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Abstract

Within the field of automated planning, two areas of study are
planning with preferences and epistemic planning. Planning
with preferences involves generating plans that optimize for
properties of the plan instead of, or in addition to, trying to
reach a fixed goal. Epistemic planning allows for planning
over the knowledge or belief states of one or more agents for
the purpose of achieving epistemic goals (where agents have
particular states of knowledge or belief). In this paper we mo-
tivate and explore the task of planning with epistemic prefer-
ences, proposing a method by which existing automated plan-
ning techniques can be combined for this purpose.

1 Introduction
Given a description of the current state of the world and
some desired goal, a (symbolic) automated planning sys-
tem generates a plan, typically a sequence of actions that,
when executed beginning in the initial state, will achieve the
goal. In many cases, we may wish to reason about the be-
liefs of agents and to devise plans to change their beliefs in
some way. Such planning is referred to as epistemic plan-
ning and has been the subject of a number of recent com-
putational advances that have seen the development of epis-
temic planners that can generate plans to achieve epistemic
goals as well as goals in the physical world (so-called on-
tic goals) (e.g., (Bolander and Andersen 2011; Baier, Mom-
bourquette, and McIlraith 2014; Kominis and Geffner 2015;
Engesser et al. 2017; Baral et al. 2017; Le et al. 2018;
Fabiano et al. 2020; Cooper et al. 2021; Fabiano et al. 2021;
Wan, Fang, and Liu 2021; Muise et al. 2022; Hu, Miller, and
Lipovetzky 2022)).

Our interest here is in planning with epistemic prefer-
ences: beliefs of agents that are desirable to achieve but not
mandatory. For example, an agent might want to move an
object from the living room to the kitchen and prefer that
other agents in the environment know the new location, or
prefer that Bob knows the new location but not Alice. Alter-
natively, an agent may have the goal of changing the pass-
word on their bank account but prefer that other agents not
know the new password, or not know that it was changed.

The examples above are domain-specific illustrations of
epistemic preferences, but sometimes it may be useful to
generate more generic epistemic preferences. Consider the

AI safety problem described by Amodei et al. (2016) of neg-
ative side effects – undesirable changes that an AI system
might make (e.g., a robot breaking a vase in its path) because
its explicitly given objective did not preclude them. While
Amodei et al. were considering the context of reinforcement
learning, it is also the case that when planning without pref-
erences, any plan that achieves the explicit goal may seem
equally good to the planner (modulo action costs, if any).
Klassen et al. (2022) proposed an automated planning ap-
proach to avoid some types of side effects, which was es-
sentially this: create, for each possibly negative side effect,
a preference for its negation. This establishes a connection
between side effects and preferences. The side effects con-
sidered there were physical, but (in the context of reinforce-
ment learning) Klassen, Alamdari, and McIlraith (2022;
2023) suggested that some negative side effects could be
epistemic, such as when a household robot rearranges items
in kitchen cupboards, causing a human to not know where
things are. In this paper we identify a number of generic
sorts of preferences, such as to maximize true beliefs among
agents, some of which may have safety applications.

While planning with ontic preferences has received much
study (e.g., (Baier and McIlraith 2008)), to the best of our
knowledge, this is the first work to study and realize a plan-
ner that plans with epistemic preferences. The contributions
of this paper include proving the correctness of an encoding
of planning with epistemic preferences as a traditional (non-
epistemic) planning problem, and demonstrating the feasi-
bility of this approach through experimentation.

2 Background
We will review epistemic logic (see, e.g., (Fagin et al. 1995))
and planning, leading up to RP-MEP (restricted perspecti-
val multi-agent epistemic planning) (Muise et al. 2022), the
epistemic planning formalism that we use in this paper.

2.1 Epistemic Logic
Given a finite set of propositional symbols P and a finite set
of agents Ag , the language of epistemic logic is given by

ψ ::= p | ¬ψ | ψ ∧ ψ | ◻i ψ | ⊤ | ⊥

where p ∈ P and i ∈ Ag . We read◻i ψ as saying that agent
i believes ψ. We use the abbreviation ◇i ψ

def
= ¬◻i ¬ψ.



Other operators like implication (ψ1 ⊃ ψ2
def
= ¬(ψ1 ∧¬ψ2))

can also be defined as abbreviations in the usual way. A
literal is either a proposition p or its negation, and ℓ̄ is the
complement of ℓ (i.e., ℓ̄ = ¬p if ℓ = p and vice versa).

The semantics are given with a model M = ⟨W, τ, {Ri :
i ∈ Ag}⟩ whereW is a set of worlds, τ :W → 2P identifies
which propositions are true at each world, and each Ri ⊆
W×W is a relation indicating what worlds agent i considers
possible. The truth of a formula is defined relative to a model
M and a world w ∈W :

• M, w |= p iff p ∈ τ(w)

• M, w |= ¬ψ iff M, w ̸|= ψ

• M, w |= ψ1 ∧ ψ2 iff M, w |= ψ1 and M, w |= ψ2

• M, w |= ◻i ψ iff M, w′ |= ψ for all w′ s.t. Ri(w,w′)

• M, w |= ⊤ and M, w ̸|= ⊥
Entailment can be defined in the usual way: ψ1 |= ψ2 if
whenever M, w |= ψ1, it is also the case that M, w |= ψ2.

It is common to restrict the set of models to only those
which obey particular axioms, like the KD45n axioms,
which RP-MEP uses, and which can be written as follows
(for each agent i):

K: (◻i ψ1 ∧◻i(ψ1 ⊃ ψ2)) ⊃ ◻i ψ2

D: ◻i ψ ⊃ ◇i ψ
4: ◻i ψ ⊃ ◻i◻i ψ 5: ◇i ψ ⊃ ◻i◇i ψ

Proper Epistemic Knowledge Bases As we will see later,
RP-MEP represents planning states with proper epistemic
knowledge bases (PEKBs), a concept originally introduced
by Lakemeyer and Lespérance (2012). A proper epistemic
knowledge base (PEKB) is a set (or conjunction) of re-
stricted modal literals (RMLs), which are formulas of epis-
temic logic given by this grammar:

φ ::= p | ¬p | ◻i φ | ◇i φ | ⊤ | ⊥

The absence of disjunction simplifies some computations.
The depth of an RML φ is the number of belief operators in
it; e.g., p has depth 0 and ◻i◇j ◻i ¬p has depth 3.

2.2 Classical Planning
We now review non-epistemic automated planning.

Definition 1. A classical+ planning problem1 is a tuple
⟨F, I,G,O⟩ where

• F is a set of fluents,
• I ⊆ F is the initial state and G ⊆ F is the goal,
• and O is the set of operators, where an operator o ∈ O is

a tuple ⟨Preo,Eff +
o ,Eff

−
o ⟩ where

– Preo ⊆ F is the precondition of o,
– and each of Eff +

o and Eff −
o are sets of conditional ef-

fects of the form ⟨C, f⟩ where C ∈ (2F )2 and f ∈ F .

As we saw with the initial state, a state s is represented by
a subset of F (the fluents in s are understood to be true, and
those not are false). An operator o is applicable in a state s

1We use the term “classical+” because sometimes classical
planning is defined to not have conditional effects.

if its precondition is true there, i.e. if Preo ⊆ s. Eff +
o is

the set of positive conditional effects, that can make fluents
true, while Eff −

o is the set of negative conditional effects,
that can make fluents false. A condition C = ⟨C+, C−⟩ of
a conditional effect fires in a state s if all the fluents in C+

are true in s and all those in C− are false in s. Applying
an applicable operator o to a state s transforms it into a new
state s′ by removing the fluents that are effects of negative
conditional effects that fired in s, and then adding the fluents
that are effects of positive conditional effects that fired in s.
A sequence of operators is a plan for a classical+ planning
problem if each is applicable in turn starting from I , and in
the resulting end state s, the goal is true (i.e., G ⊆ s).

Preferences Various ways of defining and aggregating
preferences over plans are reviewed by Baier and McIlraith
(2008). We will follow the simple approach of extending
the definition of a planning problem ⟨F, I,G,O⟩ to have an-
other entry, X , where X is a set of weighted preferences –
pairs ⟨Gi, ri⟩ where Gi ⊆ F and ri ∈ R. A plan is op-
timal for ⟨F, I,G,O,X⟩ if in the end state s, not only is
the goal true, but the weighted sum of satisfied preferences,∑

⟨Gi,ri⟩∈X:Gi⊆s ri, is maximized. One way to compute
an optimal plan is to compile the preferences into operator
costs as described by Keyder and Geffner (2009) and then
use standard planning tools to find a minimum cost plan.

2.3 RP-MEP
We now are almost ready to describe RP-MEP. First, follow-
ing Muise et al. (2022) we define general MEP problems.

Definition 2. A multi-agent epistemic planning (MEP)
problem is a tuple of the form ⟨P,A,Ag , I,G⟩ where

• P is the set of propositions;
• A is a finite set of actions, where an action a is a pair
⟨Prea,Eff a⟩ (representing the preconditions and effects),
in which
– Prea is a PEKB and
– Eff a is a set of conditional effects of the form ⟨γi, φi⟩

where the PEKB γi is the condition and the RML φi is
the effect;

• Ag is a finite set of agents;
• I is a PEKB representing the initial state;
• and G is another PEKB, representing the goal.

RP-MEP problems can then be defined in terms of restric-
tions on the components of MEP problems. Intuitively, an
RP-MEP problem considers things from the perspective of
one agent (hence the “perspectival” in the name).

Definition 3. An RP-MEP problem with depth bound d is
a MEP problem with the restriction that there is some agent
☀ ∈ Ag (the root agent) such that any RML in the initial
state, goal, or an action precondition is of the form ◻☀ φ,
any RML in the condition or effect of a conditional effect is
either of the form ◻☀ φ or ◇

☀
φ, and any RML anywhere

in the problem has depth at most d+1 (i.e., has at most d+1
modal operators, including the initial one for the root agent).



We now briefly review how actions work in RP-MEP. An
action a is applicable in a PEKB P if P |= Prea. Applying
a progresses P into another PEKB, P ′ = Progress(P, a).
The transition is such that for each conditional effect ⟨γi, φi⟩
of the action such that P |= γi, P ′ |= φi. Additionally,
there may be other changes to ensure that P ′ still follows
the KD45n axioms. For the full definition of progression in
terms of belief revision and update, see the paper by Muise et
al. (2022, p. 7).2 Note that agents can have false beliefs and
retract previously held beliefs. For a sequence of actions a⃗ =
a1, . . . , ak, the progression Progress(P, a⃗) can be defined
by progressing by each of the actions in turn. a⃗ is a plan
for an RP-MEP problem if each action is applicable in turn
starting from I and Progress(I, a⃗) |= G.

Muise et al. (2022) proposed a way of compiling an RP-
MEP problem R = ⟨P,A,Ag , I,G⟩ with depth bound d
into a corresponding classical+ planning problem C(R) =
⟨F, I,G,O⟩. The set of fluents F = Cfluent(P,Ag , d) in-
cludes a fluent to represent each RML of the form ◻☀ φ
or ◇

☀
φ of depth ≤ d + 1. O contains an operator o =

Cop(a, F ) corresponding to each action a ∈ A. The ini-
tial state I = Cinit(I, F ) and goal G = Cgoal(G, F ) are
also constructed based on their counterparts in the RP-MEP
problem. Note that the encoding is fairly modular; e.g.,
changing the goal of R will change only the goal in C(R),
and not other parts of the encoding. The paper by Muise et
al. (2022, pp. 8–10) has the full description of the encoding.
The encoding is sound and complete in the following sense.
Theorem 1. LetR be an RP-MEP problem ⟨P,A,Ag , I,G⟩
and C(R) = ⟨F, I,G,O⟩ its classical+ encoding. Then an
action sequence a1, . . . , ak (for any k) is a plan for R′ just
in case Cop(a1, F ), . . . ,Cop(ak, F ) is a plan for C(R).

Proof. It follows from Muise et al.’s (2022) Theorem 2.

3 Formalizing Epistemic Preferences
We can easily extend RP-MEP problems to incorporate
(weighted) preferences.
Definition 4. An RP-MEP problem with preferences (with
depth bound d) is a tuple ⟨P,A,Ag , I,G,Prefs⟩ where
P,A,Ag , I,G are as in Definition 3, and Prefs is the set
of preferences with associated weights, represented as pairs
of the form ⟨ψi, ri⟩ where ψi is a PEKB containing only
RMLs of the form ◻☀ φ of depth ≤ d+ 1, and ri ∈ R.

Similarly to classical+ planning with preferences, a plan
π is optimal for an RP-MEP problem with preferences if it
maximizes the sum of the weights of the preferences satis-
fied, that is,

∑
⟨ψi,ri⟩∈Prefs:Progress(I,π)|=ψi

ri.

To illustrate some sorts of epistemic preferences that one
might want to be (not) satisfied, consider the following cate-
gories (where ℓ is an arbitrary literal). (Note that because of
the “perspectival” nature of RP-MEP, any preference has to
be expressed in terms of the root agent’s beliefs, but the pref-
erences we consider here involve beliefs beyond just that.)
truth (the root agent believes that) agent i correctly be-

lieves that the literal ℓ is true: (◻☀ ℓ ∧ ◻☀◻i ℓ). Note

2We are using deterministic actions only.

that if both (◻☀ ℓ ∧◻☀◻i ℓ) and (◻☀ ℓ̄ ∧◻☀◻i ℓ̄) are
preferences with same weight, that amounts to a prefer-
ence about whether (the root agent believes that) agent i
has the correct belief as to whether ℓ is true.

misconception (the root agent believes that) agent i incor-
rectly believes that ℓ is true: (◻☀ ℓ̄ ∧◻☀◻i ℓ)

oblivious (the root agent believes that ) agent i considers ℓ
possible (doesn’t believe it is false): ◻☀◇i ℓ:

conscious (the root agent believes that) agent i believes ℓ:
◻☀◻i ℓ

What preferences one would have would often be do-
main specific (e.g., particular instances of the above four
types). However, it is also possible to automatically gener-
ate generic preferences (e.g., that every agent in some sub-
set of Ag has the correct beliefs about every literal) which
could be useful for, e.g., safety purposes. This is somewhat
analagous to Wang et al.’s (2020) various generic sorts of
belief-dependent reward functions for POMDPs, such as a
“human-certainty” reward function that rewarded the agent
for reducing the human’s (probabilistic) uncertainty.

The RP-MEP formalism also allows for expressing prefer-
ences over nested beliefs. For example, it could be preferred
that (the root agent believes that) Alice believes that Bob be-
lieves that Alice did not eat his chocolate cake. While solv-
ing RP-MEP problems with the classical+ encoding does
not scale very well with the depth of nested belief (Muise et
al. 2022), we believe that many interesting epistemic prefer-
ences have low depth, like the examples we have mentioned.

3.1 Computation
Recall that Muise et al. (2022) showed how to encode an RP-
MEP problem R (without preferences) as a classical+ prob-
lem C(R). We can extend that to also encode preferences
in a straight-forward way, by encoding each preference for-
mula in the same manner as the goal:
Definition 5. Let R be an RP-MEP problem ⟨P,A,Ag , I,
G⟩ with depth bound d and R′ that problem extended with
preferences: R′ = ⟨P,A,Ag , I,G,Prefs⟩ (such that the
preferences’ RMLs also have depth ≤ d + 1). We define
the encoding of R′ as a classical+ problem with preferences
as C(R′) = ⟨F, I,G,O,X⟩, where ⟨F, I,G,O⟩ = C(R)
and X = {⟨Cgoal(ψi, F ), ri⟩ : ⟨ψi, ri⟩ ∈ Prefs}.

The following theorem shows that an optimal plan for the
classical+ problem with preferences will yield an optimal
plan for the original RP-MEP problem.
Theorem 2. Given an RP-MEP problem with preferences
R = ⟨P,A,Ag , I,G,Prefs⟩, an action sequence a⃗ =
a1, . . . , ak is an optimal plan for R just in case the oper-
ator sequence Cop(⃗a, F ) = Cop(a1, F ), . . . ,Cop(ak, F ) is
an optimal plan for the encoding of R as a classical+ prob-
lem with preferences C(R) = ⟨F, I,G,O,X⟩.

Proof. That a⃗ is a plan for R just in case Cop(⃗a, F ) is a
plan for C(R) follows from Theorem 1. We want to ad-
ditionally show that a⃗ satisfies a preference ψi in R just
in case Cop(⃗a, F ) satisfies the preference Cgoal(ψi, F ) in
C(R). Observe that a⃗ satisfies the preference ψi in R just



Problem
Preference Type

none truth misconception oblivious conscious

|π| time |π| time prefs |π| time prefs |π| time prefs |π| time prefs

Corridor-3 5 0.36 6 0.35 2/6 6 0.36 1/6 6 0.36 3/6 6 0.37 3/6
Corridor-5 5 0.40 8 0.63 4/10 6 0.64 2/10 6 0.43 6/10 6 0.46 5/10
Corridor-7 5 3.72 8 14.76 5/14 9 12.76 4/14 6 5.04 8/14 7 2.18 7/14
Grapevine-4-2 4 4.66 11 37.45 15/32 7 51.42 11/32 5 33.34 26/32 8 33.84 16/32
Grapevine-4-4 6 2.91 15 33.32 14/32 10 33.30 10/32 8 49.93 24/32 9 32.60 16/32
Grapevine-4-8 11 45.43 14 37.37 12/32 13 33.46 8/32 13 32.73 20/32 12 34.67 16/32
Grapevine-8-2 4 31.13 19 61.22 63/128 16 57.01 51†/128 6 59.55 118/128 9 61.53 40†/128
Grapevine-8-4 5 24.63 17 59.78 37†/128 15 61.16 28†/128 15 60.71 116/128 13 59.36 26†/128
Grapevine-8-8 7 32.82 32 61.13 60/128 27 60.73 52/128 13 59.93 112/128 18 61.00 28†/128

Table 1: Experimental results. Only problems with depth bound d = 1 were used. Corridor-n is a problem in the Corridor domain with n
(non-root) agents, and Grapevine-n-g is a problem in the Grapevine domain with n (non-root) agents and g RMLs in its goal. Each “|π|”
column show the length of the found plan. For the none preference type, the planner considered only the goal, while for the others there also
were automatically generated preferences of the given type. An entry x/y in a “prefs” column indicates that the problem had y preferences,
of which x were satisfied by the found plan. As noted below, for problems with preferences of the type truth, misconception, or conscious,
it is impossible to satisfy more than 50% of the preferences. If x is bold, that solution is known be optimal; the † annotation indicates that
the solution is known to be suboptimal. Times (in seconds) are the times taken by LAMA, the planner, on the encoded classical+ problem
with operator costs (encoding times are not included). LAMA was run with a search time limit of 30 seconds (the overall time can be longer).

in case a⃗ is a plan for the RP-MEP problem (without prefer-
ences) Ri = ⟨P,A,Ag , I, ψi⟩. By Theorem 1, a⃗ is a plan
for Ri just in case Cop(⃗a, F ) is a plan for C(Ri). Since
C(Ri) is identical to C(R) except for the goal and prefer-
ences, Cop(⃗a, F ) is a plan for C(Ri) just in case Cop(⃗a, F )
satisfies Cgoal(ψi, F ) in C(R).

4 Experiments
To demonstrate finding plans with epistemic preferences, as
a proof of concept we take some epistemic planning prob-
lems from the literature and add preferences generated from
the truth, misconception, oblivious, and conscious cate-
gories described in Section 3. In each experiment, all pref-
erences from the relevant category (e.g., truth) that involve
any non-root agent i and any literal ℓ are generated (exclud-
ing some literals that agents always know the truth value of).
All the preferences are given weight 1.

The domains we use are the following:

Corridor (Muise et al. 2022, Section 7.2): An agent who
has a secret can walk around and make (possibly false)
announcements that are believed by other nearby agents.

Grapevine (Muise et al. 2022, Section 7.3): All (non-root)
agents can move and make (possibly false) announce-
ments; each starts with its own secret. Agents only believe
announcements that don’t contradict their own beliefs.

Both domains were slightly modified to make the root agent
initially believe the secrets (the truth and misconception
preference types cannot be achieved if the root agent does
not have a belief about whether the literal in question is true).

To compute plans for each problem, we first compile the
problem into a classical+ planning problem, using the RP-
MEP program from Muise et al. (2022). This RP-MEP com-
pilation only has to be done once per problem, since the en-
coding of the non-preference parts of the problem do not
change when preferences are added. Furthermore, since our

preferences are automatically generated, we are able to gen-
erate them directly in the classical+ encoding rather than
having to compile them as a separate step. Each classical+
planning problem with preferences is then transformed by
applying essentially the established compilation from pref-
erences into costs from Keyder and Geffner (2009). The
resulting planing problem with costs is solved using LAMA
(Richter and Westphal 2010), a configuration of Fast Down-
ward (v22.12) (Helmert 2006).

The results3 are shown in Table 1. In each case the planner
was able to find plans which satisfy many of the preferences.
Note that for problems with preferences of the truth, mis-
conception, and conscious types, it would not be possible to
satisfy more than half the preferences (an agent cannot be-
lieve both ℓ and ℓ̄). To determine whether solutions were op-
timal we ran additional experiments in which LAMA had no
time limit (in some cases memory limitations precluded de-
ciding that question). Compilation times for RP-MEP (0.49–
5.51 seconds) and the Keyder and Geffner encoding (0.03–
0.10 seconds) are omitted. For more details and the code,
see https://github.com/tqk/epistemic-preferences.

5 Conclusion
We have considered planning with epistemic preferences,
i.e., over knowledge or beliefs. Our approach to comput-
ing plans for such problems makes use of two existing com-
pilations – the RP-MEP encoding of epistemic planning
problems as classical+ problems, and Keyder and Geffner’s
(2009) compilation of preferences into costs. An advantage
of this is that further developments in improving the effi-
ciency of traditional planning would also help our approach.
Future work may further explore applications of planning
with epistemic preferences in areas such as AI safety.

3from a Linux system with two Intel Xeon E5-2667 v4 proces-
sors and 32 GB of RAM

https://github.com/tqk/epistemic-preferences
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