
Priority Queue
Collection of priority-job pairs; priorities are comparable.

▶ insert(p, j)
▶ max(): read(-only) job of max priority
▶ extract-max(): read and remove job of max priority
▶ increase-priority(i, p′): increase priority of pair i

It’s like:

▶ a hospital’s emergency room
▶ an OS’s ordering of things to do
▶ your ordering of things to study
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Heap
A heap is one way to store a priority queue. A heap is:

▶ a binary tree
▶ “nearly complete”: every level i has 2i nodes, except the

bottom level; the bottom nodes flush to the left
▶ at each node: its priority ≥ both children’s priorities
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Heap insert: Example
Insert priority 15. At the bottom level, leftmost free space.
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√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with parent.
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Heap insert: Summary

1. create new node at bottom level, leftmost free place
(keep the tree “nearly-complete”)

2. put priority (and job) in new node

3. v := that new node

4. “Float up as needed”:
while v has parent with smaller priority:

swap them
v := v.parent

Worst case time Θ(height).

Later we will see why height = ⌊lg n⌋. Therefore worse case time
Θ(lg n).
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Heap extract-max Example (aka Game of Thrones)
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Someone has to take the throne replace the blank!
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Replace by the bottom level, rightmost item.

√
The tree is still “nearly-complete”.

! Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)
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Heap extract-max: Summary

1. Replace root by bottom level, rightmost item
(keep the tree “nearly-complete”.)

2. v := root

3. “heapify at v”:
while v has larger child:

swap with the largest child
v := that child node

Worst case Θ(height) time.

Next we will see why height = ⌊lg n⌋. Therefore worse case time
Θ(lg n).
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Heap: Height
Let n be the number of nodes, h be the height.

2h − 1
≤ n ≤

2h+1 − 1

(2h − 1) + 1 ≤ n ≤ 2h+1 − 1

2h ≤ n < 2h+1

h ≤ lg n < h + 1

h = ⌊lg n⌋
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Heap in Array/Vector
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Heap in Array/Vector
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Convenience:

▶ Where to insert/remove: simply at the end.
▶ Saves space. (No pointers to store.)

Formulas for:

▶ left child of index i: index 2 × i
▶ right child of index i: index 2 × i + 1
▶ parent of index i: index ⌊i/2⌋
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Heapsort
Heapsort sorts an array via an intermediate max-heap.

Two stages:

1. “Build max-heap”: Turn the array into max-heap form.

Basic idea: heapify at nodes that have children, bottom-up
order:

for v := ⌊size/2⌋ down to 1:
heapify at v

2. Repeatedly extract-max, put answer at the end.

Basic idea: The array slot freed up by extract-max is exactly
where you want the max to land at.
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Turn Array Into Max-Heap
Below, “1st”. . . “5th” means order of getting heapified:
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for v := ⌊size/2⌋ down to 1: heapify at v.
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Repeatedly Extract-Max
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for i := size down to 1: m := extract-max(); A[i] := m
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Heapsort Time

1. Turn array into heap: A node at height h takes h iterations to
fix; fewer than n/2h such nodes.

⌊lg n⌋∑
h=0

n
2h × h ≤ n ×

∞∑
h=0

h
2h

= n × constant (convergent series)

So O(n) time. (Faster than n inserts.)

2. Repeatedly extract-max: O(n lg n) time.

Total O(n lg n) time.
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