Towards Human-Aware AI via Planning with Epistemic Preferences

Toryn Q. Klassen, ^{1,2,3} Christian Muise, ^{2,4} Sheila A. McIlraith ^{1,2,3}

¹Department of Computer Science, University of Toronto, Toronto, Canada ²Vector Institute for Artificial Intelligence, Toronto, Canada ³Schwartz Reisman Institute for Technology and Society, Toronto, Canada ⁴School of Computing, Queen's University, Kingston, Canada

> HAXP workshop July 10, 2023

Epistemic Preferences

- Two areas of study:
 - Planning with **preferences**: optimize properties of the plan instead of just trying to reach a fixed goal
 - **Epistemic planning**: planning for agents to have particular states of knowledge or belief
- We investigate planning with epistemic preferences. For example,
 - An agent might want to move an object from the living room to the kitchen and **prefer** that other agents in the environment **know** the new location,
 - or prefer that Bob knows the new location but not Alice.
 - More generally, for **safety** purposes it might be preferred that some epistemic changes don't occur (e.g., creation of **false beliefs**).

Contributions

The contributions of this work include

- proving the **correctness of an encoding** of planning with epistemic preferences as a traditional (non-epistemic) planning problem,
- and demonstrating the feasibility of this approach through **experimentation**.

We also identify a number of **generic sorts** of preferences, such as to maximize true beliefs, some of which may have safety applications.

Outline

Background: Epistemic Logic and RP-MEP

Epistemic Preferences

Experiments

Given a finite set of propositional symbols \mathcal{P} and a finite set of agents Ag, the language of epistemic logic is given by

```
\psi ::= \boldsymbol{p} \mid \neg \psi \mid \psi \land \psi \mid \Box_{\boldsymbol{i}} \psi \mid \top \mid \bot
```

where $p \in \mathcal{P}$ and $i \in Ag$.

- $\Box_i \psi$: agent *i* believes ψ
- $\diamond_i \psi$: agent *i* considers ψ **possible** (defined with $\diamond_i \psi \stackrel{\text{def}}{=} \neg \Box_i \neg \psi$)

Given a finite set of propositional symbols \mathcal{P} and a finite set of agents Ag, the language of epistemic logic is given by

$$\psi ::= \boldsymbol{\rho} \mid \neg \psi \mid \psi \land \psi \mid \Box_i \psi \mid \top \mid \bot$$

where $p \in \mathcal{P}$ and $i \in Ag$.

- $\Box_i \psi$: agent *i* believes ψ
- $\diamond_i \psi$: agent *i* considers ψ **possible** (defined with $\diamond_i \psi \stackrel{\text{def}}{=} \neg \Box_i \neg \psi$)

Given a finite set of propositional symbols \mathcal{P} and a finite set of agents Ag, the language of epistemic logic is given by

$$\psi ::= \boldsymbol{\rho} \mid \neg \psi \mid \psi \land \psi \mid \boldsymbol{B}_{i} \psi \mid \top \mid \bot$$

where $p \in \mathcal{P}$ and $i \in Ag$.

- $\Box_i \psi$: agent *i* believes ψ
- $\diamond_i \psi$: agent *i* considers ψ **possible** (defined with $\diamond_i \psi \stackrel{\text{def}}{=} \neg \Box_i \neg \psi$)

Given a finite set of propositional symbols \mathcal{P} and a finite set of agents Ag, the language of epistemic logic is given by

```
\psi ::= \boldsymbol{p} \mid \neg \psi \mid \psi \land \psi \mid \Box_{\boldsymbol{i}} \psi \mid \top \mid \bot
```

where $p \in \mathcal{P}$ and $i \in Ag$.

- $\Box_i \psi$: agent *i* believes ψ
- $\diamond_i \psi$: agent *i* considers ψ **possible** (defined with $\diamond_i \psi \stackrel{\text{def}}{=} \neg \Box_i \neg \psi$)

Background: Proper Epistemic Knowledge Bases (PEKBs)

RP-MEP represents planning states as **proper epistemic knowledge bases**¹.

A proper epistemic knowledge base **(PEKB)** is a set (or conjunction) of **restricted modal literals (RMLs)**, which are formulas given by this grammar:

 $\varphi ::= \boldsymbol{p} \mid \neg \boldsymbol{p} \mid \Box_i \varphi \mid \diamondsuit_i \varphi \mid \top \mid \bot$

The **depth** of an RML φ is the number of belief operators in it; e.g.,

- *p* has depth 0
- and $\Box_i \diamondsuit_j \Box_i \neg p$ has depth 3.

The absence of **disjunction** in PEKBs simplifies some computations.

¹Lakemeyer, G. & Lespérance, Y. *Efficient Reasoning in Multiagent Epistemic Logics.* in *ECAI 2012* (IOS Press, 2012), 498–503.

Background: Multi-agent Epistemic Planning (MEP) problems²

- $\langle \mathcal{P}, \mathcal{A}, \mathcal{A}g, \mathcal{I}, \mathcal{G} \rangle$:
 - \mathcal{P} is the set of propositions;
 - A is a finite set of **actions**, where an action *a* is a pair (Pre_a, Eff_a) , in which
 - Pre_a is a PEKB and
 - *Eff*_a is a set of conditional effects of the form (γ_i, φ_i) where the PEKB γ_i is the condition and the RML φ_i is the effect;
 - *Ag* is a finite set of agents;
 - *I* is a PEKB representing the **initial state**;
 - and \mathcal{G} is another PEKB, representing the **goal**.

²Muise, C., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R. & Sonenberg, L. Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief. *AIJ* **302**, 103605 (2022).

Background: RP-MEP

A **restricted perspectival** MEP (RP-MEP)³ problem with depth bound *d* is a MEP problem with the restriction that there is some **root agent** $\star \in Ag$ such that

- any RML in the initial state, goal, or an action precondition is of the form □_★ φ, any RML in a conditional effect is either of the form □_★ φ or ◇_★ φ,
- and any RML anywhere in the problem has depth at most d + 1.

Computation:

• Muise et al. showed how to encode an RP-MEP problem *R* as a **classical**⁺ planning problem C(*R*).

³Muise, C., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R. & Sonenberg, L. Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief. *AIJ* **302**, 103605 (2022).

Outline

Background: Epistemic Logic and RP-MEP

Epistemic Preferences

Experiments

Formalizing Epistemic Preferences

- Given an RP-MEP problem, we can add **preferences (with associated weights)** of the form $\langle \psi_i, r_i \rangle$ where ψ_i is a PEKB and $r_i \in \mathbb{R}$.
 - ψ_i contains only RMLs of the form $\Box_{\bigstar} \varphi$ of depth $\leq d + 1$
- A plan π is **optimal** for an RP-MEP problem with preferences if it **maximizes the sum** of the weights of the preferences satisfied.

Computation:

• We can extend the RP-MEP compilation to also encode preferences, by encoding each preference formula in the same manner as the goal.

• Theorem:

A plan is optimal for an RP-MEP problem with preferences iff it corresponds to an optimal plan for the compiled classical⁺ problem with preferences.

Types of Epistemic Preferences

Some categories of epistemic preferences (where ℓ is an arbitrary literal):

- **truth**: (the root agent believes that) agent *i* correctly believes that ℓ is true: $(\Box_{\star} \ell \land \Box_{\star} \Box_i \ell)$.
- **misconception**: (the root agent believes that) agent *i* incorrectly believes that ℓ is true: $(\Box_{\bigstar} \overline{\ell} \land \Box_{\bigstar} \Box_i \ell)$
- **oblivious**: (the root agent believes that) agent *i* considers ℓ possible: $\Box_{\bigstar} \diamondsuit_i \ell$
- **conscious**: (the root agent believes that) agent *i* believes ℓ : $\Box_{\star} \Box_i \ell$

Outline

Background: Epistemic Logic and RP-MEP

Epistemic Preferences

Experiments

Experiments: domains

We used these domains:⁴

Corridor: An agent who has a secret can walk around and make (possibly false) announcements that are believed by other nearby agents.

Grapevine: All (non-root) agents can move and make (possibly false) announcements; each starts with its own secret. Agents only believe announcements that don't contradict their own beliefs.

⁴Muise, C., Belle, V., Felli, P., McIlraith, S. A., Miller, T., Pearce, A. R. & Sonenberg, L. Efficient Multi-agent Epistemic Planning: Teaching Planners About Nested Belief. *AIJ* **302**, 103605 (2022).

Experiments: preferences

- We added preferences generated from the **truth**, **misconception**, **oblivious**, and **conscious** categories.
- In each experiment, all preferences from the relevant category (e.g., truth) that involve any non-root agent *i* and any literal ℓ are generated

• (excluding some literals that agents always know the truth value of).

• All the preferences are given weight 1.

Experiments: computation

To compute plans for each problem, we

- **1. Compile** the problem into a classical⁺ planning problem, using the **RP-MEP** program.
- **2.** Transform each classical⁺ planning problem with preferences by applying the **compilation from preferences into action costs** from Keyder and Geffner⁵.
- **3.** Solve the resulting classical⁺ planing problem with costs using LAMA⁶.

⁵Keyder, E. & Geffner, H. Soft Goals Can Be Compiled Away. *JAIR* **36**, 547–556 (2009). ⁶Richter, S. & Westphal, M. The LAMA Planner: Guiding Cost-Based Anytime Planning with Landmarks. *JAIR* **39**, 127–177 (2010).

Problem	none			tru	n	Pref nisconc	erence Ty eption	pe	obliv	ious	conscious			
	$ \pi $	time	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs
Corridor-3	5	0.36	6	0.35	2 /6	6	0.36	1 /6	6	0.36	3 /6	6	0.37	3 /6
Corridor-5	5	0.40	8	0.63	4 /10	6	0.64	2 /10	6	0.43	6 /10	6	0.46	5 /10
Corridor-7	5	3.72	8	14.76	5 /14	9	12.76	4 /14	6	5.04	8 /14	7	2.18	7 /14
Grapevine-4-2	4	4.66	11	37.45	15 /32	7	51.42	11 /32	5	33.34	26 /32	8	33.84	16 /32
Grapevine-4-4	6	2.91	15	33.32	14 /32	10	33.30	10 /32	8	49.93	24 /32	9	32.60	16 /32
Grapevine-4-8	11	45.43	14	37.37	12 /32	13	33.46	8 /32	13	32.73	20 /32	12	34.67	16 /32
Grapevine-8-2	4	31.13	19	61.22	63 /128	16	57.01	51†/128	6	59.55	118/128	9	61.53	40†/128
Grapevine-8-4	5	24.63	17	59.78	37†/128	15	61.16	28†/128	15	60.71	116/128	13	59.36	26†/128
Grapevine-8-8	7	32.82	32	61.13	60/128	27	60.73	52/128	13	59.93	112/128	18	61.00	28†/128

- $|\pi|$: length of plan
- Times (in seconds): taken by LAMA on the encoded problem (encoding times not included). LAMA was run with a search time limit of 30 seconds.
- x/y: x out of y preferences were satisified (bold **x** is known to be optimal, x^{\dagger} with the \dagger is known to be suboptimal)

Problem	none truth				m	Pref nisconc	erence Ty eption	pe	oblivi	ious	conscious			
	$ \pi $	time	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs
Corridor-3	5	0.36	6	0.35	2 /6	6	0.36	1 /6	6	0.36	3 /6	6	0.37	3 /6
Corridor-5	5	0.40	8	0.63	4 /10	6	0.64	2 /10	6	0.43	6 /10	6	0.46	5 /10
Corridor-7	5	3.72	8	14.76	5 /14	9	12.76	4 /14	6	5.04	8 /14	7	2.18	7 /14
Grapevine-4-2	4	4.66	11	37.45	15 /32	7	51.42	11 /32	5	33.34	26 /32	8	33.84	16 /32
Grapevine-4-4	6	2.91	15	33.32	14 /32	10	33.30	10 /32	8	49.93	24 /32	9	32.60	16 /32
Grapevine-4-8	11	45.43	14	37.37	12 /32	13	33.46	8 /32	13	32.73	20 /32	12	34.67	16 /32
Grapevine-8-2	4	31.13	19	61.22	63 /128	16	57.01	51†/128	6	59.55	118/128	9	61.53	40†/128
Grapevine-8-4	5	24.63	17	59.78	37†/128	15	61.16	28†/128	15	60.71	116/128	13	59.36	26†/128
Grapevine-8-8	7	32.82	32	61.13	60/128	27	60.73	52/128	13	59.93	112/128	18	61.00	28†/128

- $|\pi|$: length of plan
- Times (in seconds): taken by LAMA on the encoded problem (encoding times not included). LAMA was run with a search time limit of 30 seconds.
- x/y: x out of y preferences were satisified (bold **x** is known to be optimal, x^{\dagger} with the \dagger is known to be suboptimal)

Problem	none			tru	th	Preference Ty misconception				obliv	ious	conscious		
	$ \pi $	time	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs
Corridor-3	5	0.36	6	0.35	2 /6	6	0.36	1 /6	6	0.36	3 /6	6	0.37	3 /6
Corridor-5	5	0.40	8	0.63	4 /10	6	0.64	2 /10	6	0.43	6 /10	6	0.46	5 /10
Corridor-7	5	3.72	8	14.76	5 /14	9	12.76	4 /14	6	5.04	8 /14	7	2.18	7 /14
Grapevine-4-2	4	4.66	11	37.45	15 /32	7	51.42	11 /32	5	33.34	26 /32	8	33.84	16 /32
Grapevine-4-4	6	2.91	15	33.32	14 /32	10	33.30	10 /32	8	49.93	24 /32	9	32.60	16 /32
Grapevine-4-8	11	45.43	14	37.37	12 /32	13	33.46	8 /32	13	32.73	20 /32	12	34.67	16 /32
Grapevine-8-2	4	31.13	19	61.22	63 /128	16	57.01	51 [†] /128	6	59.55	118/128	9	61.53	40 [†] /128
Grapevine-8-4	5	24.63	17	59.78	37†/128	15	61.16	28 [†] /128	15	60.71	116/128	13	59.36	26 [†] /128
Grapevine-8-8	7	32.82	32	61.13	60/128	27	60.73	52/128	13	59.93	112/128	18	61.00	28 [†] /128

- $|\pi|$: length of plan
- Times (in seconds): taken by LAMA on the encoded problem (encoding times not included). LAMA was run with a search time limit of 30 seconds.
- x/y: x out of y preferences were satisified (bold **x** is known to be optimal, x^{\dagger} with the \dagger is known to be suboptimal)

Problem none			truth				Pref niscond	erence Ty eption	pe	obliv	ious	conscious		
	$ \pi $	time	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs	$ \pi $	time	prefs
Corridor-3	5	0.36	6	0.35	2 /6	6	0.36	1 /6	6	0.36	3 /6	6	0.37	3 /6
Corridor-5	5	0.40	8	0.63	4 /10	6	0.64	2 /10	6	0.43	6 /10	6	0.46	5 /10
Corridor-7	5	3.72	8	14.76	5 /14	9	12.76	4 /14	6	5.04	8 /14	7	2.18	7 /14
Grapevine-4-2	4	4.66	11	37.45	15 /32	7	51.42	11 /32	5	33.34	26 /32	8	33.84	16 /32
Grapevine-4-4	6	2.91	15	33.32	14 /32	10	33.30	10 /32	8	49.93	24 /32	9	32.60	16 /32
Grapevine-4-8	11	45.43	14	37.37	12 /32	13	33.46	8 /32	13	32.73	20 /32	12	34.67	16 /32
Grapevine-8-2	4	31.13	19	61.22	63 /128	16	57.01	51†/128	6	59.55	118/128	9	61.53	40†/128
Grapevine-8-4	5	24.63	17	59.78	37†/128	15	61.16	28†/128	15	60.71	116/128	13	59.36	26†/128
Grapevine-8-8	7	32.82	32	61.13	60/128	27	60.73	52/128	13	59.93	112/128	18	61.00	28†/128

- $|\pi|$: length of plan
- Times (in seconds): taken by LAMA on the encoded problem (encoding times not included). LAMA was run with a search time limit of 30 seconds.
- x/y: x out of y preferences were satisified (bold **x** is known to be optimal, x^{\dagger} with the \dagger is known to be suboptimal)

Conclusion

- We have considered planning with **epistemic** preferences, i.e., over knowledge or beliefs.
- Our approach to computing plans for such problems makes use of two existing compilations:
 - 1. the **RP-MEP encoding** of epistemic planning problems as classical⁺ problems,
 - **2.** and **Keyder and Geffner's compilation**⁷ of preferences into costs.
- Future work may further explore **applications** of planning with epistemic preferences in areas such as AI safety.

⁷Keyder, E. & Geffner, H. Soft Goals Can Be Compiled Away. *JAIR* **36**, 547–556 (2009).