1 detects ‘-n’ and ‘-v’.

After that, $@ is left with the filenames.

Page 2 can use a for-loop over $@ to process each filename.

34 / 60

Functions
Example function definition:

myfunction() {
echo "$1"
echo "$@"

}

Example function call:

myfunction foo bar xyz

Inside a function, positional parameters become function
arguments.

May return from function early, or specify exit code, with ‘return’
or e.g., ‘return 1’.

(Default exit code is from the last executed command.)

35 / 60

Exit
Command ‘exit’ terminates the whole shell script and the shell
process.

Not required if your script just runs from start to finish normally.

But handy for:

Early termination (even inside loops, functions, etc.)

Controlling exit code, e.g., ‘exit 1’.

(Default exit code is whatever the last executed command gives.)

36 / 60

getopts: General Option Processing
Shell built-in getopts helps pick out those -n, -v options.

Suppose I want to support these options:

▶ -M followed by a string
▶ -n

▶ -v

and after options, arbitrarily many filenames.

I also need to choose a variable name. I choose myflag.

Then I use one of these (they’re equivalent):

getopts M:nv myflag
getopts vM:n myflag
getopts nvM: myflag

37 / 60

getopts Sample Run 1
If user runs my script (code: tinyscript) with

./tinyscript -n -v -Mfoo -v -M bar abc def -n xyz

then when I call getopts M:nv myflag the ith time:

i $myflag $OPTARG $OPTIND exit code
1 n (empty) 2 0
2 v (empty) 3 0
3 M foo 4 0
4 v (empty) 5 0
5 M bar 7 0
6 ? bar 7 1

Note that $7 is abc, 1st non-option argument (filename for me). I
can do shift 6 to get rid of options.

getopts does not pick out options after seeing 1st non-option
argument.

38 / 60

tinyscript

getopts Sample Run 2
If user adds -- to explicitly mark end of options:

./tinyscript -n -v -Mfoo -v -M bar -- abc def -n xyz

then when I call getopts M:nv myflag the ith time:

i $myflag $OPTARG $OPTIND exit code
1 n (empty) 2 0
2 v (empty) 3 0
3 M foo 4 0
4 v (empty) 5 0
5 M bar 7 0
6 ? bar 8 1

Note that $8 is abc, 1st non-option argument (filename for me). I
can do shift 7 to get rid of options.

getopts honours using -- to mean end of options.

39 / 60

getopts Sample Run 3
If user gives unsupported option, e.g., -k:

./tinyscript -n -v -Mfoo -k -M bar abc def -n xyz

then when I call getopts M:nv myflag the ith time:

i $myflag $OPTARG $OPTIND exit code
1 n (empty) 2 0
2 v (empty) 3 0
3 M foo 4 0
4 ? (empty) 5 0

and “Illegal option -k” to stderr
5 M bar 7 0
6 ? bar 7 1

40 / 60

Small Example Script But getopts
Code: toyscript

while getopts M:nv myflag ; do
case "$myflag" in
n)
dryrun=y
;;

v)
verbose=y
;;

M)
msg="$OPTARG"
;;

esac
done

shift $(expr $OPTIND - 1)

for f in "$@" ; do ...

41 / 60

toyscript

Escaping And Quoting
Recall special-meaning characters in shell syntax:
< * $ # (& | ; space newline (and more)

Use escaping or quoting to get the character itself.

Example: print “<*; #” (2 spaces in between):
echo \<*\;\ \ \#
echo ’<*; #’
echo "<*; #"

Note: So ‘\’ is also special! Use ‘\\’ for backslash itself.

Example: store that string in a variable:
v=’<*; #’

Example: Many use cases of [and expr:
["$v" ’<’ "$w"]
expr ’(’ 1 + 2 ’)’ ’*’ 10

42 / 60

Variables in Double Quotes
Common mistake when checking whether $v is non-empty:
[-n $v]
No!

▶ If $v is empty, shell sees [-n], which makes no sense.
▶ If $v is purely spaces, shell still sees [-n]
▶ If $v is “x y”, shell sees [-n x y], which makes no sense.

Solution: [-n "$v"]

Exercise: Older generation used
[x != x$v]
When does it work? When does it break?

43 / 60

More Fun with echo
Why do I need 4n backslashes to get echo to print n backslashes?

$ echo \\\\\\\\\\\\
\\\

(BTW: Odd number⇒ last backslash escapes newline, shell thinks
I am splitting my command into two lines.)

If I use quoting, I still need 2n backslashes:

$ echo ’\\\\\\’
\\\

44 / 60

More Fun with echo
Use C to verify how many backslashes actually seen by command.

$./print-args-c \\\\\\\\\\\\
argc = 2
argv[0] = "./print-args-c"
argv[1] = "\\\\\\"

No surprise, shell said it would translate 2 backslashes to 1.

$./print-args-c ’\\\\\\’
argc = 2
argv[0] = "./print-args-c"
argv[1] = "\\\\\\"

No surprise, quoting works.

Code: print-args-c.c

Oh so echo adds its own translation. . .

45 / 60

print-args-c.c

More Fun with echo
sh man page: echo also interprets backslash:

\n newline
\t tab
\\ 1 backslash

etc.

Moral of the story:

What you see is never what you get.

It’s telephone games all the way down.

It’s lasagna all the way down.

Unless you prefer desserts, in which case:
It’s baklava all the way down.

46 / 60

More Fun with echo
sh man page: echo also interprets backslash:

\n newline
\t tab
\\ 1 backslash

etc.

Moral of the story:

What you see is never what you get.

It’s telephone games all the way down.

It’s lasagna all the way down.

Unless you prefer desserts, in which case:
It’s baklava all the way down.

46 / 60

Dot command: Execute stuff in current shell
This reads commands from cmds.sh, executes them in current
shell:

. ./cmds.sh

The command name is a single dot “.”

Contrast: sh cmds.sh runs in newly spawned shell process.

Use case: If cmds.sh defines functions, set variables, or uses cd,
then

▶ . ./cmds.sh does them in current shell.
▶ sh cmds.sh does them in new shell process, which then

quits, much ado about nothing.
./cmds.sh ditto.

Demo: dot-demo

47 / 60

dot-demo

Here Document
To feed multi-line hardcoded text into stdin of a command:

cat << EOF
Hello I’m Albert.
You can use variables too
E.g., \$x=$x
EOF

The first time I said “EOF”, shell takes note. Second time, shell
knows I’m marking the end.

“EOF” is not a keyword, you may choose another word, just don’t
clash with your actual text!

Code file: here-doc

48 / 60

here-doc

Here Document: One More Thing
If you declare your end-marker in quotes:

cat << ’EOF’
Hello I’m Albert.
Now $x is $x
EOF

cat << "EOF"
Hello I’m Albert.
And $x is still $x
EOF

then $ is no longer special.

Code file: here-doc

49 / 60

here-doc

Environment Variables
Every process (shell or otherwise) has a collection of “environment
variables”, as part of process state.

Names are strings, values are strings too. Convention: Names in
all caps, e.g., PATH, HOME, TZ, LC_ALL (these are standard Unix
ones), CLASSPATH (specific to Java).

Initialized by copying from launcher (done by kernel): If p launches
q, q gets a copy of p’s. But independently changeable otherwise.

Program ‘printenv’ prints the environment variables you currently
have. It works because at startup it gets a copy of yours! Now it
just has to print what it has.

50 / 60

Environment Variables in Shell
Shell downplays difference between shell variables and
environment variables. Only convention: shell variable names are
in lowercase.

Both read by same syntax: $x, $LC_ALL

Both changeable by same syntax:
x=C
LC_ALL=C

Both erasable by same ‘unset’ command.

How to mark a variable as environment variable:
export MYENVVAR=foo

or two commands:
MYENVVAR=foo
export MYENVVAR

51 / 60

Environment Variables in Shell
To run a program but give it different environment variables
(existing or new) without changing your own:

LC_ALL=C MYNEWENV=foo printenv

This is why the following two commands mean different things:

x=’foo bar’
x=foo bar

52 / 60

Some Standard Environment Variables
HOME: Home directory.

TZ: User timezone preference. (Can be absent.)

PATH: Colon-separated list of directories. Searched when you
launch a program, if program name does not contain any slash.

Example: Assume
PATH=/usr/local/cms/jdk1.8.0_31/bin:/usr/bin:/bin

javac Foo.java
found in /usr/local/cms/jdk1.8.0_31/bin

printenv
found in /usr/bin

sh
found in /bin

53 / 60

Bash Feature: Local Variables in Functions
Basic shell has global variables only.
Bash supports local variables in functions. Use local

myfunc() {
local x y=hello # x,y local, y inited
x=hi
echo "$x" "$y"

}

Demo: bash-local-demo

But dynamic scoping, not lexical scoping. See demo.

54 / 60

bash-local-demo

Bash Feature: Arithmetic
Bash has builtin arithmetic so you don’t need $(expr ...).

shift $(($OPTIND - 1))

even

shift $((OPTIND - 1))

55 / 60

bash Feature: Arrays
crew=(kermit piggy fozzie) # set
crew[3]=’sam eagle’ # set by index
echo "${crew[1]}" # get by index
crew+=(gonzo ’dr pepper’) # append
echo ${#crew[@]} # number of elements
for c in "${crew[@]}"; do # all elements, like $@
...

done
no prepend feature, but you can always do:
crew=(scooter "${crew[@]}")

Demo: bash-array-demo

56 / 60

bash-array-demo

Bash Feature: Associative Arrays
Key-value dictionary. “Array” but string indexes.

declare -A mark
mark=([denise]=4 [bob]=9) # set
mark[charles]=3 # set one
mark+=([bob]=7 [alice]=5) # set more
for k in "${!mark[@]}"; do # all keys
echo "$k has ${mark[$k]} marks" # lookup

done

declare -A required, lest bash assumes integer-indexed array.

Demo: bash-array-demo

57 / 60

bash-array-demo

Bash Feature: Process Substitution
Pipelining (cmd1 | cmd2) connects processes but limitation:
only 1 input src, only 1 output dst⇒ chaining only

Bash’s process substitution generalizes to multiple srcs and dsts.

Example (2 input srcs): sort <(cmd1) <(cmd2)

Behaviour: Two input files to sort: stdout of cmd1, stdout of cmd2.

Oversimplified theory:

▶ Bash spawns cmd1, redirects stdout to fresh fake file, say
/dev/fd/70. (Kernel helps.)

▶ Ditto for cmd2, say /dev/fd/71.
▶ Bash spawns sort /dev/fd/70 /dev/fd/71.

Demo: bash-procsub-demo

58 / 60

bash-procsub-demo

Process Substition Example Picture
sort <(cmd1) <(cmd2)

sort

cmd2 /dev/fd/71
stdout

cmd1 /dev/fd/70
stdout

59 / 60

Process Substition Example Picture
Example (1 output dst): foo >(cmd1)

Behaviour: If foo outputs to given filename, that goes to stdin of
cmd1.

foo

cmd1/dev/fd/70
stdin

60 / 60

