Specifying Plausibility Levels for Iterated Belief Change in the Situation Calculus

Toryn Q. Klassen and Sheila A. McIlraith and Hector J. Levesque
{toryn,sheila,hector}@cs.toronto.edu

Department of Computer Science
University of Toronto

November 1, 2018
We will present a framework for

1. iterated belief revision and update

2. modeling of action and change

3. allowing a simple qualitative specification of what the agent considers plausible
Introduction

We will present a framework for

1. iterated belief revision and update
2. modeling of action and change
3. allowing a simple qualitative specification of what the agent considers plausible

Shapiro et al. (2011)
1. Preliminaries
 • The situation calculus
 • Belief change in the situation calculus (Shapiro et al., 2011)
2. Related work on specifying plausibility levels
 • Only-believing (Schwering and Lakemeyer, 2014)
 • Issues with only-believing
3. Our approach
 • Cardinality-based circumscription
 • Using abnormality fluents to define plausibility
 • Examples
 • Why cardinality-based circumscription?
 • Exogenous actions
Key points:

- Situations represent **histories** of actions performed starting from an initial situation.
- Properties that can vary among situations are described using **fluents**, which are predicates (or functions) whose last argument is a situation term, e.g. $P(x, s)$.

The situation calculus (Reiter, 2001)
The situation calculus (Reiter, 2001)

Key points:

• Situations represent **histories** of actions performed starting from an initial situation.

• Properties that can vary among situations are described using **fluents**, which are predicates (or functions) whose last argument is a situation term, e.g. $P(x, s)$.

Some notation:

• S_0 is the actual initial situation.

• $do(a, s)$ is the situation that results from performing action a in situation s.

• $do([a_1, \ldots, a_k], s)$ is the situation resulting from performing actions a_1, \ldots, a_k in order from s.
The situation tree

Figure copied from Reiter (2001, Figure 4.1).
Multiple situation trees

Figure copied from Reiter (2001, Figure 11.7).
Action theories for the situation calculus

The standard way of axiomatizing domains is with some variation of **basic action theories** (Reiter, 2001).

Basic action theories

- **initial state axioms**, which describe the initial situation(s)
- **successor state axioms (SSAs)**, specifying for each fluent how its value in a non-initial situation depends on the previous situation
- (sometimes) **sensing axioms**
- and also some other types (precondition axioms, unique names axioms, foundational axioms)
Iterated belief change in the situation calculus

Shapiro et al. (2011)’s approach has these main points:

• There is an **epistemic accessibility relation** between situations.

• Each initial situation is assigned a numeric **plausibility** level.

• The agent **believes** what is true in all the **most plausible** epistemically accessible situations.

• Sensing actions can make more situations inaccessible (plausibility levels never change).
Outline

1. Preliminaries
 • The situation calculus
 • Belief change in the situation calculus (Shapiro et al., 2011)

2. Related work on specifying plausibility levels
 • Only-believing (Schwering and Lakemeyer, 2014)
 • Issues with only-believing

3. Our approach
 • Cardinality-based circumscription
 • Using abnormality fluents to define plausibility
 • Examples
 • Why cardinality-based circumscription?
 • Exogenous actions
Schwering and Lakemeyer (2014) had an approach for specifying plausibility levels in their modal version of the situation calculus.
Schwering and Lakemeyer (2014) had an approach for specifying plausibility levels in their modal version of the situation calculus.

- $B(\alpha \Rightarrow \beta)$ holds if β is true in all the most plausible accessible α-worlds.
Schwering and Lakemeyer (2014) had an approach for specifying plausibility levels in their modal version of the situation calculus.

• $B(\alpha \Rightarrow \beta)$ holds if β is true in all the most plausible accessible α-worlds.

• $O(\alpha_1 \Rightarrow \beta_1, \ldots, \alpha_k \Rightarrow \beta_k)$ holds only given a particular unique assignment of plausibility values.
Schwering and Lakemeyer (2014) had an approach for specifying plausibility levels in their modal version of the situation calculus.

- **B(α ⇒ β)** holds if β is true in all the most plausible accessible α-worlds.
- **O(α₁ ⇒ β₁, ..., αₖ ⇒ βₖ)** holds only given a particular unique assignment of plausibility values.
 - an assignment that entails $\bigwedge_i B(α_i ⇒ β_i)$
 - determined like in **System Z** (Pearl, 1990)
Issues with only-believing

1. lack of independence:

\[
O(\text{True} \Rightarrow P, \text{True} \Rightarrow Q) \not\models B(\neg P \Rightarrow Q)
\]
Issues with only-believing

1. lack of independence:

\[O(\text{True} \Rightarrow P, \text{True} \Rightarrow Q) \not\models B(\neg P \Rightarrow Q) \]

2. can only specify a **finite** number of plausibility levels:

 We can write

 \[O(\text{True} \Rightarrow (\forall x)P(x)) \]

 But this is not grammatical:

 \[O((\forall x).\text{True} \Rightarrow P(x)) \]
Outline

1. Preliminaries
 - The situation calculus
 - Belief change in the situation calculus (Shapiro et al., 2011)

2. Related work on specifying plausibility levels
 - Only-believing (Schwering and Lakemeyer, 2014)
 - Issues with only-believing

3. Our approach
 - Cardinality-based circumscription
 - Using abnormality fluents to define plausibility
 - Examples
 - Why cardinality-based circumscription?
 - Exogenous actions
Cardinality-based circumscription

Popular idea in non-monotonic reasoning:

Instead of considering what is true in all models of a sentence, consider what is true in preferred models.

Cardinality-based circumscription:

- the preferred models are those where the cardinalities of particular predicates are minimized (Liberatore and Schaerf, 1997; Sharma and Colomb, 1997; Moinard, 2000)
- can be described using second order logic
- closely related to lexicographic entailment (Benferhat et al., 1993; Lehmann, 1995)
Determining the plausibility of situations

How can we apply this to situation calculus?

• Introduce **abnormality fluents**, whose values vary in different initial situations.

• Define the plausibility of a situation by the number of abnormal atoms true there.
 • We can also consider **priorities** – see paper.

How to specify the initial accessibility relation?

• Use **only-knowing** (Lakemeyer and Levesque, 1998).

• $\mathcal{OKnows}(\phi, s)$ says that the situations that are epistemically accessible from s are those where ϕ is true.
The accessible situations (from S_0) are those in which $\neg Ab \supset P$ is true.

- The set of most plausible accessible situations is \{s_1\}.
- P is true at all the most plausible accessible situations.
- The agent believes P in S_0.

\[
\begin{align*}
S_0 &\rightarrow S_1 & S_2 &\rightarrow S_3 \\
\text{Ab, } \neg P &\quad \neg\text{Ab, } P & \text{Ab, } P &\quad \neg\text{Ab, } \neg P
\end{align*}
\]
Immutable abnormality action theories

Differ from Shapiro et al.’s theories in that we

- include an axiom of the form $\text{OKnows}(\phi, S_0)$ to specify the initial accessibility relation,
- redefine plausibility in terms of abnormality,
- have SSAs for the abnormality fluents (specifying that they never change),
- and include an additional axiom ensuring the existence of enough initial situations among the foundational axioms.
Example 1: independently plausible propositions

Initial state axioms:

\[\neg P(S_0) \land \neg Q(S_0) \]

\[\text{OKnows}((\neg \text{Ab}_1 \supset P) \land (\neg \text{Ab}_2 \supset Q), S_0) \]

Successor state axioms:

\[P(\text{do}(a, s)) \equiv P(s) \]

\[Q(\text{do}(a, s)) \equiv Q(s) \]

Sensing axioms:

\[\text{SF(SENSE}_P, s) \equiv P(s) \]

\[\text{SF(SENSE}_Q, s) \equiv Q(s) \]
Example 1: independently plausible propositions

Initially, the accessible situations from S_0 are those initial situations where $(\neg Ab_1 \supset P) \land (\neg Ab_2 \supset Q)$ is true.

<table>
<thead>
<tr>
<th>Situation</th>
<th>Ab1, P</th>
<th>Ab2, Q</th>
<th>Ab1, P</th>
<th>Ab2, Q</th>
<th>Ab1, P</th>
<th>Ab2, Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab1, P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ab2, Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 abnormalities</td>
<td>1 abnormality</td>
<td>2 abnormalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: independently plausible propositions

After performing SENSEP, the situations where P differs from its true value (false) become inaccessible.
Example 1: independently plausible propositions

After performing SENSEP, the situations where P differs from its true value (false) become \textbf{inaccessible}.

\[\begin{align*}
\text{Ab}_1, &- P \\
\text{-Ab}_2, & Q \\
\text{Ab}_1, &- P \\
\text{Ab}_2, & -Q
\end{align*} \]
Example 1: independently plausible propositions

After performing SENSEQ, the situations where Q differs from its true value (false) become inaccessible.
Example 1: independently plausible propositions

After performing sense\(Q\), the situations where \(Q\) differs from its true value (false) become inaccessible.

\[
\begin{align*}
\text{Ab}_1, \neg P \\
\text{Ab}_2, \neg Q
\end{align*}
\]
Example 1: independently plausible propositions

\[\neg P(S_0) \land \neg Q(S_0) \]
\[\Box \text{Knows}((\neg \text{Ab}_1 \supset P) \land (\neg \text{Ab}_2 \supset Q), S_0) \]
\[\text{SF}(\text{SENSEP}, s) \equiv P(s) \quad \text{SF}(\text{SENSEQ}, s) \equiv Q(s) \]
\[P(\text{do}(a, s)) \equiv P(s) \quad Q(\text{do}(a, s)) \equiv Q(s) \]

Proposition

Let \(\Sigma \) be the immutable abnormality action theory described above. Then

\[\Sigma \models \text{Bel}(P \land Q, S_0) \]
\[\Sigma \models \text{Bel}(\neg P \land Q, \text{do}(\text{SENSEP}, S_0)) \]
\[\Sigma \models \text{Bel}(\neg P \land \neg Q, \text{do}([\text{SENSEP}, \text{SENSEQ}], S_0)) \]
Example 2: infinitely many plausibility levels

Initial state axioms:

\[\text{Conspirator}(x, S_0) \]

\[\text{0Knows}((\forall x)\neg \text{Ab}(x) \supset \neg \text{Conspirator}(x), S_0) \]

Successor state axioms:

\[\text{Conspirator}(x, \text{do}(a, s)) \equiv \text{Conspirator}(x, s) \]

Sensing axioms:

\[\text{SF}(\text{reveal}(x), s) \equiv \text{Conspirator}(x, s) \]
Example 2: infinitely many plausibility levels

\[
\begin{align*}
\text{Conspirator}(x, S_0) \\
\text{Oknows}((\forall x) \neg \text{Ab}(x) \supset \neg \text{Conspirator}(x, S_0)) \\
\text{Conspirator}(x, \text{do}(a, s)) & \equiv \text{Conspirator}(x, s) \\
\text{SF}([\text{reveal}(x), s]) & \equiv \text{Conspirator}(x, s)
\end{align*}
\]

Proposition

Let Σ be the immutable abnormality action theory described above, and let c_1, c_2, c_3, \ldots be constant symbols. Then for any k,

\[
\Sigma \models \text{Bel}\left((\forall x)\text{Conspirator}(x) \equiv \left(\bigvee_{i=1}^{k} x = c_i \right)\right),
\]

\[
do\left([\text{reveal}(c_1), \ldots, \text{reveal}(c_k)], s\right))
\]
Outline

1. Preliminaries
 - The situation calculus
 - Belief change in the situation calculus (Shapiro et al., 2011)

2. Related work on specifying plausibility levels
 - Only-believing (Schwering and Lakemeyer, 2014)
 - Issues with only-believing

3. Our approach
 - Cardinality-based circumscription
 - Using abnormality fluents to define plausibility
 - Examples
 - Why cardinality-based circumscription?
 - Exogenous actions
Why not use regular (subset-based) circumscription?

\[s_1 \]

\[s_2 \]

\[s_3 \]

\[\text{Ab}_1 \land \text{Ab}_3 \]
Why not use regular (subset-based) circumscription?

Cardinality-based and regular circumscription agree that s_1 and s_2 are the most plausible accessible situations.
Why not use regular (subset-based) circumscription?

Cardinality-based and regular circumscription agree that s_1 and s_2 are the most plausible accessible situations.

Now suppose that s_1 becomes inaccessible (e.g. due to sensing).
Why not use regular (subset-based) circumscription?

- Cardinality-based circumscription: s_2 is now the most plausible accessible situation
Why not use regular (subset-based) circumscription?

- Cardinality-based circumscription: \(s_2 \) is now the most plausible accessible situation
- Regular circumscription: not only \(s_2 \) but \(s_3 \) is now a most plausible accessible situation
Why not use regular (subset-based) circumscription?

- Cardinality-based circumscription: \(s_2 \) is now the most plausible accessible situation
- Regular circumscription: not only \(s_2 \) but \(s_3 \) is now a most plausible accessible situation
 - leads to violation of AGM postulates (Alchourrón et al., 1985)
Exogenous actions

What if we allowed abnormality fluents to change over time?

• **Mutable** abnormality action theories can be used to model **exogenous actions**.
• Exogenous actions were previously considered by Shapiro and Pagnucco (2004), but unlike them we can model that
 • some exogenous actions are **more plausible** than others, and
 • the **non-occurrence** of an exogenous action can be implausible.
• See paper for details.
Example: the fate of abandoned money

- \text{ONSTREET}(s): money is on the street
- \text{STEAL}: the \textit{exogenous} action of money being stolen
Example: the fate of abandoned money

- **ONSTREET(s)**: money is on the street
- **STEAL**: the *exogenous* action of money being stolen
Example: the fate of abandoned money

- **ON\text{STREET}(s)**: money is on the street
- **STEAL**: the \textit{exogenous} action of money being stolen
Conclusion

Summary:
We’ve presented a way of specifying plausibility levels for use in the situation calculus, that avoids some of the issues with Schwering and Lakemeyer’s approach.

- We can easily specify propositions as being independently plausible.
- We can specify infinitely many plausibility levels.

Future work:
- using abnormalities in modelling non-deterministic actions
- applications to story understanding
References

