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ABSTRACT
The plan recognition task is to infer an actor’s plan and goal given

observations about its behavior. We submit that in some cases,

for plan recognition to be effective and complete, it must appeal

to a notion of epistemics to i) recognize epistemic goals, where

the actor is trying to achieve some state of knowledge or belief;

and ii) model the observer, and its knowledge of the actor, as first

class elements of the plan recognition process. To this end, we

formalize the notion of Epistemic Plan Recognition, which builds

on two growing areas of research: epistemic planning and plan

recognition. Our epistemic plan recognition specification appeals to

an epistemic logic framework to represent agent beliefs. To realize

our specification, we cast the epistemic plan recognition problem as

an epistemic planning problem, whose solutions can be generated

using existing epistemic planning tools. Finally, we evaluate our

approach by utilizing and comparing existing epistemic planners

on a diverse set of epistemic plan recognition problems.
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1 INTRODUCTION
Plan Recognition (PR) - the task of inferring the plan and goal of

an actor based on observations - can be seen as an exercise in the

observer’s Theory ofMind (i.e., an agent’s ability to attribute mental

states to itself and to others [40]). That is, in order to explain the

observed behavior of the actor, the observer attributes to the latter

various mental states - beliefs, plans, and goals. The recognition

process is thus inherently epistemic in that it is determined by the

beliefs of the observer about the beliefs, plans, and goals of the actor.
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We therefore take the view (espoused by Pollack [39] and others)

that plan recognition can necessitate representing and reasoning

about the potentially distinct beliefs of the observer and the actor,

and in particular that the observer may be required to assume the

perspective of the actor in order to effectively recognize what the

actor is doing. We further observe that the goals being pursued by

the actor may be ontic—related to changing the state of the world,

epistemic—related to changing its own (or another agent’s) state of

belief or knowledge, or perhaps both.

To advance this view of plan recognition, we introduce and

formalize the notion of Epistemic Plan Recognition (EPR) inwhichwe

explicitly represent and reason about agents’ (nested) beliefs about

the world, and the effects of actions on the world and on the beliefs

of other agents. To realize EPR, we appeal to the burgeoning field

of Epistemic Planning which exploits state-of-the-art AI planning

techniques to generate plans to achieve epistemic goals (e.g., [5, 11,

18, 21, 24, 33, 38]). By appealing to epistemic logic we are able to:

(1) model the observer and its knowledge of the actor’s beliefs and

capabilities as first class elements of the plan recognition process,

and (2) recognize plans with epistemic as well as ontic goals, or

their combination. Modelling the observer is important as it enables

reasoning about its own, and the actor’s, beliefs, ignorance, and

misconceptions relating to its environment and to the beliefs and

capabilities of other agents.

Plan recognition, as a field of research, has a long history and was

originally seen as an intersection of psychology and AI [44]. Early

accounts of PR largely utilized (possibly hierarchical) plan libraries

in order to best match a sequence of observations to a particular

plan (e.g., [19]). More recent work in the field has dispensed with

the need for a plan library by casting the PR problem as a planning

problem and leveraging advances in AI planning research (e.g.,

[42, 47]). However, most previous work did not appeal to a notion

of epistemics to allow for the recognition of epistemic goals and

to explicitly model the observer. While Talamadupula et al. [49]

model aspects of agent beliefs in their work, they do not address

the recognition of epistemic goals nor do they utilize epistemic

planning tools. PR has also been studied within the vast body of

work on Belief-Desire-Intention (BDI) agents and architectures,

where agent beliefs are explicitly modelled (e.g., [46]). However,

BDI approaches have typically required agent plans to be specified

in advance. Pre-defined libraries are especially prohibitive when



agents havemisconceptions and generate invalid plans [39]. Instead,

enabled by the advent of epistemic planning research, we appeal

to the flexibility of generative epistemic planning techniques to

generate plans.

The main contributions of this paper are: (1) a formalization of

EPR which adds an important dimension to the recognition process

by appealing to a notion of epistemics to allow for the recognition

of epistemic goals and to model the observer and its knowledge

of the actor as first class elements of the recognition process; (2) a

planner-independent computational realization of EPR as epistemic

planning that synthesizes formalism and computational techniques

from both epistemic planning and PR and enables the use of existing

planning tools; and (3) an evaluation of our approach on a set of EPR

problems from a diversity of domains which offers a comparison

between 3 state-of-the-art epistemic planners.

2 PRELIMINARIES
In this section, we provide epistemic logic background, define the

Multi-agent Epistemic Planning (MEP) problem, and describe some

of the approaches to modelling it.

KD45n . We first present the multi-agent modal logic KD45n
[13] which we appeal to in our specification of EPR. Let Aд and P

be finite sets of agents and atoms, respectively. We use ϕ andψ to

represent formulae and ⊤ and ⊥ to represent true and false, respec-

tively. The language L of multi-agent modal logic is generated by

the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ ′ | Biϕ

where p ∈ P, i ∈ Aд, ϕ,ψ ∈ L and Biϕ should be interpreted as

“agent i believes ϕ.” We choose to represent the belief (rather than

knowledge) modality here so that we can model the false beliefs of

agents. The semantics for formulae in L is given by Kripke models

[13] which are triplets,M = ⟨W ,R,V ⟩, containing a set of worlds,
accessibility relations between the worlds for each of the agents (R
= {Ri | i ∈ Aд}), and a valuation map,V :W → 2

P
. When an agent

i is at worldw ∈W ,M determines, given the accessibility relations

in Ri pertaining tow , what worlds the agent considers possible. A

formula ϕ is true in a world w of a Kripke model M = ⟨W ,R,V ⟩,
writtenM,w |= ϕ, under these, inductively-defined conditions:

• M,w |= p for an atom p, iff p ∈ V (w),
• M,w |= ¬ϕ, iff M,w ̸ |= ϕ,
• M,w |= ϕ ∧ψ , iff bothM,w |= ϕ andM,w |= ψ ,
• M,w |= Biϕ, iff M,w ′ |= ϕ ∀w ′ ∈W s.t. Ri (w,w

′)

We say that ϕ is satisfiable if there is a Kripke model M and

a world w of M s.t. M,w |= ϕ. Further, we say that ϕ entails

ψ , written ϕ |= ψ , if for any Kripke model M , M,w |= ϕ en-

tails M,w |= ψ . Next, we assume some constraints on the Kripke

model, with particular properties of belief, as discussed in Fagin

et al. [13]. Namely, we assume that the Kripke model is serial

(∀w ∃v R(w ,v)), transitive (R(w ,v) ∧ R(v ,u) ⇒ R(w ,u)) and Eu-

clidean (R(w ,v) ∧ R(w ,u) ⇒ R(v ,u)), with the resulting prop-

erties of belief: i. Biϕ ∧ Bi (ϕ ⇒ ψ ) ⇒ Biψ (K - Distribution); ii.

Biϕ ⇒ ¬Bi¬ϕ (D - Consistency); iii. Biϕ ⇒ BiBiϕ (4 - Positive

Introspection); and iv. ¬Biϕ ⇒ Bi¬Biϕ (5 - Negative Introspection).

These axioms, together, form the KD45n system where n signifies

multiple agents in the environment.

Epistemic Planning. We appeal to epistemic planning both to

specify and to realize EPR. As discussed by Bolander [4], approaches

to epistemic planning can be characterized as either syntactic (e.g.,

[18, 33]) or semantic (e.g., [5, 24]). The syntactic approach represents

states as knowledge bases which are sets of logical formulae, while

the semantic approach represents states as semantical objects, and

manipulates them directly. To simplify the exposition, we choose

to focus here on a syntactic approach and, consequently, the initial

knowledge base (KB) is an arbitrary epistemic logic formula, rather

than a Dynamic Epistemic Logic (DEL) epistemic state (e.g., [5]).

We appeal to a multi-agent setting in order to represent the beliefs

of the observer, the actor, and possibly of other agents as well.

Definition 2.1 (MEP Problem). A Multi-agent Epistemic Plan-
ning problem is a tuple ⟨Q,I,G⟩ whereQ = ⟨P,A,D,Aд⟩ is the
MEP domain comprising sets of atoms P, actions A, action de-

scriptions D, and agents Aд, together with the problem instance

description comprising the initial KB, I ∈ L, and the goal condition

G ∈ L, where L is the language of multi-agent modal logic.

Following Huang et al. [18] and Muise et al. [33], and since we

are interested in a PR setting, we model the MEP problem from

the perspective of an observer, Obs ∈ Aд. I and D therefore repre-

sent the observer’s beliefs about the world and the actions in A,

including its beliefs about other agents’ (in Aд) beliefs about the
world and the actions. For simplicity, all formulae are assumed to

be implicitly prefixed by BObs. D is a set of size |Aд | × |A| where
each element in D is an action description corresponding to an

action a ∈ A and an agent i ∈ Aд. An action description for ac-

tion a ∈ A is a tuple ⟨Pre, {(γ1, ϵ1), ..., (γk , ϵk )}⟩, where Pre ∈ L is

called the precondition of a, γi ∈ L is the condition of a conditional

effect, and ϵi ∈ L is called the effect of a conditional effect. For

example, the conditional effect (q,Bip) for action a (corresponding

to Obs ∈ Aд) denotes that the observer believes that agent i will
believe p following the execution of action a, provided the observer
believed q at the time a was executed. A is shared by all agents.

To change an agent’s beliefs about the state of the world follow-

ing the execution of an action, we appeal to a progression operator

proдi (ϕ,a) which progresses ϕ ∈ L wrt an action a ∈ A in the

context of agent i ∈ Aд. That is, ϕ is progressed wrt the action

description corresponding to a and i in D. We define the progres-

sion of a formula in the context of a particular agent, i , in order

to be able to capture the change in agent i’s beliefs following the
execution of an action. This is important because agents can differ

in how they conceive the effects and preconditions of actions and,

as with MEP, we want our EPR system to be able to assume the

perspective of different agents. For example, while the observer

may believe that some action a has the effect p, it may also believe

that agent i believes that a’s effect is q. The progression operator

is assumed to be sound and complete wrt to the chosen fragment

of the logic and may be realized in various ways in the context of

epistemic planning. For instance, Muise et al.’s epistemic planner

RP-MEP [33] builds on Proper Epistemic Knowledge Bases (PEKBs)

(Lakemeyer and Lespérance [23] building on Liu et al. [27] and

Levesque [25]) with follow up work by Muise et al. [32]. Miller

and Muise [31] define a belief update mechanism for PEKBs that

they have used as the basis of a progression operator over PEKBs.

Progression has also been defined by Huang et al. [18].



We use the shorthand proдi (ϕ, [a1, ...,an ]) or proдi (ϕ, π ) to de-
note the progression of ϕ wrt a sequence of actions π = a1, ...,an
in the context of agent i . A plan π achieves a goal G wrt agent i ∈
Aд iff proдi (Ii , π ) |= G . Ii ∈ L is the observer’s beliefs about agent

i’s initial beliefs. A solution to an MEP problem is a sequence of

actions π such that π achievesG wrt the observer. Here we assume

that the cost of π equals the number of actions in the sequence.

3 EPISTEMIC PLAN RECOGNITION
The task of plan recognition is to infer a plan and goal that account

for the observed behavior of an actor. As argued in Section 1, a

general account of plan recognition should provide a means of

modelling the beliefs of the observer. To this end, in defining the

EPR problem we include the observer (Obs ∈ Aд) and the actor

(Act ∈ Aд) in the set of agents, Aд. The goals are drawn from a

set of possible goals, G, the actor may be pursuing. Finally, the

observed behavior comprises both actions and properties of the

state of the system. In particular, a sequence of observations is a

sequence of tuples (α1,ϕ1), . . . ,(αm,ϕm ). Each αi corresponds to
the observation of an action,a ∈ A, and eachϕi ∈ P corresponds to

the observation of some properties of state immediately following

the execution of αi . ϕi is a conjunction of literals drawn from

P. For example, the observation (leave(John, room), empty(room))

signifies that the observer had observed that the room is empty after

observing John leaving the room. In cases where only properties

are observed, αi is empty. In cases where an action is observed but

no state properties, ϕi is ⊤, i.e., true.

Definition 3.1 (EPR Problem). An Epistemic Plan Recognition
problem is a tuple ⟨P,A,D,Aд,I,G,O⟩, where ⟨P,A,D,Aд⟩ is
an MEP domain, I ∈ L is the initial KB, G is a set of possible goals

G ∈ L, and O = o1, ...,om , is a sequence of observations. Each

observation oi is a pair (αi ,ϕi ) comprising zero or one observed

actions, αi ∈ A, together with ϕi , a conjunction of literals drawn

from P, or ⊤.

Given an EPR problem, ⟨P,A,D,Aд,I,G,O⟩, a sequence of ac-
tionsπ =a1, . . . ,an satisfies observationsO = (α1,ϕ1),. . . ,(αm,ϕm )
if there is a monotonic function f mapping the observation indices j
= 1, ...,m into action indices i = 1, ...,n such that af (j) = α j (trivially
satisfied when α j is empty), and proд

Obs
(I, [a1, . . . ,af (j)]) |= ϕ j

for j = 1, . . . ,m. Note that O is satisfied from the observer’s per-

spective.

Definition 3.2 (EPR Solution). Given an EPR problem, ⟨P,A,D,Aд,
I,G,O⟩, a solution is a pair (π , G), where G ∈ G is a goal and π
is a sequence of actions – a plan – that satisfies O .

We later define possible relationships between the plan compo-

nent π and the goal component G (which is unconstrained in Defi-

nition 3.2), characterized by the observer’s beliefs about whether or

not π achieves G from the perspectives of the actor and observer.

Example. Consider a scenario where Alice (denoted as Act ∈

Aд) has the goal of bringing a cake to her friend Eve’s party and

an observer (Obs ∈ Aд) is trying to infer her plan and goal. Alice

is observed going to the store, buying a cake, and taking it to the

party. We partially model this scenario as an EPR problem:

Aд = {Obs,Act}

I |= at(Act, Home)∧BActat(Act, Home)∧BAct¬at(Cake,Party)

O = (takeBus(Act,Home,Store), at(Act,Store)), (buy(Act,Cake),

have(Act,Cake)), (take(Act,Bag,Party), ⊤)

{at(Cake,Home), at(Cake,Work), at(Cake,Party)} ⊆ G

I entails many things and we only list a small portion of those.

A possible solution to this EPR problem is the pair (π ,G) where the
presumed plan π consists of the actions inO and the presumed goal

G is at(Cake,Party). While the plan π in this case achieves the goal

G both wrt the observer and wrt the actor, Pollack [39] identified

that “inferring another agent’s plan means figuring out what actions

she ‘has in mind,’ and she may well be wrong about the effects of those

intended actions”. We therefore distinguish between the actor’s

presumed plan π and the underlying intent of the plan, i.e., the

presumed goal G. When the actor is wrong about the outcomes of

her plan, such a plan may be ill-formed [39].

Definition 3.3. Given an EPR problem ⟨P,A,D,Aд,I,G,O⟩, we
say that a plan π is ill-formed wrt a goal G ∈ L iff π achieves G
wrt the actor but does not achieve G wrt the observer.

Example. Now consider that the observer knows that the

party’s address is Address1 and further knows that Alice falsely

believes that the address is Address2 (i.e., I |= loc(Party,Address1)

∧ BActloc(Party,Address2)). Alice’s presumed plan, π , is now ill-

formed since following its execution Alice will believe that she is at

the party (i.e.,BActat(Act,Party)) since she believes loc(Party,Addres
s2) while the observer will believe ¬at(Act,Party) following π ’s ex-
ecution since it believes loc(Party,Address1). While we focus in this

paper on the recognition task, an assistive observer can reason that

Alice’s plan is ill-formed as soon as she is observed to be heading

towards Address2 rather than Address1 and can help her ‘correct

course’. Pollack also discusses the notion of incoherent queries
1

and we extend the discussion to plans.

Definition 3.4. Given an EPR problem ⟨P,A,D,Aд,I,G,O⟩, we
say that a plan π is incoherent wrt a goal G ∈ L iff π does not

achieve the goal G both wrt the actor and wrt the observer.

An incoherent plan does not ‘make sense’ to the observer since it

fails to achieve the presumed goal even from the actor’s presumed

perspective. For instance, a plan consisting of Alice disposing of

the cake after buying it would likely be incoherent to the observer

wrt at(Cake,Party).

Example. Now consider that Alice wants to surprise Eve and

so does not want her to know that she has brought cake to the

party. We include Eve as an agent inAд so that our representational
framework can represent such goals in G (i.e., ¬BEveat(Cake,Party)
∧ at(Cake,Party)) and augment G appropriately. Alice initially be-

lieves that Eve is at the party (i.e., I |= BActat(Eve,Party)) and
is observed to hide the cake in a dark bag after buying it, such

that following the hide action, Alice’s beliefs include hidden(Cake)

∧ ¬hidden(Bag) ∧ ¬hidden(Act). Next, following the execution

of take(Act,Bag,Party), Alice’s beliefs include at(Cake,Party) ∧

at(Act,Party) ∧ at(Bag,Party) and since the bag and Alice are not

1
In Pollack’s work, the observer’s task is to infer the actor’s (possibly invalid) plan,

underlying the latter’s dialogue queries.



hidden, Alice believes that every agent at the party now believes

at(Act,Party) ∧ at(Bag,Party). However, Alice does not believe the

agents at the party have changed their beliefs about at(Cake,Party)

since she believes hidden(Cake). Since Alice believes that Eve is at

the party (and that Eve initially does not believe at(Cake,Party)), she

also believes ¬BEveat(Cake,Party) following the execution of her

plan. Importantly, to recognize Alice’s epistemic goal an observer

must reason not only about Alice’s beliefs about the world, but also

about her nested beliefs pertaining to Eve’s beliefs.

Adequacy. EPR, like any PR system, is limited by the veracity

and completeness of the observer’s knowledge and beliefs—the set

of possible goals, the sequence of observations, and, importantly,

the veracity and completeness of the observer’s beliefs about the

environment and the actor’s beliefs. EPR is also limited by how

discriminable the goals and plans under consideration are in the

context of the observations and the model. An imperfect observer

lacking complete observations may wrongly infer a plan or goal

or fail to discriminate between a number of possible hypotheses.

In particular, the quality of PR can suffer if observations are noisy

(e.g., as a result of a faulty sensor) or missing altogether as observed

and addressed by Sohrabi et al. [47]. Finally, the observer’s beliefs

about the actor’s beliefs must be sufficiently complete and accurate

for the observer to robustly infer the actor’s plan and goal. We

elaborate on this point in the rest of this section.

Recall that an EPR problem is cast from the perspective of the

observer. Let I∗
Act

andD∗
Act

denote the actor’s actual beliefs about

the world and the set of action descriptions (as opposed to the

observer’s beliefs about the actor’s beliefs), respectively. We say

that a plan π achieves a goal G wrt the actor’s actual beliefs if π is

progressed in the context of I∗
Act

and D∗
Act

.

Definition 3.5 (Adequacy). Given an EPR problem R = ⟨P,A,D,
Aд,I,G,O⟩ and the actor’s actual beliefs Z = (I∗

Act
,D∗

Act
), we say

that I andD are adequate wrt (R,Z ) iff for every goalG ∈ G and

plan π that satisfies O , π achieves BActG wrt the observer iff π
achieves G wrt the actor’s actual beliefs.

If the observer’s beliefs about the actor’s beliefs are adequate,

then the observer can generate (wrt the actor) precisely all plans that

satisfy O and achieve some G ∈ G, which the actor can generate.

In our example, if the observer’s beliefs about the actor’s beliefs

are not adequate and it falsely believes BActloc(Party,Address1),
then the actor’s presumed plan (heading to Address2) might be

incoherent to the observer wrt the goal at(Cake,Party).

Proposition 3.6. Given an EPR problem R = ⟨P,A,D,Aд,I,G,
O⟩ and the actor’s actual beliefs Z = (I∗

Act
,D∗

Act
), let π be a plan

(executable in I∗
Act

) that satisfies O and achieves G wrt the actor’s

actual beliefs for some G ∈ G. If I and D are adequate wrt (R, Z )
then π is not incoherent wrt G.

Proof sketch: suppose that the actor is following a plan π that is

incoherent from the observer’s perspective wrt goal G. It follows
from the fact that I and D are adequate wrt (R, Z ) and from the

fact that π achieves G wrt the actor’s actual beliefs, that π also

achieves BActG wrt the observer. This is in contradiction with the

assumption that π is incoherent from the observer’s perspective.

That is, since I and D can generate any plan π the actor can

generate, any such plan will ‘make sense’ to the observer. It is there-

fore beneficial for the observer to strive to improve the adequacy

of its beliefs about the actor’s beliefs to better distinguish between

ill-formed and incoherent plans. Indeed, an assistive observer will

handle the two types of plans differently - assist the actor in achiev-

ing the goal if π is ill-formed (e.g., the observer helping Alice find

the correct address) or strive to refine I and D (e.g., by querying

the actor) if π is incoherent.

Inadequacy may be addressed in a myriad of ways, including

the modulation of the observer’s confidence in its predictions in

the face of perceived irrationality (i.e., deviation from expected

optimality) [29]. Masters and Sardina [29] identified that deviation

from expected optimality may stem from a number of possible rea-

sons including a deceptive actor and the observer’s misconceptions

regarding the actor’s beliefs. Inadequacy of I and D falls under

the latter case where, while the actor may indeed be irrational,

the observed irrationality may be due to the inadequacy of the ob-

server’s beliefs about the actor’s beliefs. While in our computation

and experimentation we assume an omniscient observer (who thus

has adequate beliefs about the actor’s beliefs), future work can em-

ploy Masters and Sardina’s rationality measure (that quantifies the

agent’s deviation from the observer’s expectation of optimality) to

allow the observer to self-modulate its confidence in its predictions.

In addition to self-modulating its confidence, the observer may

strive to improve the adequacy of I, D, and the observations at

its avail. To this end, the observer could, for instance, query the

actor or sense the world in order to gain additional information,

as is done in recent work on active goal recognition [45]. Further,

Pollack discusses inference techniques by which an observer can

infer an actor’s beliefs (and plans) given dialogue utterances formed

by the latter [39]. The observer may also refine its beliefs about

the actor’s beliefs by employing machine learning techniques (e.g.,

[26, 37]). Finally, WhenD is inadequate, the oberver may hold false

beliefs about the actor’s beliefs about the effects or preconditions of

actions; Pereira et al. [36] explore goal recognition in such settings.

4 COMPUTATION
Recall that a solution to an EPR problem is a pair (π , G) where π
is a plan that satisfies the sequence of observations O and G ∈ G
is a goal. A number of different criteria have been proposed in the

past to select a plan and goal that ‘best’ align with O , including
the simplicity of the plan and the likelihood of a goal given the

observations. Our general specification supports a diversity of cri-

teria and computational realizations and here we propose one such

realization of EPR as epistemic planning by appealing to the plan

recognition as planning paradigm, proposed by Ramírez and Geffner

[41]. Ramírez and Geffner transform the plan recognition problem

into a planning problem, allowing for the use of off-the-shelf plan-

ning tools to solve the recognition problem. In what follows, we

describe a transformation of EPR to epistemic planning; a way by

which to compute a probability distribution over the set of possible

goals given the transformed planning problem; and an algorithm

that uses these techniques to compute a solution to an EPR problem.



4.1 Transformation to Epistemic Planning
Our transformation is inspired by the transformations proposed by

Ramírez and Geffner [42] and by Sohrabi et al. [47] who later mod-

ified Ramírez and Geffner’s approach. While Ramírez and Geffner

cast the classical PR problem as a classical planning problem, we

realize a computational solution to the EPR problem by appealing

to epistemic planning and utilizing epistemic planners.

Intuitively, Ramírez and Geffner’s approach compiles the obser-

vations inO into the planning domain, thereby forcing all generated

plans that solve the transformed planning problem to satisfy O . In

the EPR setting, we define a correspondence between a given EPR

problem and an MEP problem by augmenting D with explain ac-

tions that allow the planner to explain the observations. Further, P

is augmented with special predicates pi , lαi , and pαi for each obser-

vation oi that are made true when oi is explained. These predicates
ensure that the order of the observation sequenceO is respected by

all plans that solve the transformed MEP problem. P is also aug-

mented with pinit which is set to be true initially. Formally, given

an EPR problem ⟨P,A,D,Aд,I,G,O⟩ and some goal G ∈ G, we
create an MEP problem ⟨⟨P ′,D ′,Aд⟩,I ′,G ′⟩ such that:

• P ′ = P ∪ {pi | (αi ,ϕi ) ∈ O} ∪ {lαi | (αi ,ϕi ) ∈ O} ∪ {pinit }
• D ′ = D ∪Dexplain
– Dexplain = {⟨lαi ∧ pi−1, {(⊤,pαi )}⟩ | (αi ,ϕi ) ∈ O} ∪
{⟨ϕi ∧ pαi , {(⊤,pi )}⟩ | (αi ,ϕi ) ∈ O}

• I ′ = I ∧ pinit
• G ′ = BActG ∧ pm , where om is the last observation in O

We add (⊤, lαi ) and pi−1 to the conditional effects and precondi-

tion, respectively, of every action description inD that corresponds

to an action that appears in an observation (αi ,ϕi ) ∈ O (where αi
is not empty). For every observation oi , we augment D with two

explain actions to ensure that αi is accounted for before ϕi is ex-
plained. We do this since ϕi is assumed to be observed immediately

following the execution of αi . If αi is empty, the preconditions of

the corresponding explain action will be pi−1 rather than lαi ∧pi−1.
Similarly, if ϕi = ⊤ then the preconditions of the corresponding ex-

plain action will be pαi rather than ϕi ∧pαi . The precondition of the
explain action in Dexplain corresponding to the first observation

in O is set to be pinit .
The order in which the observations are explained is enforced by

the preconditionpi−1 which only allows an observation (αi ,ϕi ) ∈ O
to be explained after all the observations inO which precede it have

been explained. Further, the transformation ensures that if G ′ is
achieved then G is achieved wrt the actor and may (but need not)

be achieved from the observer’s perspective. Therefore, a plan that

achieves G ′ may be ill-formed.

We use ⟨Q ′,I ′,G ′⟩ as shorthand for ⟨⟨P ′,D ′,Aд⟩,I ′,G ′⟩. With

the described correspondence, solutions to the transformed MEP

problem, ⟨Q ′,I ′,G ′⟩, capture precisely the solutions to the corre-

sponding MEP problem within the EPR problem that satisfy O , as
stated by the following theorem.

Theorem 4.1. Given an EPR problem, ⟨P,A,D,Aд,I,G,O⟩, some

goalG ∈ G and the corresponding transformedMEP problem, ⟨Q ′,I ′,
G ′⟩, we have that:
(1) If π is a sequence of actions that satisfiesO and solves ⟨⟨P,A,D,

Aд⟩, I,BActG⟩ then there exists a sequence of actions π ′ that solves

⟨Q ′,I ′,G ′⟩ such that π can be reconstructed straightforwardly from

π ′ by removing the explain actions from π ′.
(2) If π ′ is a sequence of actions that solves ⟨Q ′,I ′,G ′⟩ then there

exists a sequence of actions π that solves ⟨⟨P,A,D,Aд⟩, I,BActG⟩
and satisfies O such that π can be reconstructed straightforwardly

from π ′ by removing the explain actions from π ′.

Proof sketch: Recall that the explain actions inDexplain , together

with the special predicates, ensure that the observations are ex-

plained in the correct order. Plans that solve the transformed MEP

problem therefore satisfy the sequence of observations O . Further,
the explain actions do not change the state of the world or the

epistemic state of any agent. Thus, when removing the explain

actions from a plan π that solves the transformed MEP problem, π
solves ⟨Q ′,I ′,BActG⟩ (but no longer solves ⟨Q ′,I ′,G ′⟩) and also

solves ⟨⟨P,A,D,Aд⟩, I,BActG⟩. This is because the only actions

left in π after removing the explain actions are drawn from D.

4.2 Computing P(G |O)
We build on the approach proposed by Ramírez and Geffner [42],

using epistemic planners instead of classical planners, and compute

the probability distribution over G, P(G |O), given the transformed

MEP problem. To compute the probability distribution, two plans

are generated for every goal G ∈ G - one that satisfies O (where

G ′ = BActG∧pm ) and one that does not (whereG ′ = BActG∧¬pm ).

We then define ∆ as the cost difference between the costs of these

two plans and use ∆ to compute the probability of a goal. Formally,

Bayes’ Rule is used to compute P(G |O) = αP(O |G)P(G) where α
is a normalization constant and P(G) is the prior probability of

G, which we assume in this work to be uniform across G. Finally,

assuming a Boltzmann distribution as in Ramírez and Geffner [42]:

P(O |G) ≈
e−β∆

1 + e−β∆
(1)

where β is a positive constant. Ramírez and Geffner assume a soft

rationality postulate according to which G is a better predictor of

O when ∆ is smaller. Note that the actor’s rationality is assumed

wrt the observer’s model of the former. When the observer is not

omniscient, its beliefs may not be adequate, and the quality of

inferences may consequently suffer (as is also the case when ∆ is

computed with sub-optimal planners).

4.3 Computing a Solution to an EPR Problem
Algorithm 1 describes how to obtain a solution to an EPR problem

by leveraging off-the-shelf epistemic planners. In Line 3, for each

goal G ∈ G, the function TransformEPRToMEP transforms an

EPR problem R and a goal G ∈ G to an MEP problem, as described

in Section 4.1. In Line 4, ComputeDelta runs a planner twice on

the transformed MEP problem - once withG ′ = BActG ∧ pm and

once with G ′ = BActG ∧ ¬pm . In Line 5, ComputeProbability

uses the cost difference between the plans, ∆, to compute a poste-

rior probability P(G |O) for G ∈ G, using Equation 1. In Line 7, we

select the goal Gm
with the highest posterior probability P(G |O)

(we randomly break ties between goals). In Line 8, the function

RetrieveAssociatedPlan retrieves the plan π (forced to satisfy

O) that was generated in Line 4 in order to compute ∆ for Gm
.



In both our computation and experimentation the observer is

assumed omniscient and disjunctive beliefs are precluded. Further,

for some action a ∈ A, all corresponding action descriptions in D

have the same precondition. Finally, the actor is assumed to only

pursue one goal G∗ ∈ G at a given time and we assume that a plan

π that achieves G∗ (wrt the actor) and satisfies O exists.

Algorithm 1
1: procedure SolveEPRProblem(⟨P, A, D, Aд, I, G,O ⟩) - Given an

EPR problem R=⟨P, A, D, Aд, I, G,O ⟩, return (π ,G), where G ∈
G is a goal and π is a plan that satisfiesO and achievesG wrt the actor.

2: for each G ∈ G do
3: ⟨Q ′, I′,G′⟩ ← TransformEPRToMEP(R,G)
4: ∆← ComputeDelta(⟨Q ′, I′,G′⟩)
5: P (G |O ) ← ComputeProbability(∆)
6: end for
7: Gm ← arg maxG∈G(P (G |O ))
8: π ← RetrieveAssociatedPlan(Gm )

9: return (π ,Gm )

10: end procedure

Algorithm 1 computes solutions from a subset of EPR solutions

where the plan component π has the added property of achieving

G wrt the actor, as stated by the following theorem.

Theorem 4.2. Given an EPR problem, ⟨P,A,D,Aд,I,G,O⟩, and
a sound and complete epistemic planning algorithm, Algorithm 1

returns a pair (π , G) where G ∈ G is a goal and π is a plan that

satisfies O and achieves the goal G wrt the actor, if such a solution

exists.

Proof sketch: In Line 9, Algorithm 1 returns (π ,Gm ). π solves the

transformed MEP problem corresponding to the given EPR problem

andGm
, and it follows from Theorem 4.1 that π satisfiesO . Further,

From the construction of the corresponding MEP problem it follows

that π achieves BActG
m

wrt the observer and Gm
wrt the actor.

Theorem 4.3. The runtime complexity of Algorithm 1 given an

EPR problem ⟨P,A,D,Aд,I,G,O⟩ is O(2 · |G| · C) = O(|G| · C)
where C is the runtime complexity of the chosen epistemic planner.

The proof follows straightforwardly from the fact that the run-

time complexity of Algorithm 1 is dominated by the two calls to

an epistemic planner in Line 4 for each goal G ∈ G. In contrast

to Ramírez and Geffner’s classical planning formalism, epistemic

planning has been shown to be significantly more computationally

expensive (e.g., [1]). Indeed, deciding whether a plan exists for an

MEP problem in its general form has been shown to be an undecid-

able problem [5]. There are, however, a number of decidable and

expressive fragments of epistemic planning (e.g., [9]). For example,

when all preconditions are propositional and actions change only

beliefs, the plan existence problem is in EXPSPACE [6]. In Section 6,

we discuss the complexity of the various epistemic planners used

in our experimentation to compute a solution for the transformed

MEP problem, as well as the implications of employing a particular

fragment of epistemic planning in the EPR setting.

5 EMPIRICAL EVALUATION
In this section, we present the results of our experimental evalua-

tion. In our evaluation, we set out to (1) demonstrate that existing

epistemic planners can straightforwardly be used to solve EPR

problems and recognize epistemic goals pursued by an actor (2)

compare the performance of existing epistemic planners in terms

of computation time and their ability to assign the highest probabil-

ity to the true goal the actor is pursuing and (3) demonstrate that

the quality of inferences suffers when the observer has inadequate

beliefs about the beliefs of the actor. While Algorithm 1 produces a

solution to an EPR problem comprising both a goalG and a plan π
that satisfies O , we focus here on the goal recognition task - infer-

ring the actor’s true goal G∗ ∈ G. To this end, we compute P(G |O)
in Line 5 of Algorithm 1 to determine the likelihood of goals in

G given the sequence of observations and evaluate whether G∗

was assigned the highest probability. We constructed and encoded

a diversity of domains and ran them using the latest version of 3

off-the-shelf planners - RP-MEP [33], MEPK [18], and Efp [24].

Epistemic Planning Benchmarks. In the Grapevine (GV(n,
m)) domain, n guests are in a villa with m rooms. Initially, each

guest has her own secret to share with other guests. In this modified

version, only one agent can freely move between the rooms and

share her secrets with the guests in the room she is currently in. The

goals involve some guests obtaining some (or no) secrets. Possible

epistemic goals include misconception (an agent holds a false belief

about someone else’s belief) and a universal spread of information.

In the Selective-Communication (SC(n,m)) domain, there aren agents
distributed amongstm rooms along a corridor, and one agent can

freely move between neighboring rooms. After an agent shares

information, all agents in the room and in neighboring rooms know

the information. The agent must first find out the information

before being able to share it with other agents. Possible epistemic

goals include agents knowing some or all of the information.

To create EPR problem instances, we populated a set of possible

epistemic goals, G, for each planning instance in the problem set,

where G comprised the hidden goal (the true goal pursued by the

actor) and 6 other possible goals (|G| = 7 for all problem instances).

We generated the observation sequence for each problem instance

by sampling hidden optimal plans for a hidden goal concatenated to

the MEP domain within the EPR problem.When sampling an action

from optimal plans, the corresponding observation comprises both

the action and the effects of the corresponding action description.

We included additional agents in Aд to enable the actor to reason

about their beliefs. We ran Algorithm 1 for each problem instance.

In Line 4, to compute the ∆ with RP-MEP, which encodes the MEP

problem as a classical planning problem, we call the Fast Down-

ward planner [16] with an admissible heuristic twice for each goal,

configuring the planner to only compute optimal plans. MEPK and

Efp are both optimal planners and we ran each planner twice for

each goal in each problem instance to find ∆. We ran all planners

on a 3.4GHz Intel Core i5 machine with 16 GB RAM since we were

not able to run Efp on our more powerful machine.

Table 1 summarizes the results for the GV and SC domains, of-

fering a comparison between the three different epistemic planners

we used. Each row in the table is an average over 10 EPR problem

instances, with a varying percentage of observations sampled from

the hidden optimal plan: 10%, 40%, 70%, and 100%. We also vary

d , the required depth of nested belief modalities in the problem

instance. The T column represents the average time it took to run

Algorithm 1 and solve the EPR problem instances. For example, it



took RP-MEP, on average, 3.87 seconds to solve theGV (2, 3) setting,
with 70% of sampled observations and d = 1. The Q column repre-

sents the quality of the solution, i.e., whether or not the hidden goal

was found to be most likely, and is computed using the probability

P(G |O) computed in Line 5 of Algorithm 1. For example, Q = 0.89

signifies that in 89% of problem instances, the hidden goal was

amongst the goals found to be most likely. The variances ranged

0-1.37 and 2.12-3.91 for the Q and T values (for a particular row

and planner), respectively. Timeout was 30 minutes. We could not

run Efp on GV (4, 5) problems due to modelling difficulties.

Satisficing Epistemic Planners. To compare with the opti-

mal epistemic planners, we ran all GV and SC experiments with

RP-MEP, coupled with a satisficing configuration of Fast Down-

ward [16].We also experimentedwith PG-Efp, a satisficing heuristic

search planner that employs a heuristic derived from an epistemic

planning graph [24]. In the case of RP-MEP, the satisficing planner

was, on average, much faster than the optimal planner we used.

However, the accuracy (Q) decreased significantly (particularly

with incomplete observations) since the satisficing planner often

generated highly suboptimal plans. In turn, the quality of inferences

suffered as ∆ was computed with low-quality plans, which differed

greatly from the optimal ground truth. The results are reported in

Table 1 (RP-MEP (S) column). As for PG-Efp, we observed a reduc-

tion in computation time in some cases (as reported by Le et al.

[24]). Interestingly, the accuracy did not suffer greatly as the plan-

ner typically found optimal plans. Ramírez and Geffner [42] have

shown that satisficing classical planners can be successfully used

in PR to greatly reduce computation time, without significantly

hurting accuracy. Thus, the EPR as epistemic planning approach

will benefit from future research on satisficing epistemic planners.

With respect to our first and second objectives, the results

present a comparison between existing epistemic planners and

demonstrate that these planners can indeed be used to solve EPR

problems and successfully recognize an actor’s epistemic goals.

Note that the performance, in seconds, of the three planners wrt

d is consistent with Le et al.’s results. For instance, when d = 3

Efp’s performance is not affected whereas RP-MEP slows down

considerably. We will discuss some limitations of our approach and

existing epistemic planners in the next section.

In Need of Assistance. The following scenario is inspired by

Talamadupula et al.’s work, set in an urban search & rescue setting

[49]. In our scenario, Eve (Act) is in need of assistance from either

Alice or Bob (Obs). The three agents are each initially located in

a different cell on a grid. Since Alice moved to a different location

unbeknownst to Eve, the latter holds a false belief pertaining to

Alice’s location. Bob knows that Alice moved and also believes that

Eve is not aware of the move. Next, Eve is observed to be heading

from her initial location to some location which is on the way to

where she believes Alice is. We modelled this scenario as an EPR

problem and performed a set of simulations by varying the param-

eters of this problem (e.g., grid size and agent locations), resulting

in 20 problems. G contains all cells on the grid. The observations

were sampled from Eve’s hidden plan which consists of her making

her way to where she falsely believes Alice is (and thus Alice’s

incorrect location is Eve’s hidden goal). We run this scenario once

with Bob the observer holding adequate beliefs about Eve’s beliefs

and once with Bob holding inadequate beliefs (by modifying I such

Table 1: Comparison between three optimal epistemic plan-
ners in the Grapevine (GV) and Selective-Communication
(SC) domains. Results in the RP-MEP (S) column generated
using a satisficing planner. Each row describes averages over
ten EPR problems, where the columns stand for % of actions
sampled (%O), required depth of nested belief (d), avg time
in seconds to solve problem instance (T ), avg quality mea-
suring fraction of problems where hidden goal is among the
most likely (Q). L is the avg optimal plan length for the hid-
den goal. TO andn/a signify a timeout and inability tomodel
the problem, respectively. |G| = 7 in all problems.

RP-MEP MEPK Efp RP-MEP (S)

%O d T Q T Q T Q T Q

G
V
(2
,
3
)
|L
=
4

10 1 1.72 1 0.12 1 1.49 1 0.84 0.37

40 1 2.92 1 0.13 1 11.91 1 1.04 0.42

70 1 3.87 1 0.14 1 37.82 1 1.57 0.63

100 1 4.76 1 0.22 1 58.12 1 1.82 0.85

10 3 549.24 1 0.31 1 1.49 1 60.42 0.34

40 3 572.87 1 0.39 1 11.91 1 102.43 0.48

70 3 591.43 1 0.41 1 37.82 1 96.49 0.69

100 3 601.76 1 0.46 1 58.12 1 170.42 0.88

G
V
(4
,
5
)
|L
=
1
1

10 1 576.23 0.89 25.76 0.89 n/a n/a 168.42 0.33

40 1 584.86 1 54.43 1 n/a n/a 152.89 0.39

70 1 590.21 1 85.35 1 n/a n/a 172.44 0.54

100 1 598.19 1 TO TO n/a n/a 162.91 0.71

10 3 739.89 0.89 26.89 0.89 n/a n/a 250.37 0.32

40 3 753.91 1 57.12 1 n/a n/a 248.11 0.45

70 3 772.83 1 88.18 1 n/a n/a 302.78 0.58

100 3 801.79 1 TO TO n/a n/a 296.54 0.74

SC
(8
,
4
)
|L
=
7

10 1 67.12 0.85 0.36 0.85 324.89 0.85 5.42 0.33

40 1 75.98 1 0.48 1 395.21 1 2.21 0.41

70 1 77.63 1 0.61 1 457.21 1 1.94 0.64

100 1 79.31 1 0.71 1 503.36 1 3.05 0.78

10 3 912.54 0.85 9.54 0.85 324.89 0.85 256.24 0.35

40 3 925.08 1 14.21 1 395.21 1 225.41 0.39

70 3 949.21 1 18.48 1 457.21 1 249.28 0.65

100 3 964.76 1 24.01 1 503.36 1 297.53 0.86

that Bob believes that Eve knows Alice’s true location, when in

fact she does not). For each problem instance and each Bob, we ran

Algorithm 1 with RP-MEP to compute P(G |O) over G. As shown in

Table 2, ‘adequate’ Bob was able to assign the highest probability

to Eve’s true goal (getting to where she believes Alice is) in most

cases, compared to ‘inadequate’ Bob, who performed poorly.

With respect to our third objective, the results demonstrate

that when Bob’s beliefs about Eve’s beliefs are inadequate, the

quality of inferences indeed suffers. Further, suppose Bob is trying

to infer whether Eve is looking for him or for Alice. ‘Inadequate’

Bob would infer that given the observations it is more likely that

Alice is heading towards his location (one of the goals in G) than

towards Alice’s actual location which is in the opposite direction of

Eve’s trajectory and is thus assigned a lower probability. However,

‘adequate’ Bob’s beliefs about Eve’s beliefs allow him to reason that

the observations put Eve on the optimal path to where she believes

Alice is located. Thus, Bob can reason that Eve is looking for Alice

and that her presumed plan is ill-formed wrt this goal. Finally, we

note that, more generally, an ‘inadequate’ observer can do much

better or worse than ‘inadequate’ Bob, depending on the relevance

of what they (do not) know.



Table 2: Comparison of an observer with adequate beliefs
about Eve’s beliefs and one with inadequate beliefs, on 20
EPR ‘In Need of Assistance’ problems. The values represent
the percentage of problems in which Eve’s true goal was as-
signed the highest probability given the observations, rela-
tive to the percentage of total observations (%O).

Observer Type

%O
10 30

Observer w/ Inadequate Beliefs 10 15

Observer w/ Adequate Beliefs 90 100

6 DISCUSSION AND SUMMARY
In this work, we have introduced the notion of EPR, which appeals

to a rich epistemic logic framework to model the observer in the

PR setting, represent agent beliefs, and allow for the recognition of

epistemic goals. We proposed a computational realization of EPR as

epistemic planning that enables the use of existing planning tools.

Finally, we performed an experimental evaluation of our approach

on a set of EPR problems by utilizing existing epistemic planners.

There is a diverse body of research related to the ideas we

have presented. PR research has mostly utilized (possibly hier-

archical) plan libraries to best match a sequence of observations

(e.g., [2, 15, 19]). Recent work, however, has aligned itself with the

bottom-up approach to PR which views it as the reverse process

of planning and leveraged advances in AI planning research by

casting the PR problem as a planning problem (e.g., [42]). However,

none of these works explicitly model the observer’s mental state

nor do they address epistemic goals. Work on BDI has also explored

the PR problem (e.g., [10, 39, 46]) with a variety of applications,

including air-combat modelling [43]. The limitation of these ap-

proaches, however, is that they require a specification of agent plans

in advance. Further, these approaches did not appeal to planning

techniques to generate plans. The work most related to ours is that

of Talamadupula et al. which combines belief modelling with PR

[49]. However, their work does not appeal to an epistemic logic,

nor does it address the recognition of epistemic goals.

While the results of our experimentation are promising, they do

not come without limitations. As discussed, the runtime complexity

of Algorithm 1 is dominated by the two calls to the chosen epis-

temic planner. Huang et al.’s planner uses a satisfiability solving

algorithm which has an exponential time complexity. In Le et al.’s

planner, the size of the state grows exponentially. The encoding pro-

cess in Muise et al.’s planner generates an exponential number of

fluents when classically encoding the problem. Our approach calls

an epistemic planner twice for each goal and will therefore benefit

from advances in epistemic planning including faster computation

and satisficing planners. Lastly, we wish to explore other epistemic

planning paradigms that were not included in our experiments (e.g.,

Engesser et al. [11]; Hu et al. [17]; Fabiano [12]). Relatedly, a setting

similar to epistemic planning is that of collaborative multi-agent

planning under uncertainty with partial observability, which is typi-

cally modelled with Dec-POMDPs and [3] Qualitative Dec-POMDPs

[7]. Synergies between the two paradigms will be explored.

As mentioned in the discussion of adequacy in Section 3, PR sys-

tems are limited by the veracity and completeness of the observer’s

beliefs. Even if the observer’s beliefs about the actor’s beliefs are ad-

equate, the planner used may not be sound and complete, in which

case it may not generate all plans the actor can generate. Indeed,

a challenge of epistemic, conformant and contingent planning, is

the issue of belief space representation to make planning compu-

tationally feasible, often at the expense of planner completeness

and applicability. For example, conformant and contingent planners

often appeal to belief state approximations such as 0-approximation

[48] and related work (e.g., [34]). In epistemic planning, syntactic

restrictions or approximations (e.g., PEKBs) may restrict applica-

bility or limit completeness of planners and are traded off against

scalability. For instance, if the depth of nested belief is restricted

to 2, formulae such as B JohnBAliceϕ may appear in the KB but

B JohnBAliceBBobϕ may not, which may prevent the observer from

inferring the actor’s plan or goal. Another such syntactic restriction

is the exclusion of disjunctive belief, as is done in our computa-

tion and experiments and in PEKBs more generally. Additionally,

Miller et al. [30] have shown that representing that an agent knows

whether ϕ (a restricted form of disjunction) can facilitate inference

about that agent’s plans. It is therefore important, in the EPR setting,

to consider the trade-off between computational feasibility and the

expressivity of the chosen fragment of logic. Finally, future work

will relax the assumption of observer omniscience and address the

interesting computational challenges that arise in such settings.

Online Recognition and Runtime Optimization. In our

experimentation, we focus on a setting where recognition is done

post-hoc. Future work will explore computational approaches that

are better geared towards an online recognition setting, where

the observer is attempting to recognize a plan that is in-progress

(e.g., [14, 50]). Further, we may utilize existing landmark-based ap-

proaches to goal recognition (e.g., [35, 50]) to compute a probability

distribution over G given the classical planning problem that re-

sults from Muise et al.’s compilation. These approaches have been

shown to be much faster than Ramírez and Geffner’s approach,

while achieving similar recognition accuracy [35].

Decentralized Multi-agent Setting. The EPR model in this

work captures a fixed observer which is adequate in many settings

such as tutoring systems and conversational systems. Like cen-

tralized vs distributed control, this model affords computational

advantages over a more general setting. Our account of EPR could

be extended to a decentralized multi-agent setting where each agent

is both an actor and an observer and holds EPR capabilities, with a

view to active collaboration or adversarial interactions.

Obfuscating Actor. In cases where the actor is aware of being

observed, modelling their beliefs about the observer can be useful

as these could affect the actor’s behavior. For example, an actor

keen on obfuscating its goal or plan might purposefully generate an

ambiguous plan that is predicated on the actor’s beliefs about the

observer’s beliefs [20, 22, 28]. Our specification can accommodate

various approaches to plan and goal obfuscation (or legibility [8]).
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