
Advice-Based Exploration
in Model-Based Reinforcement Learning

Rodrigo Toro Icarte1,2 Toryn Q. Klassen1

Richard Valenzano1,3 Sheila A. McIlraith1

1University of Toronto, Toronto, Canada
{rntoro,toryn,rvalenzano,sheila}@cs.toronto.edu

2Vector Institute, Toronto, Canada

3Element AI, Toronto, Canada

May 11, 2018



Advice-Based Exploration in Model-Based
Reinforcement Learning

Rodrigo Toro Icarte Richard Valenzano Sheila A. McIlraith

1 / 31



Motivation

Reinforcement Learning (RL) is a way of discovering how to act.

• exploration by performing random actions

• exploitation by performing actions that led to rewards

Applications include Atari games (Mnih et al., 2015), board
games (Silver et al., 2017), and data center cooling1.

However, very large amounts of training data are often needed.

1
www.technologyreview.com/s/601938/the-ai-that-cut-googles-energy-bill-could-soon-help-you/

2 / 31

www.technologyreview.com/s/601938/the-ai-that-cut-googles-energy-bill-could-soon-help-you/


Humans learning behavior aren’t limited to pure RL.

Humans can use

• demonstrations

• feedback

• advice

What is advice?

• recommendations regarding behaviour that
• may describe suboptimal ways of doing things,
• may not be universally applicable,
• or may even contain errors

• Even in these cases people often extract value and we aim to
have RL agents do likewise.

3 / 31



Our contributions

• We make the first proposal to use Linear Temporal Logic
(LTL) to advise reinforcement learners.

• We show how to use LTL advice to do model-based RL faster
(as demonstrated in experiments).

4 / 31



Outline

• background
• MDPs
• reinforcement learning

• model-based reinforcement learning

• advice
• the language of advice: LTL
• using advice to guide exploration
• experimental results

5 / 31



Running example

� � � � � � � � � � � � � �
��

� � � � � �

��
�

� � � � � �

�
�

� � � � � �

�
� �
� ♂ �
� � � � � � � � � � � � � �

Actions:

• move left, move right, move up, move down

• They fail with probability 0.2

Rewards:

• Door +1000; nail -10; step -1

Goal:

• Maximize cumulative reward

6 / 31



Markov Decision Process

M = 〈S , s0,A, γ,T ,R〉

• S is a finite set of states.

• s0 ∈ S is the initial state.

• A is a finite set of actions.

• γ is the discount factor.

• T (s ′|s, a) is the transition probability function.

• R(s, a) is the reward function.

Goal: Find the optimal policy π∗(a|s)

7 / 31



Given the model, we can compute an optimal policy.

We can compute π∗(a|s) by solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑
s′

T (s ′|s, a) max
a′

Q∗(s
′, a′)

and then

π∗(a|s) = max
a

Q∗(s, a)

8 / 31



What if we don’t know T (s ′|s, a) or R(s, a)?

Reinforcement learning methods try to find π∗(a|s) by sampling
from T (s ′|s, a) and R(s, a).

9 / 31



Reinforcement Learning

Diagram from Sutton and Barto (1998, Figure 3.1)

10 / 31



Reinforcement Learning

Diagram from Sutton and Barto (1998, Figure 3.1)

10 / 31



Reinforcement Learning

Diagram from Sutton and Barto (1998, Figure 3.1)

10 / 31



Reinforcement Learning

Diagram from Sutton and Barto (1998, Figure 3.1)

10 / 31



Reinforcement Learning

Diagram from Sutton and Barto (1998, Figure 3.1)

10 / 31



Two kinds of reinforcement learning

model-free RL: a policy is learned without explicitly learning T
and R

model-based RL: T and R are learned, and a policy is
constructed based on them

11 / 31



Model-Based Reinforcement Learning

Idea: Estimate R and T from experience (by counting):

R̂(s, a) =
1

n(s, a)

n(s,a)∑
i=1

ri T̂ (s ′|s, a) =
n(s, a, s ′)

n(s, a)

While learning the model, how should the agent behave?

12 / 31



Algorithms for Model-Based Reinforcement Learning

We’ll consider MBIE-EB (Strehl and Littman, 2008), though in
the paper we talk about R-MAX, another algorithm.

• Initialize Q̂(s, a) optimistically:

Q̂(s, a) =
Rmax

1− γ

• Compute the optimal policy with an exploration bonus:

Q̂∗(s, a) = R̂(s, a) + γ
∑
s′

T̂ (s ′|s, a) max
a′

Q̂∗(s
′, a′)︸ ︷︷ ︸

This part is like the Bellman equation (with estimates for R and T )

+
β√

n(s, a)︸ ︷︷ ︸
bonus

13 / 31



MBIE-EB in action

Train Test

How can we help this agent?

14 / 31


MBIE-EB_train.avi
Media File (video/avi)


MBIE-EB_test.avi
Media File (video/avi)



Outline

• background
• MDPs
• reinforcement learning

• model-based reinforcement learning

• advice
• the language of advice: LTL
• using advice to guide exploration
• experimental results

15 / 31



Advice

� � � � � � � � � � � � � �
��

� � � � � �

��
�

� � � � � �

�
�

� � � � � �

�
� �
� ♂ �
� � � � � � � � � � � � � �

Advice examples:

• Get the key and then go to the door

• Avoid nails

What we want to achieve with advice:

• speed up learning (if the advice is good)

• not rule out possible solutions (even if the advice is bad)

16 / 31



Vocabulary

To give advice, we need to be able to describe the MDP in a
symbolic way.

� � � � � � � � � � � � � �
��

� � � � � �

��
�

� � � � � �

�
�

� � � � � �

�
� �
� ♂ �
� � � � � � � � � � � � � �

• Use a labeling function L : S → T (Σ)
• e.g., at(key) ∈ L(s) iff the location of the agent is equal to

the location of the key in state s.

17 / 31



The language: LTL advice

Linear Temporal Logic (LTL) (Pnueli, 1977) provides temporal
operators: nextϕ, ϕ1 until ϕ2, alwaysϕ, eventuallyϕ.

LTL advice examples

• “Get the key and then go to the door” becomes
eventually(at(key) ∧ next eventually(at(door)))

• “Avoid nails” becomes
always(∀(x ∈ nails).¬at(x))

18 / 31



Tracking progress in following advice

LTL advice

“Get the key and then go to the door”
eventually(at(key) ∧ next eventually(at(door)))

Corresponding NFA:

u0start u1 u2

at(key)

true

at(door)

true true

19 / 31



Tracking progress in following advice

LTL advice

“Avoid nails”
always(∀(x ∈ nails).¬at(x))

Corresponding NFA:

v0start v1

∀(n ∈ nails).¬at(n)

∀(n ∈ nails).¬at(n)

20 / 31



Guidance and avoiding dead-ends

u0start u1 u2

at(key)

true

at(door)

true true

v0start v1

∀(n ∈ nails).¬at(n)

∀(n ∈ nails).¬at(n)

From these, we can compute

• guidance formula ϕ̂guide

• dead-ends avoidance formula ϕ̂ok

21 / 31



The background knowledge function

We use a function h : S × A× LΣ → N to estimate the number of
actions needed to make formulas true.

• the value of h(s, a, `) for all literals ` has to be specified
• e.g., we estimate the actions needed to make at(c) true using

the Manhattan distance to c

• estimates for conjunctions or disjunctions are computed by
taking maximums or minimums

• e.g, h(s, a, at(key1) ∨ at(key2)) = min{h(s, a, at(key1)),

h(s, a, at(key2))}

22 / 31



Using h with the guidance and avoidance formulas

ĥ(s, a) =

{
h(s, a, ϕ̂guide) if h(s, a, ϕ̂ok) = 0

h(s, a, ϕ̂guide) + C otherwise

� � � � � � � � � � � � � �
��

� � � � � �
��

�

� � � � � �

�
�

� � � � � �

�
� ♂ �
� �
� � � � � � � � � � � � � �

u0start u1 u2

at(key)

true

at(door)

true true

v0start v1

∀(n ∈ nails).¬at(n)

∀(n ∈ nails).¬at(n)

ϕ̂guide = at(key) ϕ̂ok = ∀(x ∈ nails).¬at(x)

23 / 31



MBIE-EB with advice

• Initialize Q̂(s, a) optimistically:

Q̂(s, a) = α(−ĥ(s, a)) + (1− α)
Rmax

1− γ

• Compute the optimal policy with an exploration bonus:

Q̂∗(s, a) = α(−1) + (1− α)R̂(s, a) +

γ
∑
s′

T̂ (s ′|s, a) max
a′

Q̂∗(s
′, a′) +

β√
n(s, a)

24 / 31



Advice in action

Train Test

Advice: get the key and then go to the door.

25 / 31


advice_99_train.avi
Media File (video/avi)


advice_99_test.avi
Media File (video/avi)



Advice can improve performance.

5,000 10,000 15,000
−2

−1

0

1
Number of training steps

N
or

m
al

iz
ed

re
w

ar
d

No advice
Using advice

Advice: get the key and then go the door, and avoid nails

26 / 31



Less complete advice is also useful.

5,000 10,000 15,000
−2

−1

0

1
Number of training steps

N
or

m
al

iz
ed

re
w

ar
d

No advice
Using advice

Advice: get the key and then go to the door

27 / 31



As advice quality declines, so do early results.

5,000 10,000 15,000
−2

−1

0

1
Number of training steps

N
or

m
al

iz
ed

re
w

ar
d

No advice
Using advice

Advice: get the key

28 / 31



Bad advice can be recovered from.

5,000 10,000 15,000
−2

−1

0

1
Number of training steps

N
or

m
al

iz
ed

re
w

ar
d

No advice
Using advice

Advice: go to every nail

29 / 31



A larger experiment (with R-MAX-based algorithm)

Advice: for every key in the map, get it and then go to a door;
avoid nails and holes; get all the cookies

30 / 31


rooms.avi
Media File (video/avi)



Conclusion

• Our approach can use LTL advice to reduce the training
required while being robust to misleading advice.

• The R-Max-based algorithm in the paper can be proved to
converge to the optimal policy for deterministic MDPs.

• For using LTL to define tasks, see our AAMAS 2018 paper
“Teaching Multiple Tasks to an RL Agent using LTL”

• Ideas for future work:
• Learn the background knowledge function.
• Use LTL advice in model-free RL as well.
• Incorporate background knowledge that doesn’t just give

numeric estimates, but expresses propositions.
• E.g. that halls normally lead to doors.

Questions?

31 / 31



References

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K.
Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 02 2015. doi:10.1038/nature14236.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 46–57,
1977. doi:10.1109/SFCS.1977.32.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and Demis
Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815, 2017. URL
http://arxiv.org/abs/1712.01815.

Alexander L. Strehl and Michael L. Littman. An analysis of model-based
Interval Estimation for Markov Decision Processes. Journal of Computer and
System Sciences, 74(8):1309 – 1331, 2008. doi:10.1016/j.jcss.2007.08.009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An
Introduction. MIT Press, 1998.

http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/SFCS.1977.32
http://arxiv.org/abs/1712.01815
http://dx.doi.org/10.1016/j.jcss.2007.08.009

	Motivation
	Advice-Based Exploration
	Conclusion

