
Overview

1 / 28

What Does This Course Offer?

▶ How to be a Unix user—in fact poweruser.

▶ How to be a Unix programmer, using C to call up system
services (system calls), e.g., I/O, file operations, launch
programs, talk to another program, talk to another program on
another computer. . .

▶ Gateway drug course to C69 (operating systems), D58
(computer networks),. . .

▶ This course uses Linux, a Unix-like OS (though not a
descendent). There are some differences. There are also
many Unix descendents and other Unix-like OSes.
(“Descendent” means source code traceable to Unix. The others started

independently but implement almost the same features.)

2 / 28

What Does This Course Offer?

▶ How to be a Unix user—in fact poweruser.
▶ How to be a Unix programmer, using C to call up system

services (system calls), e.g., I/O, file operations, launch
programs, talk to another program, talk to another program on
another computer. . .

▶ Gateway drug course to C69 (operating systems), D58
(computer networks),. . .

▶ This course uses Linux, a Unix-like OS (though not a
descendent). There are some differences. There are also
many Unix descendents and other Unix-like OSes.
(“Descendent” means source code traceable to Unix. The others started

independently but implement almost the same features.)

2 / 28

What Does This Course Offer?

▶ How to be a Unix user—in fact poweruser.
▶ How to be a Unix programmer, using C to call up system

services (system calls), e.g., I/O, file operations, launch
programs, talk to another program, talk to another program on
another computer. . .

▶ Gateway drug course to C69 (operating systems), D58
(computer networks),. . .

▶ This course uses Linux, a Unix-like OS (though not a
descendent). There are some differences. There are also
many Unix descendents and other Unix-like OSes.
(“Descendent” means source code traceable to Unix. The others started

independently but implement almost the same features.)

2 / 28

What Does This Course Offer?

▶ How to be a Unix user—in fact poweruser.
▶ How to be a Unix programmer, using C to call up system

services (system calls), e.g., I/O, file operations, launch
programs, talk to another program, talk to another program on
another computer. . .

▶ Gateway drug course to C69 (operating systems), D58
(computer networks),. . .

▶ This course uses Linux, a Unix-like OS (though not a
descendent). There are some differences. There are also
many Unix descendents and other Unix-like OSes.
(“Descendent” means source code traceable to Unix. The others started

independently but implement almost the same features.)

2 / 28

Why Study Unix?
Unix has a yesteryear design but:

▶ Contains many ideas and techniques worth learning.

▶ Home of many tools useful for all programmers.
We will look at some.
(Unix was made to support programmers.)

▶ Unix-like OSes ubiquitous though you don’t see them:
Most network equipments (home and industry), Kindles,
Android, iOS, PS4, Steam Console.
Favourite choice on Raspberry Pi, servers (those in data
centres, “cloud”).

3 / 28

Why Study Unix?
Unix has a yesteryear design but:

▶ Contains many ideas and techniques worth learning.
▶ Home of many tools useful for all programmers.

We will look at some.
(Unix was made to support programmers.)

▶ Unix-like OSes ubiquitous though you don’t see them:
Most network equipments (home and industry), Kindles,
Android, iOS, PS4, Steam Console.
Favourite choice on Raspberry Pi, servers (those in data
centres, “cloud”).

3 / 28

Why Study Unix?
Unix has a yesteryear design but:

▶ Contains many ideas and techniques worth learning.
▶ Home of many tools useful for all programmers.

We will look at some.
(Unix was made to support programmers.)

▶ Unix-like OSes ubiquitous though you don’t see them:
Most network equipments (home and industry), Kindles,
Android, iOS, PS4, Steam Console.
Favourite choice on Raspberry Pi, servers (those in data
centres, “cloud”).

3 / 28

What Is It Like to Use Unix?
Video clip: Kernighan’s explanation.

How is it possible? I’ll show some block diagrams:

A program has access to these I/O data streams:
stdin = standard in[put]
stdout = standard out[put]
stderr = standard error (for error messages)

sort

stdin stdout
stderr

Actually: process, not program. Process = what happens when you run a

program.

4 / 28

https://youtu.be/tc4ROCJYbm0?t=331

What It Is Like to Use Unix
Default setup: Connected (via OS) to terminal.

sort process

stdin stdout
stderr

OS

$ _

keyboard

Exercise: run sort alone, enter a few lines, use Ctrl-D on its own
line to end, see what happens.

5 / 28

What It Is Like to Use Unix
But configurable to connect (via OS) to files (redirection) or other
programs (pipelining).

cat myfile | sort | uniq > myfile-unique

cat myfile

stdin stdout

sort

stdin stdout

uniq

stdin stdout

OS

myfile myfile-unique

(stderrs to terminal, not shown. Exercise: Why stderr,stdout?)

6 / 28

What It Is Like to Use Unix
Sometimes I draw this simpler, higher-level picture when the
spotlight is not on the OS (so omit it):

cat myfile

stdin stdout

sort

stdin stdout

uniq

stdin stdout

myfile myfile-unique

(stderrs to terminal, not shown.)

In this course, we begin as users of pipelining and redirection; later
on, we learn how to use system calls to implement it (and more).

7 / 28

What It Is Like to Use Unix
Sometimes I draw this simpler, higher-level picture when the
spotlight is not on the OS (so omit it):

cat myfile

stdin stdout

sort

stdin stdout

uniq

stdin stdout

myfile myfile-unique

(stderrs to terminal, not shown.)

In this course, we begin as users of pipelining and redirection; later
on, we learn how to use system calls to implement it (and more).

7 / 28

Scripting
The command line interface is also scriptable.

Instead of 3 similar commands:

cat mywords | sort | uniq > mywords-unique
cat yourwords | sort | uniq > yourwords -unique
cat badwords | sort | uniq > badwords -unique

how about a for-loop!

for w in mywords yourwords badwords; do
cat $w | sort | uniq > $w-unique

done

Can enter that at the command line.
Can also put that in a file and run that file (“shell script”).

8 / 28

System Structure
Block diagram to keep in mind throughout the course:

OS
process

. . . shell
process

. . . user
process

. . .

kernel

device
#1

device
#2

. . .

launches

Next slide briefs you on the vocabulary.

9 / 28

Terminology
Kernel: arbitrator and service provider: decides which process to
run and when, what it may access or not, how to access.

Process: what happens when you run a program.

OS processes: More services, features, and background
monitoring. Because a lot of services don’t have to live in the
kernel.

Shell: That 70s text-mode command-line user interface. (Modern
graphical desktops are also called shells, e.g., GNOME shell,
Windows shell.)

User processes: your processes.

10 / 28

Special Files for Devices and Services
Unix presents devices and some services and info as files.

Of course not real files, the kernel makes up filenames and
emulate file operations (open, read, write, close). We say “special
files”.

(For real files as you know them, “regular files”.)

Examples:

▶ /dev/sda: Hard disk, the whole hard disk. (Clearly, restricted
access (why?).)

▶ /dev/urandom: Crytographically secure random bytes.
▶ /dev/null: Discards written data. Empty when read.
▶ /proc: Info about processes and system stuff.

11 / 28

Unix {Philosophy, Style, Spirit}
Small, focused programs that use I/O data streams.

Combine them in a shell command/script for complex tasks.

OS fakes a file-like interface for accessing peripherals and
services, to support that technique. (Some complication and
imperfection in practice.)

E.g., process reads stdin like any file, even when it’s terminal. The
terminal even has fake filenames.

(Unfortunately) Terse culture, e.g., the program for copying files is
called cp.

12 / 28

Incompleteness Guarantee
This course cannot possibly go over all utilities, all system calls, all
special files, all scripting tricks, all C techniques. . .

This course will only provide orientation and cover selected topics.

From them, you must learn the underlying skill (system-level
thinking) so you are ready to pick up the rest upon demand.

Assignments, labs, term test, and exam can require you to learn
uncovered topics (but short) on the spot and apply them.

13 / 28

Survival Guide
Ctrl-C can abort most processes.

Many programs support --help as a command line argument, e.g.,
try uniq --help

Many programs (also C library functions and system calls) have
detailed doc via the man program (short for “manual”), e.g., try
man uniq

Those “man pages” have professionals in mind. It is normal if you
can’t understand at the beginning. But learn to pick out the parts
you need as you go.

Seek help early, seek help often. Think up and perform
experiments, build toys to test ideas. Treat this as a tinkering
course (esp. not just “knowledge transfer”).

Hope you will get the hang of it!

14 / 28

Tour of file management

Or: How we survived without File Explorer.

15 / 28

Directory Tree Model
Partial, but starts from system-wide root. Also, “tree” is an approximation.

/

bin

ls sh

dev

null sda urandom

home

trebla

B09

lec1.pdf

C24

lec1.pdf

16 / 28

Path(name)s
How to refer to a file or directory in the tree.

▶ Absolute path: start from root.
/home/trebla/B09/lec1.pdf

▶ Relative path: start from current directory.
B09/lec1.pdf
(Makes sense if current directory is /home/trebla.)

“Current directory” is part of the current state of a process.

17 / 28

Path(name)s
Pathnames may also include:

▶ parent directory: ..
▶ the directory itself: .

Examples: If current directory is /home/trebla, then these two both
refer to /bin/ls:

../../bin/ls

../../bin/./ls

Why is . useful: Some commands want a directory name, and you
want to name the current directory.

18 / 28

pwd and cd
pwd (print working directory): Output absolute path of current
directory.

cd (change directory): Set current directory.

Example: cd B09

Example: cd ../C24

Example: cd /dev

19 / 28

ls (list)
List filenames. Default: in the current directory (folder),
alphabetical order.

Given directory name(s): in those directory(es).

Given filename(s): list those filenames. (Why useful? See ‘-l’
below.)

Some options:

▶ -l: More information, e.g., access permissions, size,
modification time. (Next slide.)

▶ -d: Directories themselves, not files inside.
▶ -t: Order by modification time, new to old.
▶ -r: Reverse order.
▶ -R: Recurse into subdirectories—whole tree.

20 / 28

ls -l information
-rw-r--r-- 1 laialber cmsusers 63 May 6 20:28 myfile

-rw-r--r-- access permissions (later slides)
1 hard-link reference count (future lecture)
laialber owning user
cmsusers owning group (later slides)
63 file size, bytes
May 6 20:28 last modification time
myfile file name

Directories have a leading “d”:

drwxr-xr-x 2 laialber cmsusers 4 May 19 18:49 mydir

21 / 28

ls -a, ls -A, Dot Files
‘ls -a’: include filenames starting with ‘.’ (“dot files”)

‘ls -A’: like ‘-a’ but exclude ‘.’ and ‘..’

‘..’ stands for parent directory
‘.’ stands for the directory itself

Convention: “dot files” contain user settings, would be annoying to
be listed all the time.

Example: .nanorc has nano settings.

22 / 28

cat (dump file(s))
Dump file content or stdin to stdout.

Example: cat myfile

Handy for viewing a short text file. For long files, see next slide.

More generally, dump one or more files consecutively to stdout,
“concatenate”, hence the name “cat”.

Example: cat file1 file2 file3

23 / 28

less (view a text file)
View a text file with nice scrolling and searching.

Example: less myfile

action key
scroll down, up, pgdn, pgup
goto line 42 42g
search “foo” /foo <enter>
search next n
search prev N
unhilight <esc> u
help h
quit q

Trivia: Old limited viewer called “more”. New better viewer called
“less” for irony and proverb “less is more”.

24 / 28

mkdir (make directory)
Create new directory(es). Names are from the arguments you
provide, e.g.,

mkdir lab02 ../C24/lab02 /tmp/foo

Exercise: Read up about the option ‘-p’ and test it.

25 / 28

cp (copy)
Copy files.

Copy a file to a new pathname:
cp myfile newname

Copy file(s) to a directory:
cp file1 file2 B09

Copy recursively:
cp -R /home/trebla /tmp/mystuff

Be careful: Can overwrite existing files.

26 / 28

mv (move)
Can Rename. Can move to another directory.

Rename:
mv myfile mycoolfile

Move file(s) and/or directory(s) to another directory:
mv myfile B09 /tmp

Be careful: Can replace existing files.

27 / 28

rm and rmdir
rmdir (remove directory): Delete directory(es). Precondition: they
are empty.

rm (remove): Delete file(s). Does not delete directories unless:

Recursive delete:
rm -r /home/trebla

Be careful: They don’t enjoy a “recycle bin”, i.e., you won’t be able
to restore.

28 / 28

	Overview
	File Management

