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Abstract

In partially observable environments, an agent’s policy should often be a function of the history of its interaction with the
environment. This contradicts the Markovian assumption that underlies most reinforcement learning (RL) approaches.
Recent efforts to address this issue have focused on training Recurrent Neural Networks using policy gradient methods.
In this work, we propose an alternative – and possibly complementary – approach. We exploit the fact that in many
cases a partially observable problem can be decomposed into a small set of individually Markovian subproblems that
collectively preserve the optimal policy. Given such a decomposition, any RL method can be used to learn policies for
the subproblems. We pose the task of learning the decomposition as a discrete optimization problem that learns a form
of Finite State Machine from traces. In doing so, our method learns a high-level representation of a partially observable
problem that summarizes the history of the agent’s interaction with the environment, and then uses that representation
to quickly learn a policy from low-level observations to actions. Our approach is shown to significantly outperform
standard Deep RL approaches, including A3C, PPO, and ACER, on three partially observable grid domains.
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1 Introduction

Partially observable environments remain very challenging for RL agents because they break the Markovian assumption
with respect to the agent’s observations. As a result, agents in these environments require some form of memory to
summarize past observations. Recent approaches either encode the observation history using recurrent neural networks
[5, 10, 7] or use memory-augmented neural networks to provide the agent access to external memory [6]. We propose an
alternative approach that searches for a decomposition of the task into a small set of individually Markovian subtasks.

For example, consider the 2-keys domain shown in Figure 1c. The agent (purple triangle) receives a reward of +1 when it
reaches the coffee machine, which is always in the yellow room. To do so, it must open the two doors (shown in brown).
Each door requires a different key to open it, and the agent can only carry one key at the time. At the beginning of each
episode, the two keys are randomly located in either the blue room, the red room, or split between them. Since the agent
can only see what is in the current room, this problem is partially observable.

This problem is quite difficult for current RL approaches: A2C, ACER, and PPO performed poorly on this task even after
5 million training steps (Section 4). However, it is decomposable into a small set of Markovian subproblems. The first
involves searching for the keys. Notice that if the agent finds only one key in the red room, then (if it has learned enough
about the domain) it can deduce that the second key is in the blue room. The next subproblem is to pick up a key. This
is followed by a subproblem involving opening a door and retrieving the other key. Crucially, this last subproblem is
Markovian because the agent already knows which room the key is in based on which key they previously picked up.

Main contributions: We propose a discrete optimization-based approach that finds a high-level decomposition of a
partially observable RL problem. This decomposition splits the problem into a set of Markovian subproblems and takes
the form of a reward machine (RM) [8]. We also extend an existing method for exploiting RMs to the partially observable
case, so that we can use a found RM to quickly learn a policy from low-level observations to actions. Finally, we show that
our approach significantly outperforms several well-known policy gradient methods on three challenging grid domains.

Related work includes some early attempts to tackle partially observability in RL based on automata learning, e.g. [3, 4].
Both works rely on learning finite state machines at a low-level (over the environment observations). In contrast, our
approach relies on learning a decomposition of the problem at the abstract level given by a labelling function. This allows
our approach to also work over problems with continuous (or very large) observation spaces.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple M = �S,A, r, p, γ�, where S is a finite set of states, A is a finite set of actions,
r : S × A → R is the reward function, p(s, a, s�) is the transition probability distribution, and γ is the discount factor. The
objective of M is to find a policy π∗ : S → Pr(A) that maximizes the expected discounted reward for every state s ∈ S.
When r or p are unknown but can be sampled, an optimal policy can be found using RL approaches like q-learning. This
off-policy method uses sampled experience of the form (s, a, s�, r) to update q̃(s, a), an estimate of the optimal q-function.

A Partially Observable Markov Decision Process (POMDP) is a tuple PO = �S,O,A, r, p,ω, γ�, where S, A, r, p, and γ are
defined as in an MDP, O is a finite set of observations, and ω(s, o) is the observation probability distribution. At every time
step t, the agent is in exactly one state st ∈ S, executes an action at ∈ A, receives an immediate reward rt+1 = r(st, at),
and moves to the next state st+1 according to p(st, at, st+1). However, the agent does not observe st+1, and only receives
an observation ot+1 ∈ O via ω, where ω(st+1, ot+1) is the probability of observing ot+1 from state st+1 [1]. As such, many
RL methods cannot be immediately applied to POMDPs because the transition probabilities and reward function are not
necessarily Markovian w.r.t. O.

3 Learning to Decompose Partially Observable Problems

Our approach to RL in a partially observable environment has two stages. In the first, the agent solves an optimization
problem over a set of traces to find a “good” reward machine (RM)-based [8] decomposition of the environment. In
particular, we look for an RM R that can be used to make accurate one-step Markovian predictions over the traces in
the training set. In the second stage, the agent uses any standard RL algorithm to learn a policy directly from low-level
observations to actions for each subtask identified in R. If at some point R is found to make incorrect predictions,
additional traces are added to the training set and a new RM is learned. This process continues for as long as is desired.

Reward Machines under Partial Observability

Let us begin by defining RMs and identifying how a given RM can be used by an RL agent in a partially observable
environment. RMs are finite state machines that give reward on every transition, and were recently proposed as a way to
expose the structure of a reward function to an RL agent [8]. In the case of partial observability, RMs are defined over a
set of propositional symbols P that correspond to a set of high-level features the agent can detect using a labelling function
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L : O∅ × A∅ × O → 2P where X∅ = X ∪ {∅}. L assigns truth values to symbols in P given an environment experience
e = (o, a, o�) where o� is the next observation after executing action a from observation o. We use L(∅, ∅, o) to assign
truth values to the initial observation. We call a truth value assignment over P an abstract observation since it provides a
high-level view of the low-level observations via L. We now formally define an RM as follows:

Definition 3.1 (reward machine). Given a set of propositional symbols P , a set of (environment) observations O, and a
set of actions A, a Reward Machine is a tuple RPOA = �U, u0, δu, δr� where U is a finite set of states, u0 ∈ U is an initial
state, δu is the state-transition function, δu : U × 2P → U , and δr is the reward-transition function, δr : U × 2P → R.

RMs decompose problems into high-level states U and define transitions using conditions defined by δu. These con-
ditions are over a set of binary properties P that the agent can detect using L. For example, consider the RM for the
2-keys domain shown in Figure 1d. We assume that the agent can use L to detect the room color ( , , , and ), the
objects in the current room (�, �, and �, where � represents a locked door), and whether it is carrying a key ( ). Each
of these symbols is in P . In the figure, we use “( , )“ to denote that and are true in the current state, and all other
propositions (e.g. ) are false. We also use “( , ); ( , )“ to say that the transition is taken if either of these sets of
propositions is satisfied. Finally, we note the figure only shows propositions sets that induce RM state changes. For all
other sets, the RM simply remains in the same state it was in the last step.

The agent starts at the initial RM state u0 and stays there until it observes the red room with no keys ( ), one key ( ,�) or
two keys ( ,�,�), or similarly for the blue room. Each of these conditions is associated with a unique arrow indicating
the state to which the RM transitions. If the agent enters the blue room and there is one key ( ,�), then the RM state
changes from u0 to u1. The transitions in the RM are also associated with a reward via δr.

When learning policies given an RM, one simple approach is to learn a policy π(o, x) that considers the current observa-
tion o ∈ O and the current RM state x ∈ U . While a partially observable problem might be non-Markovian over O, it
can be Markovian over O × U for some RM RPOA. We call such an RM a perfect RM. For example, Figure 1d shows a
perfect RM for the 2-keys domain given a labelling function that detects events , , �, and . It is perfect because it can
correctly keep track of the locations of the keys once this is determined, which is all that the agent needs to remember in
order to decompose the problem in a Markovian way. Formally, we define a perfect RM for POMDP PO as follows:

Definition 3.2. An RM RPOA = �U, u0, δu, δr� is considered perfect for a POMDP PO = �S,O,A, r, p,ω, γ� with respect to
a labelling function L if and only if for every trace o0, a0, . . . , ot, at generated by any policy over PO, the following holds:
Pr(ot+1, rt+1|o0, a0, . . . , ot, at) = Pr(ot+1, rt+1|ot, xt, at) where x0 = u0 and xt = δu(xt−1, L(ot−1, at−1, ot)) .

Interestingly, we can formally show that if the set of belief states [1] for the POMDP PO is finite, then there exists a perfect
RM for PO. In addition, we can show that the optimal policies for perfect RMs are also optimal for PO.

From Traces to Reward Machines

We now consider the problem of learning a perfect RM from traces, assuming one exists w.r.t. the given labelling function
L. Since a perfect RM transforms the original problem into a Markovian problem over O × U , we prefer RMs that
accurately predict the next observation o� and the immediate reward r from the current observation o, the RM state
x, and the action a. Instead of trying to predict the observations themselves, we propose a low-cost alternative which
focuses on a necessary condition for a perfect RM: the RM must correctly predict what is possible and impossible at the
abstract level given by L. It is impossible, for instance, to be at u3 in the RM from Figure 1d and observe ( ,�), because
the RM is at u3 iff the agent saw that the red room was empty or that both keys were in the blue room.

This idea is formalized in our optimization model (Figure 1e). Let T = {T0, . . . , Tn} be a set of traces, where each trace
Ti is a sequence of observations, actions, and rewards: Ti = {oi,0, ai,0, ri,0, . . . , oi,ti , ai,ti , ri,ti}. We now look for an RM
�U, u0, δu, δr� that can be used to predict L(ei,t+1) from L(ei,t) and the current RM state xi,t, where ei,t+1 is the experience
(oi,t, ai,t, oi,t+1) and ei,0 is (∅, ∅, oi,0) by definition. The model parameters are the set of traces T , the set of propositional
symbols P , the labelling function L, and a maximum number of states in the RM umax. The model also uses the sets
I = {0 . . . n} and Ti = {0 . . . ti − 1}, where I contains the index of the traces and Ti their time steps. The model has two
auxiliary variables xi,t and Nu,l. Variable xi,t ∈ U represents the state of the RM after observing trace Ti up to time t.
Variable Nu,l ⊆ 2P is the set of all the next abstract observations seen from the RM state u and the abstract observations
l at some point in T . In other words, l� ∈ Nu,l iff u = xi,t, l = L(ei,t), and l� = L(ei,t+1) for some trace Ti and time t.

Constraints (2) and (3) ensure that we find a well-formed RM, while constraints (4) to (6) ensure that the found RM
satisfies the current set of traces. Constraint (7) and (8) ensure that the Nu,l sets contain at least every L(ei,t+1) that has
been seen right after l and u in P . The objective function (1) comes from maximizing the log-likelihood for predicting
L(ei,t+1) using a uniform distribution over all the possible options given by Nu,l. A key property of this formulation is
that any perfect RM is optimal with respect to the objective function in equation (1) when the number of traces (and their
lengths) tends to infinity, if the traces are collected by a policy π such that π(a|o) > � for all o ∈ O and a ∈ A.

For solving this optimization problem, we found the local search algorithm Tabu search [2] to be effective. This method
starts from an arbitrary feasible solution. It then iteratively examines all feasible “neighbouring” solutions, and moves
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minimize
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i∈I

�

t∈Ti

log(|Nxi,t,L(ei,t)|) (1)

s.t. �U, u0, δu, δr� ∈ RPOA (2)
|U | ≤ umax (3)
xi,t ∈ U ∀i ∈ I, t ∈ Ti (4)
xi,0 = u0 ∀i ∈ I (5)
xi,t+1 = δu(xi,t, L(ei,t+1)) ∀i ∈ I, t ∈ Ti (6)

Nu,l ⊆ 2P ∀u ∈ U, l ∈ 2P (7)
L(ei,t+1) ∈ Nxi,t,L(ei,t) ∀i ∈ I, t ∈ Ti (8)

(e) Optimization model for learning RMs.

Figure 1: Our domains, a perfect RM for the keys domain, and our optimization model.

to the neighbour with the best evaluation according to the objective function. For us, neighbouring RMs are defined as
those that differ by exactly one transition. When a time limit is hit, the best seen solution is returned. Tabu search also
maintains a set of states, the Tabu list, and prunes them from the “neighbouring” solutions to avoid revisiting them.

Finding Policies For Learned Reward Machines

Once we have learned an RM, we can use any RL algorithm to learn a policy π(o, u), by treating the combination of o
and u as the current state. However, doing so does not exploit the problem structure that is exposed by the RM. To this
end, an approach called Q-Learning for RMs (QRM) was proposed [8]. QRM learns one q-function q̃u (i.e., policy) per RM
state u ∈ U . Then, given any sample transition, the RM can be used to emulate how much reward each q-value would
receive from every RM state. Formally, experience e = (o, a, o�) is transformed into a valid experience (�o, u�, a, �o�, u��, r)
for training q̃u for each u ∈ U , where u� = δu(u, L(e)) and r = δr(u, L(e)). Hence, any off-policy learning method can
take advantage of these “synthetically” generated experiences to train every q-function q̃u. When q-learning is used to
learn each policy, QRM is guaranteed to converge to an optimal policy when the problem is fully-observable.

To apply QRM on a learned RM in a partially observable environment, we must first learn values for the RM’s reward
function δr from the set of training traces T . We do so by setting δr(u, l) as its empirical expectation over T . In addition,
we must handle an issue related to importance sampling. An experience (o, a, o�) might be more or less likely depending
on the RM state that the agent was in when the experience was collected. For example, experience (o, a, o�) might be
possible in one RM state ui but not in uj . Updating the policy for uj using (o, a, o�) would then introduce an unwanted
bias to q̃uj . We handle this issue by only “transferring” an experience (o, a, o�) from ui to uj , if the current RM indicates
that experience is possible in uj . For example, if some experience in Figure 1c consists of entering the red room and
seeing only one key, then this experience will not be used to update the policies for states u2, u3, u4, and u6 of the perfect
RM in Figure 1d. While this approach will not address the problem in all environments, we leave that as future work.

Simultaneously Learning a Reward Machine and a Policy

We now describe our overall approach for simultaneously finding an RM and exploiting that RM to learn a policy. Our
approach starts by collecting a training set of traces T generated by a random policy during tw “warmup” steps. This set
of traces is used to find an initial RM R using Tabu search. The algorithm then initializes policy π, sets the RM state to the
initial state u0, and sets the current label l to the initial abstract observation L(∅, ∅, o). The standard RL learning loop is
then followed: an action a is selected following π(o, x), and the agent receives the next observation o� and the immediate
reward r. The RM state is then updated to x� = δu(x, L(o, a, o

�)) and the policy π is improved using whatever RL method
is being deployed using the last experience (�o, x�, a, r, �o�, x��). Note that in an episodic task, the environment and RM
are reset whenever a terminal state is reached.

If on any step, there is evidence that the current RM might not be the best one, our approach will attempt to find a new
one. Recall that the RM R was selected using the cardinality of its prediction sets N (1). Hence, if the current abstract
observation l� is not in Nx,l, adding the current trace to T will increase the size of Nx,l for R. As such, the cost of R will
increase and it may no longer be the best RM. Thus, if l� �∈ Nx,l, we add the current trace to T and search for a new RM.
Recall that we use Tabu search, though any discrete optimization method could be applied. Our method only uses the
new RM if its cost is lower than R’s. If the RM is updated, a new policy is learned from scratch.

4 Evaluation and Discussion

We tested our approach on three partially observable grid domains, each with the same layout of three rooms with a con-
necting hallway. The agent can move in the four cardinal directions and can only see what is in the current room. These
are stochastic domains where the outcome of an action randomly changes with a 5% probability. The first environment is

3

Paper # 193 25



Symbol domain

0 1 · 106 2 · 106

0

200

400

Training steps

R
ew

ar
d

Cookie domain

0 1 · 106 2 · 106 3 · 106
0

50

100

150

200

Training steps

R
ew

ar
d

2-keys domain

0 2 · 106 4 · 106
0

50

100

Training steps

R
ew

ar
d

Symbol domain

103.7 103.8 103.9

103.7

103.8

103.9

Perfect RM cost

L
ea

rn
ed

R
M

co
st

Cookie domain

103.7 103.8 103.9 104
103.7

103.8

103.9

104

Perfect RM cost

L
ea

rn
ed

R
M

co
st

2-keys domain

103.8 104 104.2

103.8

104

104.2

Perfect RM cost

L
ea

rn
ed

R
M

co
st

Legend: DDQN A2C PPO ACER LRM + DDQN LRM + DQRM

Figure 2: Left: Total reward collected every 10, 000 training steps. It shows the median performance over 30 runs and percentile 25 to
75 in the shadowed area for LRM approaches. The maximum performance is reported for the other approaches. Right: Comparison
between the cost of the perfect RM and the cost of RMs found by Tabu search.

the symbol domain (Figure 1a). It has three symbols ♣, ♠, and � in the red and blue rooms. One symbol from {♣,♠,�} and
possibly an up or down arrow are randomly placed at the yellow room. Intuitively, that symbol and arrow tell the agent
where to go (e.g., ♣ and ↑ tell the agent to go to ♣ in the north room). If there is no arrow, the agent can go to the target
symbol in either room. An episode ends when the agent reaches any symbol in the red or blue room, at which point they
receive a reward of +1 if they reached the correct symbol and −1 for an incorrect symbol. The second environment is
the cookie domain (Figure 1b). It has a button in the yellow room that, when pressed, makes a cookie randomly appear in
the red or blue room. The agent receives reward +1 for reaching the cookie and may then go back to the button to make
another one appear. Each episode is 5, 000 steps long, during which the agent should attempt to get as many cookies as
possible. The final environment is the 2-keys domain (Figure 1c) that was described in Section 1.

We tested two versions of our Learned Reward Machine (LRM) approach: LRM+DDQN and LRM+DQRM. Both learn
an RM from experience as described in Section 3, but LRM+DDQN learns a policy using DDQN [9] while LRM+DQRM
uses the modified version of QRM. In all domains, we used umax = 10, tw = 200, 000, an epsilon greedy policy with
� = 0.1, and a discount factor γ = 0.9. The size of the Tabu list and the number of steps that the Tabu search performs
before returning the best RM found is 100. We compared against 4 baselines: DDQN [9], A2C [5], ACER [10], and PPO
[7]. To provide DDQN some memory, its input is set as the concatenation of the last 10 observations, as commonly done
by Atari playing agents. In contrast, A2C, ACER, and PPO already use an LSTM to summarize the observation history.

The left side of Figure 2 shows the total reward that each approach gets every 10, 000 training steps. The figure shows that
the LRM approaches largely outperform all the baselines. We also note that LRM+DQRM learns faster than LRM+DDQN,
but is more unstable. In particular, LRM+DQRM converged to a considerably better policy than LRM+DDQN in the 2-
keys domain. We believe this is due to QRM’s experience sharing mechanism that allows for propagating sparse reward
backwards faster. In contrast, all the baselines outperformed a random policy, but none make much progress on any of
the domains, even when run much longer (5, 000, 000 steps).

A key factor in the strong performance of the LRM approaches is that Tabu search finds high-quality RMs in less than
100 search steps (Figure 2, right side). In each plot, a point compares the cost of a handcrafted perfect RM with that of
an RM R that was found by Tabu search while running our LRM approaches, where the costs are evaluated relative to
the training set used to find R. Being on or under the diagonal line (as in most of the points in the figure) means that
Tabu search is finding RMs whose values are at least as good as the handcrafted RM. Hence, Tabu search is either finding
perfect reward machines or discovering that our training set is incomplete and our agent will eventually fill those gaps.

For future work, we plan on exploring the use of recurrent neural networks for finding policies for each RM subtask.
Doing so would mean that we might not have to find a perfectly Markovian high-level decomposition. We expect this
will allow us to solve problems with less informative labelling functions, and using RMs with fewer states.
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