
D
R

A
FT

Advice-Based Exploration in Model-Based
Reinforcement Learning

Rodrigo Toro Icarte1,2, Toryn Q. Klassen1,
Richard Valenzano1,3, and Sheila A. McIlraith1

1 University of Toronto, Toronto, Canada
{rntoro,toryn,rvalenzano,sheila}@cs.toronto.edu

2 Vector Institute, Toronto, Canada
3 Element AI, Toronto, Canada

Abstract. Convergence to an optimal policy using model-based rein-
forcement learning can require significant exploration of the environment.
In some settings such exploration is costly or even impossible, such as in
cases where simulators are not available, or where there are prohibitively
large state spaces. In this paper we examine the use of advice to guide
the search for an optimal policy. To this end we propose a rich language
for providing advice to a reinforcement learning agent. Unlike constraints
which potentially eliminate optimal policies, advice offers guidance for
the exploration, while preserving the guarantee of convergence to an op-
timal policy. Experimental results on deterministic grid worlds demon-
strate the potential for good advice to reduce the amount of exploration
required to learn a satisficing or optimal policy, while maintaining ro-
bustness in the face of incomplete or misleading advice.

Keywords: Markov Decision Process, Reinforcement Learning, Model-
Based Learning, Linear Temporal Logic, Advice

1 Introduction

Reinforcement Learning (RL) methods can often be used to build intelligent
agents that learn how to maximize long-term cumulative reward through inter-
action with the environment. Doing so generally requires extensive exploration
of the environment, which can be infeasible in real-world environments where
exploration can be unsafe or require costly resources. Even when there is access
to a simulator and exploration is safe, the amount of interaction needed to find
a reasonable policy may be prohibitively expensive.

In this paper we investigate the use of advice as a means of guiding explo-
ration. Indeed, when humans try to master a new task, they certainly learn
through exploration, but they also avail themselves of linguistically expressed
advice from other humans. Here we take “advice” to be recommendations re-
garding behaviour that may describe suboptimal ways of doing things, may not
be universally applicable, or may even contain errors. However, even in these
cases people often extract value and we aim to have RL agents do likewise. We

D
R

A
FT

use advice to guide the exploration of an RL agent during its learning process
so that it more quickly finds useful ways of acting.

We use the language of Linear Temporal Logic (LTL) [1] for providing advice.
The advice vocabulary is drawn from state features, together with the linguisti-
cally inspired temporal modalities of LTL (e.g., “Turn out the lights before you
leave the office” or “Always avoid potholes in the road”). We propose a variant
of the standard model-based RL algorithm R-MAX [2] that adds the ability to
use given advice to guide exploration. Experimental results on randomly gener-
ated (deterministic) grid worlds demonstrate that our approach can effectively
use good advice to reduce the number of training steps needed to learn a strong
policy, and also recover from misleading advice.

2 Preliminaries

Example environment: Consider a grid world in which the agent starts at
some initial location. At various locations there are doors, keys, walls, and nails.
The agent can move deterministically in the four cardinal directions, unless there
is a wall or locked door in the way. The agent can only enter a location with a
door when it has a key, after which point the door and key disappear (i.e., the
door remains open). The agent automatically picks up a key whenever it visits
a location with a key. The agent receives a reward of -1 for every action, unless
it enters a location with nails (reward of -10) or reaches the red door with a key
(reward of +1000, and the episode ends). Figure 1, which we use as a running
example below, depicts an instance of this domain, in which there is a single
door and it is red.

In this environment, we may wish to advise the agent to avoid the nails, or to
get the key before going to the door. In order to provide advice to an arbitrary
agent, we must have a vocabulary from which the advice is constructed. For this
purpose, we define a signature as a tuple Σ = 〈Ω,C, arity〉 where Ω is a finite
set of predicate symbols, C is a finite set of constant symbols, and arity : Ω → N
assigns an arity to each predicate. For example, in the grid-world environment,
we use a signature with only a single predicate called at (i.e., Ω = {at} and
arity(at) = 1), where at(c) states that the agent is at the same location as c.
Each object in the domain will be represented with a single constant in C (i.e.,
key1, door1, . . .). Intuitively, we use this signature to reference different elements
about states in the environment when providing advice.

We define GA(Σ)
def
= {P (c1, · · · , carity(P)) | P ∈ Ω, ci ∈ C}. That is, GA(Σ)

is the set of all ground atoms of the first order language with signature Σ. A
ground literal is either a ground atom or the negation of a ground atom, so

lit(Σ)
def
= GA(Σ) ∪ {¬p : p ∈ GA(Σ)} is the set of ground literals. A truth

assignment can be given by a set τ ⊆ lit(Σ) such that for every a ∈ GA(Σ),
exactly one of a and ¬a is in τ . Let T (Σ) be the set of all truth assignments.

A Markov Decision Process (MDP) with an initial state and a signature
is a tuple M = 〈S, s0, A, p, γ,Σ, L〉 where S is a finite set of states, s0 ∈ S
is the initial state, A is a finite set of actions, p is a function that specifies

D
R

A
FT

transition probabilities where p(s′, r|s, a) is the probability of transitioning to s′

and receiving reward r ∈ R if action a ∈ A is taken in state s, γ ∈ (0, 1] is
the discount factor, Σ = 〈Ω,C, arity〉 is a signature, and L : S → T (Σ) labels
each state with a truth assignment. For example, in our grid-world, the labeling
function L(s) makes at(c) true if and only if the location of the agent is equal to
the location of c in state s. Note that as GA(Σ) is finite, we could equivalently
consider a state label to be a vector of binary features, with the ith entry being
1 if the ith ground atom holds in that state, and 0 otherwise. Below, we assume
that the agent does not know the transition probability function p (as usual in
RL).

� � � � � � � � � � � � � �
��

� � � � � �

��
�

� � � � � �

�
�

� � � � � �

�
� �
� ♂ �
� � � � � � � � � � � � � �

Fig. 1. The agent receives reward
for going to the locked red door
after having visited the key. It is
penalized for stepping on nails.

u0start u1 u2
at(key)

true

at(door)

true true

v0start v1
∀(n ∈ nails).¬at(n)

∀(n ∈ nails).¬at(n) true

Fig. 2. Advice example, with NFAs corresponding
to the LTL formula ♦(at(key) ∧ ©♦at(door)) ∧
�∀(n ∈ nails).¬at(n)

3 Providing and Utilizing Advice While Learning

In this section, we describe our LTL advice language and how corresponding
automata can be used to monitor satisfaction of such advice. We then describe
our method for using the automata to guide exploration in a variant of R-MAX.

3.1 Linear Temporal Logic: A Language for Providing Advice

Providing advice to an agent requires a language for communicating that advice.
Given that RL agents are typically engaged in an extended interaction with the
environment, this language must allow us to suggest how the agent should behave
over time (e.g. “Get the key and then go to the locked door.”). To this end, we
use Linear Temporal Logic (LTL), a modal temporal logic originally proposed
for the verification of reactive systems [1], that has subsequently been used to
represent temporally extended goals and preferences in planning [3]. Here, we
use it as the basis for expressing advice.

Suppose that we have an MDP with a signature M = 〈S, s0, A, p, γ,Σ, L〉
for which we wish to provide advice. The language of LTL contains formulae
consisting of propositional symbols, which we take to be the ground atoms of

D
R

A
FT

GA(Σ) (e.g. at(key2)), and all formulae that can be constructed from other
formulae using the standard set of connectives from propositional logic — namely
and (∧), or (∨), and negation (¬) — and the temporal operators next (©)
and until (U). From these temporal operators, we can also derive other useful
operators such as always (�) and eventually (♦). We will also make use of
universal (∀) and existential (∃) quantifiers in abbreviating conjunctions and
disjunctions. If T = {t1, . . . , tk} ⊆ C is a set of constant symbols, then ∀(x ∈
T).ϕ(x)

def
= ϕ(t1) ∧ · · · ∧ ϕ(tk) and ∃(x ∈ T).ϕ(x)

def
= ϕ(t1) ∨ · · · ∨ ϕ(tk).

To provide some intuition about LTL, we consider some possible example
advice formulae for the problem in Figure 1 which use the unary operators �,
♦, and ©. The formula �¬at(nail1) literally means “always, it is not the case
that the agent is at the location of nail1”; used as advice it can be taken to say
that “at all times the agent should not be at nail1.” The formula ♦(at(key) ∧
©(♦at(door))) can be understood as “the agent should eventually get to a state
where it is at the key and then eventually get to a state where it is at the door.” If
nails ⊂ C is the set of objects that are nails, we can use �∀(n ∈ nails).¬at(n)
to advise that at all times, the agent should not be at a location where there is
a nail.

The truth value of an LTL formula ϕ is determined relative to a sequence
σ = 〈s0, . . . , sn〉 of states from M (i.e., the states visited in an episode). The
truth of a ground atom at time t is determined by the label of st, and the
truth values of more complicated formulae are built up according to the formal
semantics of LTL (see De Giacomo et al. [4] for more details).

3.2 From LTL to Finite State Automata

Any LTL formula ϕ can be converted into a Nondeterministic Finite State Au-
tomaton (NFA) such that a finite sequence of states σ will be accepted by the
NFA if and only if σ satisfies ϕ [4,5]. We can represent the NFA as a directed
graph with edges labelled by formulae from LΣ , the subset of LTL formulae
that does not include temporal operators. Each edge represents a set of NFA
transitions, one for each truth assignment satisfying the edge label. Because the
NFA is non-deterministic, it may be in multiple states at once. Intuitively, the
state(s) that an NFA is in after visiting a sequence of MDP states represent the
progress that has been made towards satisfying ϕ. Reaching an accepting NFA
state means that the current trace satisfies the advice formula.

To translate from LTL to automata we use the system developed by Baier and
McIlraith [5], which, for computational efficiency, constructs a set N of small
NFAs rather than one potentially very large NFA. N is considered to accept
σ if every NFA in N accepts σ. For example, Figure 2 shows the two NFAs
generated from ♦(at(key)∧©♦at(door))∧�∀(n ∈ nails).¬at(n). This advice
states that the agent should get the key and then go to the door, and also avoid
nails. We now demonstrate how we track the NFA state set for the top NFA.
At the beginning of an episode, the agent is in the initial state of the MDP and
the NFA is in state u0. Thus, the NFA state set is initialized to {u0}. This NFA

D
R

A
FT

state set will remain constant until the agent reaches an MDP state s′ for which
at(key) ∈ L(s′) (i.e., the agent gets the key). Since the transition to u1 is now
possible in the NFA, but it is also possible to remain in u0 because true holds
in s′, the NFA state set is updated to {u0, u1}. The state set will then remain
constant until the agent reaches the door.

We note that the above procedure may lead to an empty NFA state set on
some NFAs and state sequences. For example, notice that in the bottom NFA
in Figure 2, there is no transition to follow when the agent enters a state with
a nail. This occurs because once the agent is at a nail, the episode can never
satisfy the advice formula regardless of how the rest of the episode proceeds. We
call such situations NFA dead-ends. Since the advice may still be useful even
if it has been violated, we handle NFA dead-ends as follows: if an NFA state
set becomes empty, we revert it to the previous set. The NFA in Figure 2 will
therefore continue to suggest that the agent avoid nails even if the agent already
failed to do so.

3.3 Background Knowledge Functions

Advice like “get the key” would not be very useful if the agent had no notion
of what behaviour might lead to the key. To give advice, we must presuppose
that the advised agent has some capacity to understand and apply the advice.
To this end, we assume that the agent has a background knowledge function
hB : S × A × lit(Σ) → N, where hB(s, a, `) is an estimate of the number of
primitive actions needed to reach the first state s′ where the literal ` is true
(i.e, where ` ∈ L(s′)) if we execute a in s. Intuitively, hB represents the agent’s
prior knowledge — which may not be perfectly accurate — about how to make
ground atomic formulae either true or false.

Since hB only provides estimates with respect to individual ground literals,
we believe that for many applications it should be relatively easy to manually
define (or learn, e.g. [6]) a reasonable hB . For example, in the grid world envi-
ronment, we defined the background knowledge function so that

hB(s, a, at(c)) = |pos(agent, s).x− pos(c, s).x|+
|pos(agent, s).y − pos(c, s).y|+∆

where pos(c, s) provides the coordinates of c in state s and ∆ is equal to −1 if the
action a points toward c from the agent’s position and 1 if it does not. Hence, if
the agent is three locations to the left of the key, hB(s, right, at(key)) will return
2, even if there is a wall in the way. Furthermore, we defined hB(s, a,¬at(c)) to
be equal to 1 if hB(s, a, at(c)) = 0 and 0 otherwise.

Given any background knowledge function hB , we can construct a function
h : S × A × LΣ → N that extends hB to provide an estimate of the number of
primitive actions needed to satisfy an arbitrary formula ϕ ∈ LΣ . We recursively

D
R

A
FT

define h(s, a, ϕ) as follows:

h(s, a, `) = hB(s, a, `) for ` ∈ lit(Σ)

h(s, a, ψ ∧ χ) = max{h(s, a, ψ), h(s, a, χ)}
h(s, a, ψ ∨ χ) = min{h(s, a, ψ), h(s, a, χ)}

In the next sections, we describe how to drive the agent’s exploration using h.

3.4 Advice-Based Action Selection

Suppose the agent is at a state s in the MDP, with NFA state sets q(0), . . . , q(m).
Intuitively, following the advice in s involves having the agent take actions that
will move the agent through the edges of each NFA towards its accepting states.
To this end, we begin by identifying useful NFA edges which may actually lead
to progress towards the accepting states. Let us write (q, β, q′) ∈ δ(i) if there is
an edge from q to q′ that is labelled by the formula β in the ith NFA. We say
that an edge (q, β, q′) ∈ δ(i) is useful if q is not an accepting state and there
exists a path in the NFA from q′ to an accepting state that does not have q
along it. We then let useful(q(i)) denote the set of all useful edges that are from
NFA states in q(i). We now define the advice guidance formula ϕ̂ as follows:

ϕ̂
def
=

m∨
i=0

 ∨
(q,β,q′)∈useful(q(i))

to DNF(β)

where the function to DNF : 2LΣ → LΣ converts the formula β to disjunctive
normal form. Notice that the formula ϕ̂ will be satisfied by any action that
achieves one of the formulas needed to transition over a useful edge. We define
ĥ(s, a) = h(s, a, ϕ̂) which can be used to rank how close each action is to making
progress in satisfying the advice guidance formula ϕ̂.

In addition to guidance, it is important to, if possible, avoid NFA dead-ends.
To do so, we define the advice warning formula ϕ̂w as follows:

ϕ̂w
def
=

m∧
i=0

 ∨
q∈q(i) and (q,β,q′)∈δ(i)

to DNF(β)

and use it to define the set W (s)

def
= {a ∈ A(s) : h(s, a, ϕ̂w) 6= 0}. The idea is

that W contains those actions which the evaluation function predicts will lead to
NFA dead-ends. In the next section, we describe how we recommend the agent
to disfavor actions from W while also being guided by ĥ.

3.5 Incorporating Advice in R-MAX

Model-based Reinforcement Learning solves MDPs by learning the transition
probabilities and rewards. The R-MAX family of algorithms [2] are model-based

D
R

A
FT

1 Function Rmax with advice(S, A, L, hB, ϕadvice, C, N)

2 Tunknown ← ∅; p̂← initialize empty model();
3 for s, a ∈ S ×A do
4 n(s, a)← 0;
5 Tunknown ← Tunknown ∪ (s, a);

6 t← 0; π ← ∅; s← get initial state();
7 while t < N do
8 t← t+ 1;
9 if is terminal state(s) or cannot be reached(s, p̂, Tunknown) then

10 s← get initial state();
11 if s 6∈ π then
12 π ← policy towards min heuristic(p̂, ϕadvice, Tunknown, L, hB);
13 a← sample action(π(s));
14 s′, r ← execute action(s, a);
15 p̂← update model(p̂, s, a, s′, r);
16 n(s, a)← n(s, a) + 1;
17 if n(s, a) = C then
18 Tunknown ← Tunknown \ (s, a);
19 s← s′;

20 return compute optimal policy(p̂);

Algorithm 1: R-Max with Advice algorithm.

methods that explore the environment by assuming that unknown transitions
give maximal reward Rmax. In practice, if Rmax is big enough, this means that
the agent plans towards reaching the closest unknown transition.

We propose a simple variant of an R-MAX algorithm that can take advantage
of the advice. Instead of planing towards the closest unknown transition, we plan
towards the closest unknown transition that is not in W and has minimum ĥ-
value. If every reachable unknown transition is in W , then we just go to the
closest unknown transition with minimum ĥ-value. This planning step can be
done using LAO∗ [7].

Algorithm 1 shows the pseudo-code of our R-MAX variant. Its inputs are the
MDP states S, action set A, labelling function L, background knowledge function
hB , the advice formula ϕadvice, the number C ≥ 1 of times that a transition has
to be tried before being labeled as known, and the number of actions N that
the agent can execute during training. The algorithm starts by marking every
state-action as unknown. It also defines an auxiliary variable n(s, a) that counts
how many times the transition (s, a) has been tried and an empty model of the
estimated environment’s transition probabilities p̂. In every iteration of the main
loop, the agent selects the next action a to execute using a partial policy π,
which encodes the optimal way to reach the closest unknown transition with
minimum ĥ-value that is not in W (as previously described). Then, the agent
executes a and receives a reward r and the next state s′ from the environment.
The probabilities in the estimated model p̂ are updated to reflect this observation
of the transition (s, a, r, s′). Whenever a transition (s, a) is tried C times, it is

D
R

A
FT

removed from Tunknown. If a terminal state is reached or it is not possible to reach
unknown transitions from the current state, the environment is restarted. After
executing N actions, the algorithm determines the optimal policy with respect to
p̂ (using, for instance, value iteration) and returns it. For a deterministic MDP,
whenever N is sufficiently large, that policy will also be optimal for the MDP.

Theorem 1. Given an MDP with a deterministic transition function, there ex-
ists a number N0 so that Algorithm 1 converges to an optimal policy if N ≥ N0.

Proof (sketch). Since the MDP is deterministic, after an action is attempted
even one time in a state, the estimate of the probabilities (all 0 or 1) over the
outcomes of that state-action pair will be exact. So there will be exact estimates
for all transitions the algorithm considers known (even if C = 1). As each episode
ends after a finite number of steps, eventually all transitions reachable from the
initial state become known, since the agent plans to visit unknown transitions
as long as there are any (regardless of the advice). By that point, the MDP can
be solved exactly by the agent, and so the optimal policy can be found.

For a non-deterministic MDP, we expect that our approach would converge to a
near-optimal policy in the same sense that R-MAX does [2], but further inves-
tigation is needed.

4 Evaluation and Discussion

We tested our approach using various pieces of advice on grid world problems
of the sort defined in Section 2, using the signature and background knowledge
functions described in Sections 2 and 3. In addition to the domain elements of
walls, keys, and nails described earlier, some problems also had cookies and holes.
When the agent reaches a location with a cookie, it gets a reward of +10 and the
cookie disappears. For reaching a hole, the reward is -1000 and the episode ends.
As a baseline, we reported the performance of standard R-MAX, which does not
use any form of advice. To measure performance, we evaluated the agent’s policy
every 100 training steps. At training time, the agent explored the environment
to learn a good model. At test time, we evaluated the best policy that the agent
could compute using its current model (ignoring the unknown transitions). We
used a discount factor of 1 in all experiments.

Figure 4a shows the median performance (over 20 independent trials) in a
25× 50 version of the motivating example in Figure 1. Our approach allows the
agent to quickly find a policy that follows the advice and then slowly converges to
an optimal policy. This is the case even with the deliberately misleading advice
N, which told the agent to go to every nail. As the quality of the advice decreases,
the agent’s initial performance also does. We note that R-MAX, without advice,
has poor initial performance, but converges faster to an optimal policy than when
using the more detailed advice of K or KD (see Table 1 for what these formulae
are). As such, there is a trade-off between quickly learning the model (exploring
nearby areas) and moving towards promising states suggested by advice.

D
R

A
FT

Fig. 3. An example randomly generated grid world map, containing an agent (), walls
(), nails (), holes (), keys (), cookies (), doors (), and a final door ().

5,000 10,000 15,000 20,000

−1

0

1

Number of training steps

N
o
rm

a
li
ze
d
re
w
a
rd

N

R-MAX

ANH

K

KD

KD ∧ ANH

(a) Motivating example (25× 50 version)

20,000 40,000

−1

0

1

Number of training steps

N
o
rm

a
li
ze
d
re
w
a
rd

R-MAX

ANH

KDs

KDs ∧ ANH

KDs ∧ ANH ∧ C

(b) Random grid world maps

Fig. 4. In (a) and (b), reward is normalized so that 1 represents the best policy found
on each map. The shaded areas represent the first and third quartiles. The formulae in
the legends are explained by Table 1. Graphs are best viewed in colour.

We also randomly generated 10 grid world problems (Figure 3 shows one of
them), each consisting of a sequence of four 25 × 25 rooms with doors between
consecutive rooms. The agent always starts in the upper-left corner of the left-
most room and the red (i.e., goal) door is on the rightmost wall. Each space
within a room had a 1/9 probability of being each of a nail, hole, or wall. A
key and three cookies were randomly placed in each room among the remain-
ing empty spaces, such that each key, door, and cookie was reachable from the
starting location. These grid world maps are challenging because there is sparse
reward and it is fairly easy to die.

Figure 4b shows the performance over the 10 maps using four different pieces
of advice. We ran 5 trials per piece of advice on each map; the graph reports
the median performance across both trials and maps. Without advice, the agent
was never able to reach the last door in 50 thousand training steps. Providing
advice that the agent should get keys and go to doors (KDs) was also not enough,
because the agent always fell in a hole before reaching its target. Stronger results

D
R

A
FT

were seen with safety-like advice to avoid holes and nails (ANH), and the best
performance was seen when this safety-like advice was combined with advice
that guides agent progress (KDs ∧ ANH and KDs ∧ ANH ∧ C).

These results are encouraging. Firstly, they show the potential for advice to
play a key role in scaling Reinforcement Learning. In particular, some problems
are just too hard to expect RL to find good policies without the guidance pro-
vided by advice (e.g., Figure 4b). Secondly, they show that even well-intended
advice could result in sub-optimal behaviour if it were treated as a hard con-
straint. For instance, the initial performance of KD in Figure 4a is a policy that
satisfies the advice in an optimal number of steps, but gets sub-optimal reward
(due to the nails). This further highlights the need for techniques like ours that
are based on advice (guidance) instead of constraints (pruning). Still, our exper-
iments are limited to a deterministic setting, and investigating the role of advice
in non-deterministic domains is an important future work direction.

Table 1. Abbreviations for legends in Figure 4

Abbreviation Advice formula (and informal meaning)

R-MAX No advice
Standard R-MAX.

C ∀(c ∈ cookies).♦at(c)
Get all the cookies.

ANH �(∀(x ∈ nails ∪ holes).¬at(x))
Avoid nails and holes.

K ♦at(key)
Get the key.

KD ♦(at(key) ∧©♦(at(door)))
Get the key and then go to the door.

KDs ∀(k ∈ keys).♦(at(k) ∧©♦(∃(d ∈ doors).at(d)))
For every key in the map, get it and then go to a door.

N ∀(x ∈ nails).♦at(x)
Go to every nail.

5 Related Work

The idea (and recognition of the importance) of constructing agents that can
take advice of some sort dates back to John McCarthy’s hypothetical advice
taker system [8]. For MDPs, several works have proposed agents that accept hard
constraints in the form of linear temporal logic safety constraints (e.g. [9,10]) or
high level task specifications (e.g. [11,12]). Such constraints differ from the notion
of advice studied in this paper. In particular, such hard constraints eliminate
certain traces from consideration, potentially eliminating optimal policies. In
contrast, advice only suggests behaviour and as such is more appealing when we
want to provide guidance without pruning alternative behaviours.

D
R

A
FT

In RL, the use of “advice” has been mainly focused on human feedback and
critique. Human feedback allows an external observer to guide an agent (while
it solves an MDP) by giving it positive and negative feedback (e.g. [13,14]),
whereas critique proposes alternative actions to some states in a trace execution
(e.g. [15,16]). In this work, we study a different modality of advice, which is
given offline (prior to the agent’s first interaction with the environment).

Maclin and Shavlik [17] were the first to propose using offline advice in RL.
They defined a procedural programming language for encoding the advice. This
language allows the user to recommend primitive actions using If-Then rules and
loops. Since then, several extensions to this work have been done (e.g. [18,19]).
Recently, Krening et al. [20] proposed a substantially different approach. They
grounded natural language advice into a list of (object,action) recommendations
(or warnings). The idea is to encourage (or discourage) the agent to perform a
primitive action when it interacts with particular classes of objects. In contrast to
those works, our advice language supports specification of temporally extended
advice in terms of properties of states. For many simple pieces of LTL advice,
such as eventually get the key, it is unclear how to express them as primitive
action recommendations using the previous advice languages.

In another recent work, Andreas et al. [21] proposed policy sketches. A policy
sketch is a sequence of sub-goals given by the user to solve a task. In a multi-
task setting, Andreas et al. show how to use the sketch to compose (previously
learned) policies for each sub-task to solve a novel task. However, their advice
language is quite constrained in comparison with LTL advice. In particular,
advice such as avoid nails or get cookies cannot be expressed as a sequence of
sub-goals (unless some unnecessary order is imposed to sequentialize the advice).

6 Concluding Remarks

This work studied how to exploit linguistically expressed advice in Reinforcement
Learning. Advice has the distinctive feature of being a recommendation, but not
a task specification. As such, techniques for exploiting advice should provide
guidance without pruning alternative, and possibly optimal, behaviours. Three
main challenges arise when doing so. First, we need a common vocabulary to
communicate the advice to the agent. We handled this by defining a signature
over the states that is understandable by both the agent and the user. Then,
sophisticated pieces of advice were constructed over the signature using LTL.
Second, the agent needs some sort of background knowledge to be able to follow
the advice. In this work, we introduced a background knowledge function for
that purpose. Finally, the agent needs a way to reason about how and when
to use the advice. Our approach constantly looks to as soon as possible reach
promising states for advancing towards satisfying the advice. However, getting
obsessed with following the advice might result in slower convergence to an
optimal policy (as discussed in Section 4). We encourage future works to pay
special attention to these three dimensions when advising RL agents.

D
R

A
FT

Acknowledgement. This research was supported by NSERC and CONICYT.
A preliminary non-archival version of this work was presented at RLDM (2017).

References

1. Pnueli, A.: The temporal logic of programs. In: FOCS. (1977) 46–57
2. Brafman, R., Tennenholtz, M.: R-MAX – a general polynomial time algorithm

for near-optimal reinforcement learning. Journal of Machine Learning Research 3
(2002) 213–231

3. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence 116(1-2) (2000) 123–191

4. De Giacomo, G., Masellis, R.D., Montali, M.: Reasoning on LTL on finite traces:
Insensitivity to infiniteness. In: AAAI. (2014) 1027–1033

5. Baier, J., McIlraith, S.: Planning with first-order temporally extended goals using
heuristic search. In: AAAI. (2006) 788–795

6. Peng, B., MacGlashan, J., Loftin, R., Littman, M., Roberts, D., Taylor, M.: A need
for speed: Adapting agent action speed to improve task learning from non-expert
humans. In: AAMAS. (2016) 957–965

7. Hansen, E., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence 129(1-2) (2001) 35–62

8. McCarthy, J.: Programs with common sense. RLE and MIT Computation Center
(1960)

9. Lacerda, B., Parker, D., Hawes, N.: Optimal and dynamic planning for markov
decision processes with co-safe LTL specifications. In: IROS. (2014) 1511–1516

10. Wen, M., Topcu, U.: Probably approximately correct learning in stochastic games
with temporal logic specifications. In: IJCAI. (2016) 3630–3636

11. Andre, D., Russell, S.J.: Programmable reinforcement learning agents. In: NIPS.
(2000) 1019–1025

12. Shapiro, D., Langley, P., Shachter, R.: Using background knowledge to speed
reinforcement learning in physical agents. In: AA. (2001) 254–261

13. Isbell, C., Shelton, C.R., Kearns, M., Singh, S., Stone, P.: A social reinforcement
learning agent. In: AA. (2001) 377–384

14. Knox, W.B., Stone, P.: Tamer: Training an agent manually via evaluative rein-
forcement. In: ICDL. (2008) 292–297

15. Judah, K., Roy, S., Fern, A., Dietterich, T.G.: Reinforcement learning via practice
and critique advice. In: AAAI. (2010) 481–486

16. Griffith, S., Subramanian, K., Scholz, J., Isbell, C., Thomaz, A.L.: Policy shaping:
Integrating human feedback with reinforcement learning. In: NIPS. (2013)

17. Maclin, R., Shavlik, J.: Creating advice-taking reinforcement learners. Machine
Learning 22(1-3) (1996) 251–281

18. Maclin, R., Shavlik, J., Torrey, L., Walker, T., Wild, E.: Giving advice about
preferred actions to reinforcement learners via knowledge-based kernel regression.
In: AAAI. (2005) 819–824

19. Kunapuli, G., Odom, P., Shavlik, J.W., Natarajan, S.: Guiding autonomous agents
to better behaviors through human advice. In: ICDM. (2013) 409–418

20. Krening, S., Harrison, B., Feigh, K., Isbell, C., Riedl, M., Thomaz, A.: Learn-
ing from explanations using sentiment and advice in RL. IEEE Transactions on
Cognitive and Developmental Systems 9(1) (2016) 44–55

21. Andreas, J., Klein, D., Levine, S.: Modular multitask reinforcement learning with
policy sketches. In: ICML. (2017) 166–175

	Advice-Based Exploration in Model-Based Reinforcement Learning

