Priority Queue
Collection of priority-job pairs; priorities are comparable.
> insert(p, j)
> max(): read(-only) job of max priority

> extract-max(): read and remove job of max priority
» increase-priority(i, p’): increase priority of pair i

It's like:

> a hospital’'s emergency room
» an OS’s ordering of things to do
» your ordering of things to study

1/13

Heap

A heap is one way to store a priority queue. A heap is:

> a binary tree

> “nearly complete”: every level i has 2/ nodes, except the
bottom level; the bottom nodes flush to the left

> at each node: its priority > both children’s priorities

(10
oo
@ @ @ (only priorities shown)

2/13

Heap insert: Example

Insert priority 15. At the bottom level, leftmost free space.

(14) (10)
OB OB ONNCO

@ ® 0w

v/ The tree is still “nearly-complete”.
I Order of priorities bad. Fix: swap with parent.

Heap insert: Example

@@@
OJOL020

v/ The tree is still “nearly-complete”.
I Order of priorities bad. Fix: swap with parent.

Heap insert: Example

(13) (10)
O OBNONNO
OJOL020

v/ The tree is still “nearly-complete”.
+/ Order of priorities good.

3/13

Heap insert: Summary

1. create new node at bottom level, leftmost free place
(keep the tree “nearly-complete”)

2. put priority (and job) in new node
3. v :=that new node

4. “Float up as needed”:
while v has parent with smaller priority:
swap them
v = v.parent

Worst case time O(height).

Later we will see why height = |1gn]. Therefore worse case time
Odgn).

4/13

Heap extract-max Example (aka Game of Thrones)

A
o &
OJOL0X0

Someone has to take-the-throne replace the blank!

Heap extract-max Example (aka Game of Thrones)

/@\
o & e
ofofo

Replace by the bottom level, rightmost item.

v/ The tree is still “nearly-complete”.

I Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

Heap extract-max Example (aka Game of Thrones)

A
o @
OO0

Replace by the bottom level, rightmost item.

v/ The tree is still “nearly-complete”.

I Order of priorities bad. Fix: swap with the larger child.
(Why not the smaller child?)

Heap extract-max Example (aka Game of Thrones)

(14 (19)
o W@ W

OJOXO

Replace by the bottom level, rightmost item.

v/ The tree is still “nearly-complete”.
+/ Order of priorities good.

5/13

Heap extract-max: Summary

1. Replace root by bottom level, rightmost item
(keep the tree “nearly-complete”.)
2. v :=root
3. “heapify at v":
while v has larger child:
swap with the largest child
v := that child node

Worst case O(height) time.

Next we will see why height = |1gn]. Therefore worse case time
O(gn).

6/13

Heap: Height
Let n be the number of nodes, i be the height.

2" -1 2 1

R'-H+1< n <2
< on <2
h< lgn <h+1
h= |lgn]

7/13

Heap in Array/Vector

8/13

Heap in Array/Vector

16| 14| 10| 8 7 9 3 2| 4 1

0 1 2 3 4 5 6 7 8§ 9 10 11

Convenience:

> Where to insert/remove: simply at the end.
> Saves space. (No pointers to store.)

Formulas for:

> left child of index i: index 2 X i
> right child of index i: index 2 x i+ 1
> parent of index i: index [i/2]

9/13

Heapsort
Heapsort sorts an array via an intermediate max-heap.
Two stages:

1. “Build max-heap”: Turn the array into max-heap form.

Basic idea: heapify at nodes that have children, bottom-up
order:

for v := |size/2] down to 1:
heapify at v

2. Repeatedly extract-max, put answer at the end.

Basic idea: The array slot freed up by extract-max is exactly
where you want the max to land at.

10/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

IO OEOARO
JORORO

5th 4th 3rd 2nd st

1418 |16 9 | 2 1 4 13 7 | 10

0 1 2 3 4 5 6 7 8 9 10 11

for v := |size/2] down to 1: heapify at v.

11/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

5th 4th 3rd 2nd

14| 816 9 10| 1 41 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

for v := |size/2] down to 1: heapify at v.

11/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

5th 4th 3rd

14| 816 9 10| 1 41 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

for v := |size/2] down to 1: heapify at v.

11/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

14| 816 9 10| 1 41 3 7 2

for v := |size/2] down to 1: heapify at v.

11/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

for v := |size/2] down to 1: heapify at v.

11/13

Turn Array Into Max-Heap

Below, “1st”... “5th” means order of getting heapified:

;0
IORRO O
lofjore

5th

16| 10| 14| 9 8 1 41 3 7 2

0 1 2 3 4 5 6 7 8 9 10 11

for v := |size/2] down to 1: heapify at v.

11/13

Repeatedly Extract-Max
JORIO

4
o}o

)

16

10

14

for i := size down to 1: m := extract-max(); A[i] :=m

10

11

12/13

Repeatedly Extract-Max

2(10)
(o)
OO,

SRECaRe

14 | 10 9 8 1 2 7 |16
0 1 2 4 5 6 7 9 10 11
for i := size down to 1: m := extract-max(); A[i] :=m

12/13

Repeatedly Extract-Max

1 (10)
2
é) OO RO

10094718 1 2 | 3|14 16

for i := size down to 1: m := extract-max(); A[i] :=m

12/13

Heapsort Time

1. Turn array into heap: A node at height /4 takes # iterations to
fix; fewer than n/2" such nodes.

Uin‘j i ‘
— Xh<nX —
h = h
= 2 =0 2
= n X constant (convergent series)

So O(n) time. (Faster than n inserts.)

2. Repeatedly extract-max: O(nlgn) time.

Total O(nlgn) time.

13/13

