
Priority Queue
Collection of priority-job pairs; priorities are comparable.

▶ insert(p, j)
▶ max(): read(-only) job of max priority
▶ extract-max(): read and remove job of max priority
▶ increase-priority(i, p′): increase priority of pair i

It’s like:

▶ a hospital’s emergency room
▶ an OS’s ordering of things to do
▶ your ordering of things to study

1 / 13



Heap
A heap is one way to store a priority queue. A heap is:

▶ a binary tree
▶ “nearly complete”: every level i has 2i nodes, except the

bottom level; the bottom nodes flush to the left
▶ at each node: its priority ≥ both children’s priorities

16

14

8

2 4

7

1

10

9 3

(only priorities shown)

2 / 13



Heap insert: Example
Insert priority 15. At the bottom level, leftmost free space.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with parent.

3 / 13



Heap insert: Example

Insert priority 15. At the bottom level, leftmost free space.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with parent.

3 / 13



Heap insert: Example

Insert priority 15. At the bottom level, leftmost free space.

16

14

8

2 4

7

1 15

10

9 3

16

14

8

2 4

15

1 7

10

9 3

16

15

8

2 4

14

1 7

10

9 3

√
The tree is still “nearly-complete”.

√
Order of priorities good.

3 / 13



Heap insert: Summary

1. create new node at bottom level, leftmost free place
(keep the tree “nearly-complete”)

2. put priority (and job) in new node

3. v := that new node

4. “Float up as needed”:
while v has parent with smaller priority:

swap them
v := v.parent

Worst case time Θ(height).

Later we will see why height = ⌊lg n⌋. Therefore worse case time
Θ(lg n).

4 / 13



Heap extract-max Example (aka Game of Thrones)

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

Someone has to take the throne replace the blank!

5 / 13



Heap extract-max Example (aka Game of Thrones)

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

Replace by the bottom level, rightmost item.

√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

5 / 13



Heap extract-max Example (aka Game of Thrones)

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

Replace by the bottom level, rightmost item.

√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

5 / 13



Heap extract-max Example (aka Game of Thrones)

?

15

8

2 4

14

1 7

10

9 3

7

15

8

2 4

14

1

10

9 3

15

7

8

2 4

14

1

10

9 3

15

14

8

2 4

7

1

10

9 3

Replace by the bottom level, rightmost item.

√
The tree is still “nearly-complete”.

√
Order of priorities good.

5 / 13



Heap extract-max: Summary

1. Replace root by bottom level, rightmost item
(keep the tree “nearly-complete”.)

2. v := root

3. “heapify at v”:
while v has larger child:

swap with the largest child
v := that child node

Worst case Θ(height) time.

Next we will see why height = ⌊lg n⌋. Therefore worse case time
Θ(lg n).

6 / 13



Heap: Height
Let n be the number of nodes, h be the height.

2h − 1
≤ n ≤

2h+1 − 1

(2h − 1) + 1 ≤ n ≤ 2h+1 − 1

2h ≤ n < 2h+1

h ≤ lg n < h + 1

h = ⌊lg n⌋

7 / 13



Heap in Array/Vector

161

142

84

28 49

75

110

103

96 37

16 14 10 8 7 9 3 2 4 1

0 1 2 3 4 5 6 7 8 9 10 11

8 / 13



Heap in Array/Vector

16 14 10 8 7 9 3 2 4 1

0 1 2 3 4 5 6 7 8 9 10 11

Convenience:

▶ Where to insert/remove: simply at the end.
▶ Saves space. (No pointers to store.)

Formulas for:

▶ left child of index i: index 2 × i
▶ right child of index i: index 2 × i + 1
▶ parent of index i: index ⌊i/2⌋

9 / 13



Heapsort
Heapsort sorts an array via an intermediate max-heap.

Two stages:

1. “Build max-heap”: Turn the array into max-heap form.

Basic idea: heapify at nodes that have children, bottom-up
order:

for v := ⌊size/2⌋ down to 1:
heapify at v

2. Repeatedly extract-max, put answer at the end.

Basic idea: The array slot freed up by extract-max is exactly
where you want the max to land at.

10 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

14 8 16 9 2 1 4 3 7 10

0 1 2 3 4 5 6 7 8 9 10 11

5th 4th 3rd 2nd 1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

14 8 16 9 10 1 4 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

5th 4th 3rd 2nd

1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

14 8 16 9 10 1 4 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

5th 4th 3rd

2nd 1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

14 8 16 9 10 1 4 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

5th 4th

3rd 2nd 1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

14 10 16 9 8 1 4 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

5th

4th 3rd 2nd 1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:

141 5th

82 4th

94 2nd

38 79

25 1st

1010

163 3rd

16 47

141 5th

82 4th

94 2nd

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163 3rd

16 47

141 5th

82 4th

94

38 79

105

210

163

16 47

141 5th

102

94

38 79

85

210

163

16 47

161

102

94

38 79

85

210

143

16 47

16 10 14 9 8 1 4 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

5th

4th 3rd 2nd 1st

for v := ⌊size/2⌋ down to 1: heapify at v.

11 / 13



Repeatedly Extract-Max

0 1 2 3 4 5 6 7 8 9 10 11

16 10 14 9 8 1 4 3 7 2

161

102

94

38 79

85

210

143

16 47

141

102

94

38 79

85

43

16 27

101

92

74

38

85

43

16 27

for i := size down to 1: m := extract-max(); A[i] := m

12 / 13



Repeatedly Extract-Max

0 1 2 3 4 5 6 7 8 9 10 11

14 10 4 9 8 1 2 3 7 16

161

102

94

38 79

85

210

143

16 47

141

102

94

38 79

85

43

16 27

101

92

74

38

85

43

16 27

for i := size down to 1: m := extract-max(); A[i] := m

12 / 13



Repeatedly Extract-Max

0 1 2 3 4 5 6 7 8 9 10 11

10 9 4 7 8 1 2 3 14 16

161

102

94

38 79

85

210

143

16 47

141

102

94

38 79

85

43

16 27

101

92

74

38

85

43

16 27

for i := size down to 1: m := extract-max(); A[i] := m

12 / 13



Heapsort Time

1. Turn array into heap: A node at height h takes h iterations to
fix; fewer than n/2h such nodes.

⌊lg n⌋∑
h=0

n
2h × h ≤ n ×

∞∑
h=0

h
2h

= n × constant (convergent series)

So O(n) time. (Faster than n inserts.)

2. Repeatedly extract-max: O(n lg n) time.

Total O(n lg n) time.

13 / 13


