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This thesis deals with the topic of modelling an agent’s beliefs about a dynamic world
in a way that allows for changes in beliefs, including retracting of beliefs, based on
the agent’s observations. We work within the field of knowledge representation, and
represent the beliefs of the agent using a logical theory. In particular, we are concerned
with representing what initial conditions the agent considers (im)plausible, what effects
the agent thinks actions (im)plausibly have, and what processes in the environment the
agent thinks have (im)plausibly occurred or will occur.

Our approach uses the situation calculus, a standard knowledge representation frame-
work for modelling action and change. Furthermore, we build on an existing framework in
the situation calculus for modelling changing beliefs, where beliefs are determined using a
plausibility ordering on situations. This supports modelling changing beliefs, since when
the most plausible options are refuted by observations, the agent can fall back to the
next most plausible options. Our concern is with how to specify this plausibility ordering
using a logical theory. We propose to define the ordering by counting certain properties of
situations, indicated by distinguished predicates, which we call “abnormality” predicates.
This is inspired by how minimization of abnormalities has been used in circumscription,
an approach to default reasoning.

We show how beliefs about plausible and implausible action effects can be represented
by having the axioms describing effects refer to abnormalities. Furthermore, we extend
the account of belief to allow for beliefs about ongoing exogenous processes, described

by a program (written in ConGolog, a standard programming language for use with the
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situation calculus). We show how having these programs refer to abnormalities allows
for representing plausible and implausible environment behavior. Finally, we present a
formal definition of “knowing how” to achieve goals, in terms of belief, which allows for

the agent to change its beliefs about what it knows how to do.
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Chapter 1

Introduction

1.1 Overview

People have beliefs about their environment. Some of these beliefs are about the envi-
ronment’s state, for example, that there is a coffee cup on the table. Other beliefs are
about how actions can change the environment, for example, that picking up the cup will
remove it from the table. Another sort of beliefs is about the events that are unfolding,
for example, that a coworker will take the cup if it’s left on the table. All these sorts
of beliefs inform people’s interaction with the world and their ability to achieve goals.
Furthermore, observations can reveal beliefs to be mistaken or outdated, and (ideally)
those beliefs get changed.

This thesis deals with the topic of modelling beliefs about a dynamic world in a way
that allows for changes based on observations made by an agent. We work within the
tradition of knowledge representation, where the beliefs of the agent are described using

a logical theory. In particular, we are concerned with representing
1. what initial conditions the agent considers (im)plausible,
2. what effects the agent thinks actions (im)plausibly have,

3. and what processes in the environment the agent thinks have (im)plausibly occurred

or will occur.

Representing plausibility supports modelling changing beliefs, since when the most
plausible options are refuted by observations, the agent can fall back to the next most
plausible options. To illustrate, imagine an agent that believes the coffee cup is on the
table. The agent then moves its arm and hand in a certain way and believes that it

has picked up the cup. However, after sensing that its hand is empty, the agent has to
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revise its beliefs. The agent considers various possibilities — the cup was never on the
table, its grip failed, or someone else took the cup first — and comes to believe what
it considers the most plausible option, that it failed to pick up the cup. However, after
additionally sensing that the cup is not on the table, that option is ruled out, and the
agent compares the plausibility of the remaining two options. For someone to have taken

the cup is considered more plausible, so the agent comes to believes that.

What this thesis aims to do is describe how to formally specify an agent so that such
changes of belief come out as logical consequences. Being able to represent the agent’s
uncertainty, and give it the ability to retract its beliefs, arguably goes some way towards
addressing the criticism that logic-based approaches are “brittle” (see, e.g., Domingos
and Lowd, 2019). To the extent that the specification of the agent is designed by people,
using plausibility reduces the burden on the designers to get the beliefs exactly right.

We conduct our work within one of the standard knowledge representation approaches
for dealing with action and change, the situation calculus (McCarthy, 1963; McCarthy
and Hayes, 1969; Reiter, 2001). In Reiter’s version of the situation calculus, which is a
language in second-order logic, situations represent histories of actions. From a situation,
there are various possible successor situations, each corresponding to a choice of action
to perform. Therefore, the set of situations is organized into a tree or forest (in the graph
theory sense), depending on whether there is one or more initial situations. Properties
that can vary from situation to situation (e.g., due to changes caused by actions, or
because they vary between initial situations) are represented using fluents, predicates

that take a situation argument.

An environment can be described in the situation calculus with a set of axioms, an
action theory, which is typically handcrafted by a human axiomatizer. Action theories tra-
ditionally contain axioms describing the initial state, the preconditions of actions (when
they are possible to execute), and how each fluent is changed by actions. Sometimes, an
action theory as a whole is taken to represent the knowledge of an agent, but other times
(and in this thesis) the theory is meant to describe reality and there may be additional
axioms explicitly describing what is known or believed by the agent. (Multiple agents
can also be considered, but we will not be doing so in this thesis.)

We now turn to discussing the modelling of belief. The standard way of describing
beliefs or knowledge in logic, following Hintikka (1962), is in terms of possible worlds. An
accessibility relation relates one world to another if in the first world the agent considers
that the second world may be the actual one. What is known or believed by an agent
in a particular world is defined as what is true in all accessible possible worlds. Belief

and knowledge can be described in modal logics that introduce special operators for
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these modalities. Alternatively, an accessibility relation can be encoded in classical first-
order (or second-order) logic, as was done by Scherl and Levesque (2003). For them, the

“possible worlds” were situations in the situation calculus.

Note that we are concerned with categorical beliefs — propositions are either believed
or not. This can be contrasted with probabilistic representations of uncertainty, where
the agent assigns probabilities to propositions instead of simply believing them or not.
Probabilities have become the dominant way of describing uncertainty in many areas of
Al so while our work will not be based on using them, we say a bit more about them

here.

Probabilities have the virtue of, in many cases, being straight-forward to estimate
from frequencies in data. On the other hand, relevant data may not always be available,
and it may be difficult for humans to come up with explicit probabilities reflecting their
own degrees of belief. Another issue is that probabilities are not easily integrated with
categorical beliefs. For example, if a proposition P was defined to be believed whenever
its subjective probability was above some threshold ¢, then unless ¢ is exactly equal to 1
(or 0), beliefs would not be closed under conjunction. That is, P could be believed and
@ could be believed without the conjunction P A () being believed. That goes against
the standard logical account of belief, and even some logical versions of belief that are

limited in an attempt to make computing beliefs tractable (e.g., Liu et al., 2004).

One response would be to just give up on the traditional notion of belief in favor of a
probabilistic account. After all, the idea that beliefs should be closed under conjunction
leads to the “paradox of the prefix” (Makinson, 1965), which involves a writer who
believes each of the sentences written in a book, yet believes that the book contains
errors. The idea that human beliefs should be described using probabilities has been
taken up by some researchers in cognitive science (e.g., Goodman et al., 2014). What
extent and role probabilities should play in describing human reasoning remains a topic
of debate (Marcus and Davis, 2013; Johnson-Laird et al., 2015).

In this thesis, we will continue to use the traditional notion of categorical belief.
Further philosophical discussion of the relation between probabilities and categorical
beliefs can be found in the literature (e.g., Spohn, 1988; Hunter, 1996; Kaplan, 2005). For
technical discussions of probability and various alternative representations of uncertainty,
we refer the reader to Halpern (2003).

As previously mentioned, we want for it to be possible for beliefs to be changed by
observations. The belief revision literature, following Alchourrén et al. (1985), has been
concerned with modelling changes of categorical beliefs given new information. (Much of

this literature is concerned with a somewhat more general and abstract setting than ours,
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where beliefs are revised to accommodate arbitrary sentences.) In order to specify how
beliefs can change and be retracted over time, some further structure beyond the possible
worlds model is needed. An ordering on possible worlds can be used to govern how beliefs
get revised, by having the agent’s new beliefs determined by the top worlds (according to
the ordering) that are consistent with the new information (Grove, 1988). The ordering
can be thought of as indicating which worlds are more plausible than others. A revision
of beliefs can be accomplished by just having the agent’s observations cause worlds in
which the observation is not true to become inaccessible (Friedman and Halpern, 1999a,b;
Shapiro et al., 2011).!

In this thesis, we build on the framework of Shapiro et al. (2011), whose model of
belief in the situation calculus extends Scherl and Levesque’s (2003) by incorporating
plausibility and so allows for belief revision. Our concern is with how to specify the
plausibility ordering using a logical theory. The plausibility ordering provides the basis
of how the agent initially calculates what it believes, and its beliefs after actions. What we
propose is to define the ordering by counting certain properties of situations, indicated
by distinguished fluents. We call these fluents “abnormality” fluents, after McCarthy
(1986), though to be clear, what we are measuring is subjective plausibility to the agent,
which may differ from normality.? The most plausible situations are those with where
the abnormality fluents are minimized. By referring to abnormality fluents in appropriate
ways in an action theory, an axiomatizer can specify the plausibility of various things.
Importantly, in writing such a theory, the axiomatizer does not just specify what the

agent believes, but also less plausible alternatives that the agent considers possible.

Thesis statement Measuring the plausibility of a situation by counting the number of
abnormalities contained within it allows for a perspicuous way of representing revisable
beliefs about various aspects of a dynamic environment, including its state, the effects
and preconditions of actions, and the behavior of environment processes.

We should note that the way we “count” abnormalities is a little more complicated
than we’ve explained so far, as we allow for abnormalities to have associated priority levels
(also an idea from McCarthy (1986)). This can make it easier to axiomatize domains. For
example, if a flying saucer were to arrive and abduct a person, should that correspond
to the existence of one abnormality or two (or many)? The important thing may be that
those events are much less plausible than everyday things, and so should be associated

with (at least one) high priority abnormality.

!There are also more complicated approaches, where the ordering itself gets changed by revisions
(e.g., Darwiche and Pearl, 1997).
2The relationship between normality and plausibility is discussed by Boutilier (1994).
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This thesis is mostly at the level of a specification of how an agent should reason.
However to support future work in automating the reasoning process, in Chapter 4 we
have some results about a form of regression, a popular reasoning procedure for the
situation calculus. The situation calculus has been used in implemented robots (e.g.,
Burgard et al., 1999) and software agents (e.g., Mcllraith et al., 2001). The approach in

this thesis could potentially find a role in such applications.

1.2 Contributions

Below we give an overview of the technical content of the thesis. We divide the contribu-

tions into three parts, corresponding to chapters 3-5, respectively.

1.2.1 Specifying plausibility levels (Chapter 3)

Chapter 3 describes our way of assigning plausibility levels to initial situations in the sit-
uation calculus. Shapiro et al. (2011) had described how the changes in an agent’s beliefs
over time could be modeled in the situation calculus by associating plausibility values
with situations. However, Shapiro et al. did not provide any very convenient mechanism
for specifying the assignment of plausibility values to situations.

We extend their framework by measuring plausibility by counting the number of
“abnormal” atomic formulas true in a situation — more plausible situations have fewer
abnormalities, roughly speaking (we also allow for abnormalities to have priorities). How
plausible arbitrary formulas seem to the agent can be controlled by setting the epistemic
accessibility relation so that the only accessible situations are those where there is some
relation between abnormal atoms and other formulas.

Note that outside the context of beliefs, the idea of minimizing abnormalities has a
long history in circumscription (McCarthy, 1980, 1986), a technique for default reason-
ing. Default reasoning involves making assumptions (“by default”) so as to draw more
conclusions than those that are entailed (in classical logic). Circumscription can define a
form of entailment where, instead of considering what’s true in all models of the premises
(as in classical entailment), what’s considered is what’s true in the most “normal” mod-
els. For circumscription, the minimization of abnormalities was traditionally considered
in terms of set containment, but there also is a variant where (as in our work) abnormal-
ities are counted, cardinality-based circumscription (Liberatore and Schaerf, 1995, 1997;
Sharma and Colomb, 1997; Moinard, 2000).

We show how this approach for specifying plausibility levels avoids some issues with
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the rival method from Schwering and Lakemeyer (2014). Our approach allows for fea-
tures that independently contribute to the plausibility of a situation to be easily de-
scribed (avoiding the so-called “drowning problem”). Also, our approach allows for a
(countably) infinite number of plausibility levels to be described. We also prove a result
on how cardinality-based circumscription generalizes a form of lexicographic entailment
(Benferhat et al., 1993; Lehmann, 1995), another default reasoning technique.

Finally, we consider a couple ways to extend our work in different directions. First,
we consider allowing what’s abnormal to change over time. This provides a simple way
of representing the plausibility of exogenous events, though it also leads to some coun-
terintuitive results. We will return to modelling exogenous events in Chapter 5. In the
second extension, we propose action theories which allow the agent to have incorrect
knowledge about the effects of actions. Our main result for them is that they mostly
follow the postulates for belief revision proposed by Alchourrén et al. (1985) (the “AGM

postulates”).

Summary of contributions in Chapter 3

e We propose counting abnormalities as a way of defining plausibility levels within

the framework of Shapiro et al. (2011), and formalize this using second-order logic.

e We show how this approach avoids some issues with the rival method for specifying

plausibility levels from Schwering and Lakemeyer (2014).

— Our approach allows for features that independently contribute to the plausi-

bility of a situation to be easily described.

— Our approach allows for a (countably) infinite number of plausibility levels to
be described.

e We prove a result on how cardinality-based circumscription generalizes a form of

lexicographic entailment, another default reasoning technique.

e We show how changing abnormalities can be used to assign plausibilities to the

occurrence (or non-occurrence) of exogenous actions.

e We consider action theories which allow the agent to have incorrect knowledge
about the effects of actions, and have a proof of how closely they follow the AGM

postulates for belief revision.
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1.2.2 Changing beliefs about domain dynamics (Chapter 4)

Chapter 4 applies the approach of specifying plausibility levels with abnormalities to
describing the behavior of actions — their effects, preconditions, and the sensing informa-
tion they provide to the agent. In particular, we focus on how theories can be written
so as to control how general of conclusions an agent should draw from observations. To
illustrate, we will propose a formal setting in which at one point an agent can believe (a

formalization of)
If T (try to) pick up anything, I will be holding it. (1.1)

and then, after sensing its failure to pick up a cup, believe

If T pick up anything, I will be holding it — with the

1.2
exception of that one cup that one time. (12)

After a second time failing to pick up the cup, the agent can conclude
If I pick up anything, I will be holding it, unless it’s that (1.3)

cup.

Finally, after trying to pick up another object also doesn’t result in it being held, the
agent can conclude that

If T pick up anything, I will be holding it as long as it’s (1.4)

not slippery (and those two objects were slippery).
We suggest a format for writing action theories so as to easily specify how much the agent
should change its beliefs, and so are able to formalize the example above (in §4.4). In
particular, we suggest patterns (using abnormalities) to follow when writing the axioms
describing action effects, so that the agent can, as the result of unexpected observations,
make the sorts of generalization seen in the example: that there was a one-time exception
to the expected action effect, that the action behaves differently with respect to particular

objects, or that the action behaves differently with respect to particular classes of objects.

More generally, we show that when axioms describing domain dynamics are written
to refer to abnormalities, in some cases the agent will believe “normalized” axioms that
don’t refer to abnormalities. We show how our framework also allows for changing beliefs
about the precondition axioms that specify when actions are possible to execute, and the
sensing axioms that describe how sensors work. This means that, for example, the agent

can compare the results from two sensors to conclude that one is broken.
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Finally, we provide a result about how (potentially changed) beliefs about action
effects can be incorporated into regression (Reiter, 2001, §4.5), a formula-rewriting pro-
cedure that can simplify theorem-proving. This suggests potential computational appli-

cations of our work.

Summary of contributions in Chapter 4

e We prove that (in some cases) when the axioms describing domain dynamics are
written to refer to abnormalities, the agent will believe “normalized” axioms that

don’t refer to abnormalities.

e We propose patterns to follow when writing axioms about actions effects, in order
to control how general of conclusions the agent draws about the behavior of actions

from unexpected observations.
e We also show how our theories can be used to model changing beliefs about

— the results of sensing, and

— the preconditions of actions.

e We describe how to apply regression with our theories, including how to use beliefs

about action effects within the regression procedure, and prove its correctness.

1.2.3 Environment processes and knowing-how (Chapter 5)

People’s beliefs about the events occurring around them inform their understanding of
the current state of the world, what has happened in the past, and what will happen in

the future, as illustrated by the following everyday examples:
e A person goes to a meeting and expects to see the other invitees.
e Night is expected to follow day.
e A customer at a restaurant expects to be served what they ordered.

These sorts of beliefs are also important for people’s ability to accomplish goals (e.g.,
after placing an order, the restaurant customer believes that to obtain food, it will now
be sufficient to wait). In this chapter, we view such beliefs as coming about because it is
also believed that certain exogenous processes (that is, processes that are external to the

agent) are taking place.
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We propose a logical account of the beliefs of an agent in the presence of ongoing
exogenous processes. We also give a formalization of knowing how to achieve goals in
such a setting, defining knowing how in terms of belief. This allows for changes of the
agent’s beliefs about what it knows how to do.

We continue to define belief as truth in the most plausible accessible situations, but
use an accessibility relation which is defined using a program that represents knowledge
about ongoing processes. The idea is that accessible situations must be ones that could
have been reached by following the program. The program is written in the ConGolog
programming language (De Giacomo et al., 2000), a standard language to use with the
situation calculus. The actions that constitute a run of the program may include actions
by the agent itself or by other entities, and are not necessarily observable to the agent.
Note that Kelly and Pearce (2015) had suggested an accessibility relation like this as
future work.

ConGolog programs can be non-deterministic, giving one way to represent uncertainty
about the various things that are happening concurrently in the environment. Further-
more, by having the ConGolog program refer to abnormalities within its branching con-
ditions, we can have that the agent considers some execution traces more plausible than
others, and the agent will be able to revise its beliefs about what’s going on. We prove
that in some cases, the agent will believe that a “normalized” program that doesn’t refer
to abnormalities is running (analogously to how in Chapter 4 we prove that the agent
may believe normalized dynamics axioms).

The example about ordering in a restaurant that we gave above recalls early work
in Al on scripts (Schank and Abelson, 1975), which are representations of knowledge
about what typically happens in common situations (ordering food in a restaurant is the
best-known example). This sort of knowledge is not naturally represented in a traditional
action theory in the situation calculus, which is focused on describing what changes are
possible, not on what changes will happen most plausibly over extended intervals.

Returning to the topic of goals, our formal definition of “knowing how” generalizes a
definition by Lespérance et al. (2000) to take exogenous processes into account. In later
work, Lespérance et al. (2008) had considered knowing-how in the context of an exogenous
process, and we borrow some aspects of their approach. However, they did not model
false beliefs or plausibility, and so could not, for example, formalize an agent revising
its beliefs about what it knows how to do. We also formalize a version of knowing-how

which describes goals that can be achieved with sequential plans.

Summary of contributions in Chapter 5
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e We present an approach to modeling defeasible belief in the situation calculus where
the accessible situations over time are constrained to be reachable by following a

ConGolog program.

e We prove that under some conditions, if the ConGolog program that’s running
refers to abnormalities, the agent will believe that a simpler “normalized” program

that doesn’t refer to abnormalities is running.

e We introduce a definition of knowing-how in terms of belief, that takes into account

both how beliefs may be false and the running of exogenous processes.

— We prove that this definition generalizes Lespérance et al.’s (2000), among

other properties.

— We also formalize a version of knowing-how which describes goals that can be

achieved with sequential plans.

— Our approach supports revision of beliefs about knowing-how.

1.3 Structure of the thesis

In Chapter 2, we provide technical background on the situation calculus, formal models
of belief, and belief revision. Further related work that is relevant to particular later
chapters is included in them. The three main technical components of the thesis, which
were described in the previous section, are split among Chapters 3, 4, and 5. Chapter 3
describes how counting abnormality predicates can be used to establish a plausibility
ordering on situations, and the advantages of this approach. Chapter 4 applies that
technique to describing the plausibility of different domain dynamics. Chapter 5 considers
exogenous processes and what the agent can be said to “know how” to do. Note that
Chapters 4 and 5 are mostly independent of each other (and so it is not necessary to read
Chapter 4 before Chapter 5). Finally, in the conclusion (Chapter 6) we suggest possible

future work.



Chapter 2

Background

2.1 Introduction

This chapter provides background on formal models of action, knowledge and belief, and
belief revision. We will assume familiarity with the basics of first- and second-order logic
(see for example the textbook by Enderton (2001)). Note that except where otherwise
specified, we are assuming a single-agent setting, so any beliefs are those of that agent.
We could also think of all actions as being performed by that agent, though that makes
less difference. Note that in §3.5.1 and throughout Chapter 5 we will explicitly distinguish
between endogenous actions (by the agent) and exogenous actions. A couple further topics
relevant to this thesis will be introduced in later chapters — non-monotonic reasoning in

Chapter 3, and “knowing how” in Chapter 5.

In §2.2 we discuss modelling action and change, focusing on the situation calculus
(§2.2.2). As mentioned in Chapter 1, the situation calculus is a language in second-
order logic, in which the behavior of actions is described using an action theory, and such
theories are typically handcrafted by a human axiomatizer. We describe the vocabulary of
the situation calculus and the form that action theories take in some detail. We also cover
calculating entailments of action theories. Finally, we discuss a programming language

designed for use with the situation calculus, which we will apply in Chapter 5.

We then review how the knowledge and beliefs of agents have been formally modelled
(including in the situation calculus) in §2.3. Finally, in §2.4 we review the revision of
beliefs, and again consider how that has been modelled in the situation calculus. The
approach to modelling belief in terms of plausibility due to Shapiro et al. (2011) that is
described in §2.4.2 will be the starting point for the later chapters of this thesis.

11
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2.2 Formal theories of action and change

There have been a large number of formalisms for reasoning about action and change
proposed. We give a brief overview of a sample of them in §2.2.1 before describing in

detail in §2.2.2 the one that we will be using in this thesis, the situation calculus.

2.2.1 Overview

Here we consider some commonly used formalisms for reasoning about action and change.

Situation calculus The situation calculus (McCarthy, 1963; McCarthy and Hayes,
1969; Reiter, 2001), which we will discuss in much more detail in §2.2.2, is one of the old-
est logical formalisms for describing action and change. The situation calculus describes
change in the world with fluents, predicates that take a situation argument. A situation
was originally conceptualized as “the complete state of affairs at some instant of time”
(McCarthy, 1963), but in Reiter’s version of the situation calculus (which will be used
by this thesis), situations are histories of actions. Some of the historical development of
the situation calculus is described by Lin (2008). There also are versions of the situa-
tion calculus using modal logic (Lakemeyer, 2010; Lakemeyer and Levesque, 2011), in
which there are modal operators corresponding to actions, and situations are part of the

semantics but not represented by terms in the language.

Fluent calculus The fluent calculus (Thielscher, 1998, 1999) is similar to Reiter’s
version of the situation calculus, but additionally has objects representing states of the
world. The language includes a function mapping situations (sequences of actions) to
states. The behavior of actions can be described with “state update axioms” that say
how the states in consecutive situations differ, which is argued to have computational

advantages compared to situation calculus action theories.

Event calculus The event calculus (Kowalski and Sergot, 1986) is an alternative to the
situation calculus. Unlike the situation calculus, in the event calculus time is modelled
in a linear way, i.e., there is a single timeline, instead of a branching tree with multiple

possible futures (corresponding to different action choices).

Action languages Various propositional “action languages” like A have been proposed
for describing transition systems (see Gelfond and Lifschitz, 1998). In A, the behavior of

actions is described using rules of the form A causes L if F’ where A is an action name,
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L is a literal, and F is a conjunction of literals. There are extensions of A that allow for

some other types of rules, e.g., to describe indirect effects of actions.

Temporal logics Another way of describing change over time is with a modal temporal
logic, with operators for temporal relations (e.g., that something holds forever). There
are various temporal logics, including linear temporal logic (LTL) (Pnueli, 1977) and
computation tree logic (CTL) (Clarke et al., 1986), which model linear and branching
time, respectively. The behavior of actions can be described using temporal logics, as
described by, e.g., Calvanese et al. (2002).

We now turn to further exploring the situation calculus.

2.2.2 The situation calculus

We follow the version of the situation calculus proposed by Reiter (2001). The situation
calculus is a language for describing actions and change, with semantics given by (multi-
sorted) second-order logic. The sorts are situations, actions, and objects. For convenience,
we let the natural numbers be a subsort of objects, and will suppose that arithmetic

operations have the standard interpretation.?

2.2.2.1 Notation

We now describe some notational conventions. Each of the classes of symbols we describe
below may also appear with decorations (e.g., subscripts). We will use s as a variable
of type situation; a and b as variables of type action; ¢ and j as numeric variables; and
x,1y, and z as variables for objects. Predicate symbols start with an uppercase letter, and
function/constant symbols with a lowercase letter. We will use uppercase Roman letters
like P and @ for second-order predicate variables (and sometimes as metalogical symbols
for predicates).

We use lowercase Greek letters like ¢ and 7 as metalogical symbols for formulas and
terms, and uppercase Greek letters like I' and A for sets of formulas. For a finite set
of formulas I', their conjunction can be written as A I'. We may abbreviate a (possibly
empty) sequence of terms 71, ..., 7, using vector notation as 7. A ground term does not

refer to any variables.

Quantifiers We also adopt these conventions regarding quantifiers:

IThis is just for convenience, since the natural numbers and arithmetic operations on them can be
characterized with axioms in second-order logic (Zach, 2020, §7.7).
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e Following Reiter (2001), we will sometimes use the notation of putting a dot after
a quantifier, as in Vz. ¢, to indicate that that quantifier has the widest possible

scope.

o We will sometimes leave outer universal quantifiers on sentences implicit, e.g., using

o(z) to stand for Vx. ¢(z), though not for second-order quantifiers.

e We use V¢ to denote the universal closure of a formula ¢, i.e., the sentence V. ¢,

where 7 is the sequence of all free variables in ¢.

Model theory

We will typically use J as a symbol for an interpretation, which is a pair (D,Z) where

e D is the domain (a set of entities, which can be partitioned into the different sorts

— situations, actions, and objects), and

e 7 is the mapping which assigns predicate symbols to subsets of the domain and

function symbols to functions on the domain.

(Note that this use of “domain” is distinct from how the word is sometimes used infor-
mally for an environment, e.g. a microworld in which blocks can be picked up.)

We will use p for a variable assignment, which maps first-order variables to objects
in the domain, second-order predicate variables to subsets of the domain, and second-
order function variables to functions on the domain. We use J, u = ¢ to indicate that
the formula ¢ (possibly including free variables) is satisfied by the interpretation J and
variable assignment u. (Note that if ¢ has no free variables, its satisfaction does not
depend on the variable assignment.) An interpretation is said to be a model of a sentence
(or set of sentences) if it makes that sentence (every sentence in the set) true.

The |= symbol is also used for entailment. A set of sentences I' entails a sentence ¢,
written I' = ¢, if every model of T' is also a model of ¢. The notion of entailment is
central to using the situation calculus, in which the entailments of action theories are
of interest. (For example, an action theory might entail that a particular goal can be
achieved by performing a certain sequence of actions.) This can be contrasted with other
uses of logic, like in the problem of model checking, in which what’s investigated is what
a specific interpretation satisfies (see, e.g., Grohe, 2001). In this thesis, most of our uses
of interpretations will be in service of proving things about entailments.

Sometimes, we will want to talk about objects in domains, for which we will use as

metalogical symbols the same symbols we use for variables of the appropriate sort, but
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decorated with a circumflex or “hat” (). For example, we may use § to stand for a
situation object, or a to stand for an action object. Note that (unlike some other writers)
we are not in general assuming any relationship exists between a particular logical variable
like s and the hatted metalogical symbol 5. In particular, unless specifically mentioned
we are not assuming that § is the situation denoted by s (with respect to a given variable
assignment).

Where no confusion can arise, we may refer to terms of a given sort by the name of
what they denote, e.g., we may call a situation term like Sy a situation. At other times
(in proofs involving interpretations) we will need to distinguish between situation terms

and situation objects, and similarly for other sorts.

2.2.2.2 The language of the situation calculus

In the situation calculus, properties that can change (e.g., whether an object is being
held) are modelled using fluents?, predicates (or functions) whose last argument is a
situation. For example, Holding(z, s) could represent the property of the agent holding x
in situation s. We may informally express Holding(z, s) by saying that Holding(x) is true
in s. We will assume that there are only finitely many fluent symbols.

Changes are brought about by actions. We’ll assume that there are finitely many ac-
tion function symbols, that is, symbols like pick and drop (where pick(x) is the action of
picking up z, and drop(z) is the action of dropping z). In the situation calculus, situations
represent histories of actions performed starting from an initial situation. Time is mod-
elled as a branching structure: from a situation s, for any action a, do(a, s) is the future
situation that results from performing a in s. We use the abbreviation do([a4, ..., agl, s)
for do(ag,do([ay,...,ax_1],$)), i.e., for the successive application of actions ay,...,ay
starting from s (note that do([ ], s) is just s itself).

The constant Sy denotes the actual initial situation — the root of the situation tree
(note that it is an exception to the convention that constants be lowercase). In some
versions of the situation calculus, it is the only initial situation. Others additionally have
alternative initial situations (so situations are organized as a forest rather than a single
tree), and later chapters of this thesis will use such a version.

The special predicate Poss(a,s) is used to mean that the action a is possible to
execute in situation s. Note that situations whose histories include actions that were
not possible to execute still exist; Reiter (2001, p. 53) called them “ghost” situations. In

contrast, situations in which all the actions performed were possible (at the time they

2McCarthy (1963) explained the choice of terminology by saying that “The term was used by Newton
for a physical quantity that depends on time”.
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were executed) are called legal or executable.

The special binary predicate s T s means that s’ is the situation resulting from
applying one or more actions in s. Note that s C s’ can be defined as an abbreviation for

s C s’ Vs =s'". Legality can be defined using it:

Definition 2.2.1 (Legal).
Legal(s) ' Va, s*. (do(a, s*) C s) D Poss(a, s*)

Some papers using the situation calculus have featured an ordering relation on situ-
ations that is like C but requires that the actions executed be possible. We can define

that as an abbreviation:

Definition 2.2.2 (s < ¢').

s< s dof s C s AVs" a. (s Cdo(a,s") C s') D Poss(a, s*)

Some versions of the situation calculus include further special symbols, for example to
represent the results of sensors (we will return to that when we discuss modelling beliefs
in the situation calculus). We can use the abbreviation Init(s), defined below, to say that

s i1s an initial situation.

Definition 2.2.3 (Init).

Init(s) % —3a, 5. s = do(a, §)

Shapiro (2005) used a root(s) function, whose value was the initial situation preceding

s, which we will also sometimes find useful.

Finally, we will sometimes make use of the special situation term “now”. Intuitively
it acts as a placeholder, to be syntactically substituted with another situation term
that denotes the current situation (later we’ll see how what’s “current” is determined in
different cases). Given a formula ¢ referring to now, we will write ¢[s] for the formula that
is like ¢ but substitutes s for now. Furthermore, sometimes we may follow the convention
of writing formulas in which every situation argument is now in a “situation-suppressed”
way by omitting the situation arguments, e.g., writing F'(Z) for F(Z, now). We will see
now used within ConGolog programs (§2.2.2.5) and beliefs (§2.3.2).
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2.2.2.3 Action theories

While we have informally described the meaning of elements of the language, like situation
terms and the C symbol, it’s important to remember that since we are just using standard
second-order logic, we need azioms to give meaning to them. Furthermore, when dealing
with any particular domain, e.g., the classic “blocks world” where an agent can pick up
objects, we need axioms describing that environment so that we can see what is entailed
(e.g., whether a particular sequence of actions will construct a tower). The standard way
of axiomatizing domains in the situation calculus is by using some variation of basic
action theories (Reiter, 2001).

Basic action theories

A basic action theory consists of the following sets of axioms:

e domain-independent foundational axioms, that describe the structure of the tree of

situations (in basic action theories, there is only one initial situation);
e initial state axioms, which describe Sy;

e successor state axioms (SSAs), specifying for each fluent how its value in a non-

initial situation depends on the previous situation;
e precondition axioms that describe when actions are possible to execute,
e and unique names axioms for actions.

We will describe each of these types of axioms in turn.

Foundational axioms The four standard foundational axioms, given by (Reiter, 2001,

p. 50), are
do(ay, s1) = do(ag, s2) D [a1 = ag A 51 = ss (2.1)
VP. (P(So) A [Va, s. P(s) D P(do(a, s))]) D Vs. P(s) (2.2)
—(s T So) (2.3)
sCdo(a,s) = (sCsVs=y¢) (2.4)

The first foundational axiom, Equation 2.1, specifies how any situations with different
action histories are distinct. Equation 2.2 is a second-order axiom (note that P is a

second-order variable, for a predicate that takes a situation argument) sometimes called
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the “induction axiom”, and is the only second-order axiom used in basic action theories.
It says that there are no situations other than those that are the result of doing zero or
more actions in Sg (more literally, it says that any set P of situations that includes Sy
and its successors includes all situations). The last two foundational axioms just describe
how the [ relation works. It can be shown that in any model of the foundational axioms,
the situation objects can be organized as the nodes in a tree, where the denotation of S
is the root, and the edges are actions (Reiter, 2001, p. 51).

To describe the other, domain-specific, components of action theories, we first intro-
duce the notion of uniform formulas. Intuitively, a formula ¢ is uniform in a situation

term o if ¢ describes only the situation o.

Definition 2.2.4 (uniform formula (Reiter, 2001, Definition 4.4.1)). A formula

@ is uniform in a situation term o if ¢
e does not mention Poss or [,
e does not quantify over situations,
e does not mention equality on situations,
e and o is the last argument to any fluent mentioned by ¢.
Other special predicates that we introduce later, like B(s', s) and SF(a, s), we will also

not allow in uniform formulas.

Initial state axioms The initial state axioms are uniform in Sy. They describe the ini-
tial state of affairs, though not necessarily completely. For example, there might be a con-
stant ¢ such that the initial state axioms neither entail Holding(c, Sy) nor —Holding(c, Sp).

Indeed, the set of initial state axioms can be empty.
Successor state axioms An SSA for a relational fluent F' is a sentence of the form
F(fv dO((Z, S)) = ¢F(fv a, S)

where ¢ is a formula uniform in s whose free variables are among 7, a, and s. The
SSA describes how the value of F' in a non-initial situation is determined by the action
that just happened and the last situation. For example, the relational fluent Holding(x, )
might have the SSA

Holding(z,do(a, s)) = a = pick(z) V (a # drop(z) A Holding(z, s)), (2.5)
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saying that x is held if it was just picked up or if it was already held and not just dropped.

Similarly, an SSA for a functional fluent f is a sentence of the form

f(Z,do(a,s)) =y = ¢4(Z,y,a,5)

where ¢y is a formula uniform in s whose free variables are among &, y, a, and s. In some
cases, a functional fluent’s SSA can be written in a simplified form; e.g., if f never changes,
then we could write f(Z,do(a,s)) = f(&,s) instead of f(Z,do(a,s)) =y = f(Z,s) =yv.

Precondition axioms A precondition axiom is a sentence of the form
Poss(a(Z),s) = ¢a(T,s)

where « is an action function symbol (i.e., a(Z) is a term of type action) and ¢,(Z, s) is a
formula uniform in s whose free variables are among ¥ and s. For example, to model the
limited carrying capacity of a robot the axiomatizer might want for it only to be possible

to pick up an object if nothing is currently being held:
Poss(pick(z),s) = Vy. ~Holding(y, s).

Unique names axioms for actions The set of these axioms includes, for any two

distinct action function symbols aq and s,

Oél(f) # 042(?7)

and, for any action function symbol a;,

[01(Z) = en ()] O [7 = 7.

The purpose of the unique names axioms is so that, for example, we can write an action
theory using the SSA in Equation 2.5 without worrying about there being models of
the theory where pick(z) and drop(x) denote the same action (note that in such models,
objects that are held would always remain held.)

To wrap up, the formal definition of a basic action theory follows:

Definition 2.2.5 (basic action theory (BAT) (Reiter, 2001, Definition 4.4.5)).
A basic action theory (BAT) is a set of axioms ¥ = Yound U Lssa U Lpre U X U Xyna where

® Yound is the set of the four foundational axioms;
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e X, is the set of successor state axioms, one for each fluent;

® Y, is the set of precondition axioms, one for each action function symbol;
e Y is the set of initial state axioms;

e and X,,, is the set of unique names axioms for actions.

Furthermore, if there are functional fluents, ¥ must obey the consistency property from
(Reiter, 2001, p. 60).

Theories with multiple initial situations

Basic action theories have only one initial situation. Having multiple initial situations
will be useful when formalizing belief (which we will discuss in §2.3.2), as they can
represent ways the agent believes the world could be. Multiple initial situations require
some changes to the foundational axioms, as described by Levesque et al. (1998, §7). The
second-order induction axiom (Equation 2.1) has to be replaced by one that quantifies

over all initial situations:
VP. ([Vs. Init(s) D P(s)] A [Va, s. P(s) D P(do(a, s))]) D Vs. P(s). (2.6)
Furthermore, we need this new axiom (similar to Equation 2.3):
Init(s") D ~(s C &). (2.7)

In any model of the revised foundational axioms, the situation objects are organized in
a forest (i.e., a collection of trees, each rooted at a different initial situation).

Perhaps less obviously, we may also want a foundational axiom describing what initial
situations exist. Levesque et al. (1998, §7) suggested having an initial situation for every
possible combination of fluent values, and gave a second order axiom for that. A version
is given below. Suppose that the relational fluents of the language are Fi, ..., F,, and the
functional fluents are fi, ..., f,,. Then we have the following axiom, where P, ..., P, are

second-order predicate variables, and pq, ..., p, are second-order function variables.

VPi,...,Py,p1, ..., Dm 3s. Init(s) A /\Vf. Fi(%,s) = Py(%)

i=1

A [/\Vf fi(Z,5) = pi(Z)
i=1
(2.8)
Lakemeyer and Levesque (1998) suggested a foundational axiom requiring the existence of

even more initial situations, where actions behave differently. Some authors, like Shapiro
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(2005), allow for initial state axioms to describe situations other than Sy.
The root(s) function that we mentioned previously can be useful when dealing with
multiple initial situations. To define that we would need another foundational axiom, for

example,
(root(s) = s*) = Init(s") As* C s. (2.9)
Shapiro (2005, Axiom 2.2.6) gives an alternative (recursive) axiom for root.

2.2.2.4 Calculating entailments of action theories

The situation calculus is a language in second-order logic — and most parts of action
theories are first-order — so general-purpose theorem-proving techniques (for example,
those found in the first-order theorem prover Vampire (Kovécs and Voronkov, 2013))
can in principle be applied to reason about the logical consequences of action theories.
However, researchers investigating the situation calculus have apparently not viewed such
as being practical enough, though this is rarely explicitly stated (but see Brachman and
Levesque, 2004, pp. 310-311).

Before we discuss situation-calculus-specific reasoning mechanisms, let us first note
that there are some metalogical results showing that for a broad class of sentences,
whether a BAT entails a member of this class can be determined without using the

second-order induction axiom. Consider the following definition:

Definition 2.2.6 (s sentence (Pirri and Reiter, 1999, Definition 5.2)). A sen-
tence ¢ is said to be an ds sentence iff it has a prenex normal form with no universal

quantifiers over situations, i.e., it can be equivalently written as

5(351)52(352) T (%Qézﬂ

for some k > 0, where each &; is a sequence of zero or more quantifiers that are not over

situations, and v contains no quantifiers.

We should note that any first-order formula can be rewritten into an equivalent for-
mula in prenex normal form, through some rewriting rules that move quantifiers around
(Enderton, 2001, p. 160). The significance of s sentences is their role in the following
proposition, in which we refer to the second-order induction axiom (Equation 2.2) as

“induction”.

Proposition 2.2.1 (Pirri and Reiter, 1999, Theorem 4(1) and 4(3)). Suppose
that X is a BAT and ¢ is a first-order ds sentence. Then
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e ¥ | ¢ if and only if X\ {induction} | ¢.

e If ¢ does not mention the symbol C nor compare situations for equality, then ¥ |= ¢
if and only if Xes U Bpre U Xo U Ena = ¢

So we see that for ds sentences, no second-order reasoning is needed to determine if
they are entailed by a BAT.

As previously mentioned, there has been work on situation-calculus-specific reasoning
mechanisms (e.g., Kelly and Pearce, 2010; Yehia et al., 2012; Ewin et al., 2015). One com-
monly considered reasoning task is the projection problem, the problem of determining
whether a formula describing the situation resulting from performing some actions in Sg
is entailed by an action theory (Reiter, 2001, §4.6.2). One well-known technique for pro-
jection is progression (Lin and Reiter, 1997; Vassos and Levesque, 2013), which involves
iteratively updating the part of an action theory describing Sy to instead describe the
resulting situation after performing an action. Perhaps the most popular technique for
projection in the situation calculus is regression, and we devote the rest of this section
to it (we will be using regression in Chapter 4).

Regression is a formula-rewriting procedure that can in some cases simplify theorem-
proving. Certain formulas, called regressable formulas, can be rewritten into formulas

that do not refer to any situations other than Sy, which may make them easier to prove.

Definition 2.2.7 (regressable (Reiter, 2001, Definition 4.5.1)). A first-order for-
mula ¢ is regressable if all of the following hold:

1. for each term of sort situation mentioned by ¢, the term has the syntactic form
dO(& s So)

2. for each atom of the form Poss(cv, o) mentioned by ¢, a has the syntactic form o (f)

for some action function symbol o/
3. ¢ does not quantify over situations
4. ¢ does not refer to C, nor compare situations for equality

A slightly broader definition of regressable was used by Pirri and Reiter (1999), but
this suffices for our purposes. One easy observation to make (which oddly does not seem

to have been explicitly stated in the literature) is the following:

Observation 2.2.1 (the regressable sentences are a subset of the Js sentences).
Since regressable sentences do not contain situation variables, they have prenex normal

forms which do not have quantified situation variables at all, and so are ds sentences.
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It follows that Proposition 2.2.1 applies to regressable sentences, yielding the following

corollary.

Corollary 2.2.1. Suppose X is a BAT and ¢ is a regressable sentence. Then
Y | ¢ if and only if ¥\ {induction} |= ¢.

Furthermore, since the definition of “regressable” that we're using does not allow refer-

ences to C or comparing situations for equality,
Y = ¢ if and only if Ye, U Epre U X U Eyna = ¢

So the regressable sentences are a class that are simpler to prove, in the sense that not
all axioms from a BAT are needed to entail them. Pirri and Reiter (1999, Definition 4.3)
defined a regression operator R [¢] which rewrote a regressable formula ¢ into one that
was uniform in Sg. The main component of regression rewriting is repeatedly replacing
subformulas of the form F(7,do(a, o)), where F' is a fluent, with ¢p(T, @, o), where ¢p
is from the RHS of the SSA for F. (Functional fluents are handled in a similar but more
complex way.) This ultimately removes all references to situations other than Sp.

The central theoretical result about regression is the following proposition, which has

been called the “regression theorem”:

Proposition 2.2.2 (Pirri and Reiter, 1999, Theorem 3(2)). Let ¥ be a BAT and
¢ a regressable sentence. Then ¥ = ¢ iff ¥y U X0 = R [¢)].

Intuitively, the regression procedure exhausts the extent to which SSAs and precondi-
tion axioms are needed for proving the entailment of a regressable sentence. (Of course,
in the general case the remaining entailment problem is still undecidable.) Regression
“forms the basis for many planning procedures and for automated reasoning in the situ-
ation calculus” (Reiter, 2001, p. 61).

Remark 2.2.1. Regression is commonly discussed in the literature in a way which could
be read as suggesting (incorrectly) that the significance of regression is in removing the
need for the second-order induction axiom. For example, Fritz (2009, p. 15) claims that
“Although any situation calculus action theory is second-order, many reasoning tasks
can be reduced to first-order theorem proving by using regression”. Even Reiter (2001,

p. 66) writes that the regression theorem

[...] reduces the evaluation of regressable sentences to a first-order theorem-
proving task in the initial theory |[...] together with unique names axioms for
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actions. [...] In particular, none of the foundational axioms [...] are required,
and this means especially that the second-order induction axiom is not re-
quired.

That statement leaves out the fact that the induction axiom would not have been required
to prove the original regressable sentence either, as was pointed out in Corollary 2.2.1.
The work done to eliminate the need for induction is done by the definition of regressable,

not the procedure of regression.

2.2.2.5 ConGolog

In the situation calculus as we’ve described it so far, all the actions are treated as being
primitives, as opposed to being composed of other actions. There is not in general, for
example, an action corresponding to the execution of two other actions in sequence. To
describe complex arrangements of actions, a programming language can be used. Con-
Golog is a programming language, designed for use with the situation calculus, introduced
by De Giacomo et al. (2000). It extends the original Golog (Levesque et al., 1997) with
support for concurrent processes. We will be using ConGolog in Chapter 5.

In ConGolog, programs are represented as another type of object (in addition to
situations, actions, and objects), which allows them to be quantified over (this is used in
axiomatizing how they behave). ConGolog programs can refer to (encodings of) formulas
and terms. These expressions make use of the situation term “now” (that we introduced
on page 16) to refer to the current situation. To illustrate, a program can include a

conditional statement
if ¢ then ¢, else ¢, endIf

which, if executed in a situation s, will result in the program J; being executed if ¢[s] is
true, and the program ds being executed otherwise.

Below we list some of the constructs of ConGolog, and what executions they produce.
Note that any execution ultimately consists of a (possibly empty) sequence of primitive
actions being performed. In these constructions, ¢ corresponds to a formula, a to an

action term, and ¢; and dy are arbitrary ConGolog programs.

nil nothing happens
o the primitive action «/[s] gets executed, where s is the current situation
o7 the process blocks until reaching a situation s where ¢[s] is true
01; 09 01 and d, are executed in sequence

RS either 0; or d is executed (non-deterministically)
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x. 0(x) d(z) is executed with non-deterministic choice of x
o J is executed 0 or more times (non-deterministically)
if ¢ then ¢, else ¢, endIf conditional branching
while ¢ do § endWhile while loop
91 || 02 concurrent execution of d; and d,
1)) 0o concurrent execution, with higher priority for d;

(ConGolog also includes procedures, but for the examples we'll see in this thesis it will

suffice to treat procedures as abbreviations.)

Concurrency is just the interleaving of steps from each of the involved processes, and
in prioritized concurrency, the higher priority process takes a step whenever there is a
next step it can take in the current situation. If one concurrent process reaches a ¢?
instruction in a situation where ¢[s] is not true, then that process is blocked — there is no
step it can take. A process is also blocked if the next primitive action it would execute

is not possible to execute in the current situation.

The semantics of ConGolog are given with two predicates, Trans(d, s, ¢’, ') and Final(d,
s). The first of these, Trans(d, s, d’, '), says that it’s possible to take a step in executing
0 from situation s and end up in situation s’, with the part of the program remaining to
be executed being ¢'. Final(d, s) says that § can legally terminate in situation s. These

predicates are characterized using axioms like the following:

Trans(nil, s,0’, s") = False
Trans(a, 5,8, s") = Poss(a[s]) A (6" = nil) A (s" = do(a]s], 5))
Trans([01; d2], 5,0, ") = (Final(dy, s) A Trans(da, 5,8, s')) V
36”. Trans(dy,,0",s") Ad" = [0"; 09
Trans((d1 ) d2),s,0",8') = 307. Trans(dy, 8,07, 8 ) Ad" = (87 ) d2) V
305, Trans((52, $,05,8 ) N0 = (01 ) 85) A —307. Trans(dy, s, 07, 8)

See the original paper (De Giacomo et al., 2000) for the complete list. Also, the
representation of programs as terms requires many axioms (and several other sort of

objects); again, see (De Giacomo et al., 2000) for details.

Finally, a predicate Trans® is defined as the reflexive transitive closure of Trans. So
Trans™ (9, s,0’, s’) means that situation s’ can be reached by following 0 or more steps of

the program 0 from s, with the program ¢’ left over to still run.

Note that different programs may be equivalent in the sense of having the same
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possible transitions. For example, it’s a consequence of the ConGolog axioms that
Trans®(if True then ¢ endlIf,s,d’,s") = Trans*(d,s,d’,s).

This allows us to simplify programs in some cases, which we make use of in Chapter 5.
Finally, aside from the constructs described above, we allow our language to contain
further terms that also denote programs, e.g., bobsFavoriteProgram might be a constant
for Bob’s favorite program. To illustrate, that might be used in an expression like the
following, which is a statement of equality between two terms of the program sort (for this

example, suppose that OwnedByBob(z, s) is a fluent and transfer2Bob(x) is an action).
bobsFavoriteProgram = while Jz. ~OwnedByBob(z) do 7x. transfer2Bob(xz) endWhile

We will call terms like the one on the RHS of this equality (but not the one on the LHS)

literal program terms.

Definition 2.2.8 (literal program term). We will say that a program term is a literal
program term if its syntactic form is built up entirely from the ConGolog constructs

(primitive actions, sequences, if-then-else, loops, etc.).

2.3 Formal models of knowledge and belief

We first consider how knowledge and belief have been formally modelled in general, before

going into detail on a way to model them in the situation calculus.

2.3.1 Overview

A standard way of representing knowledge and beliefs using logic has been the possible
worlds model, where what is believed is defined to be what’s true in a set of “accessible”
possible worlds (Hintikka, 1962). This is typically expressed using epistemic modal logics,
which borrow their semantics from modal logics of necessity (Kripke, 1963).

Modal logic extends propositional (or higher order) logic using modal operators, which
act on sentences. For example, logics of necessity typically include a O operator for
necessity, so that O¢ means that it’s necessarily the case that ¢. In epistemic logics,
there typically is a K operator for knowledge (or B for belief), so that K¢ means that ¢
is known.

Semantics for propositional modal logic can be given by a Kripke structure 9, which

includes a set W (whose elements are called “worlds”), a valuation function v mapping
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each w € W to a truth assignment, and an accessibility relation R C W x W. A sentence
that doesn’t refer to knowledge has its truth in w determined by the assignment v(w).

The truth conditions of knowledge at a world w (given 90) are defined by
MwpE=Ke if M w' ¢ for every w’ such that R(w,w’)

In the field of epistemology, a major topic is how knowledge should be defined (for
example, as justified true belief) (Ichikawa and Steup, 2018). However, many works in
logic do not require more properties of knowledge (compared to belief) other than that
what is known must be true (Fagin et al., 1995). Note that if the accessibility relation R is
reflexive, i.e., every possible world is accessible from itself, then what is known /believed
will necessarily be true. Furthermore, Al researchers often do not distinguish between
knowledge and belief. Segerberg (1999, footnote 2) said that “The distinction between
knowledge and belief is difficult to draw, and more often than not today’s modal logicians,
especially in the computer science camp, seem uninterested in trying to draw one.”

It’s common for logical accounts of knowledge and belief to feature introspection,

which comes in two varieties:
Positive introspection If ¢ is known, then it’s known that ¢ is known.
Negative introspection If ¢ is not known, then it’s known that ¢ is not known.

The properties correspond to simple mathematical conditions on the accessibility relation.
Positive introspection arises from the relation being transitive, and negative introspection
from the relation being Euclidean.® These properties, in particular negative introspection
for knowledge, are somewhat controversial (see, e.g., Halpern et al., 2009).

Another matter that has raised some philosophical controversy is how quantification
should interact with beliefs, in particular the subject of “quantifying-in” (Quine, 1956;
Kaplan, 1968). Quantifying into knowledge allows for a way of distinguishing between de
dicto and de re knowledge. This distinction is exemplified with the difference between
K (3z Spy(z)) (the agent knows that there is a spy) and 3z K(Spy(z)) (the agent knows
who some spy is). See (Hobbs, 1985, §4) for a discussion of whether this really captures
the meaning of “knowing who”.

Using quantification in modal logic also presents the choice of whether the domain
of quantification should be the same in all worlds. To illustrate a consequence of that,
consider the following formula schemas, versions of which were first considered by Barcan

(1946), after whom they are named.

3A binary relation R is Euclidean if, whenever R(z,y) and R(x,z), then R(y, ).
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Barcan formula: If for every z, ¢(z) is known, then Va ¢(x) is known, i.e.,

(Ve Ko(x)) > K(Va ¢(x)).

converse Barcan formula: If Yz ¢(x) is known, then for every x, ¢(z) is known, i.e.,

K(Vz ¢(z)) D Vo Ko(z).

All instances of the Barcan formula and converse Barcan formula are satisfied in a struc-
ture where the domain of quantification is the same in all worlds, but they may not be
true if the domain varies. See (Fitting, 1999) for further discussion.

It’s straight-forward to model the knowledge of multiple agents, by having multiple
accessibility relations. In a multi-agent settings, common knowledge can also be consid-
ered. A proposition ¢ is common knowledge to a group if everyone in the group knows
¢, knows that everyone in the group knows ¢, knows that everyone in the group knows
that everyone in the group knows ¢, and so on (see, e.g., Fagin et al., 1995).

The possible worlds account has disadvantages. According to it, an agent will know
all the logical consequences of its knowledge (for example, if ¢ is true at all accessible
worlds and so is ¢ D 1), then so will be ). This has been called the “problem of logical
omniscience” (Stalnaker, 1991). It means that we can’t accurately represent the limited
knowledge of people, or of physically realizable artificial agents — at least if we expect
the agents to be able to compute all their knowledge. There have been a variety of more
restricted forms of knowledge and belief suggested (e.g., Hintikka, 1975; Levesque, 1984;
Fagin and Halpern, 1988; Elgot-Drapkin and Perlis, 1990; Halpern et al., 1994; Liu et al.,
2004; Lakemeyer and Levesque, 2014; Klassen et al., 2015; Klassen, 2015; Lakemeyer and
Levesque, 2019; Solaki et al., 2019).

Finally, note that so far we’ve just been talking about knowing (or believing) that
something is true, or knowing the identity of an object. Another form of knowledge is

knowing how to do things. We will discuss that in Chapter 5.

2.3.2 In the situation calculus

Much as traditional modal logics of knowledge use an accessibility relation over possible
worlds, in the situation calculus knowledge can be defined in terms of an accessibility
relation over situations, as was shown by Moore (1980). Here we describe the approach
to that that comes from Scherl and Levesque (2003). They used action theories with

multiple initial situations (to serve as epistemic alternatives), and a predicate which we
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will call B(s', s) to mean that s is accessible from s. Note that the order of the arguments
to B was chosen to be consistent with fluents, and is the opposite from how accessibility
relations in modal logic are typically described.

A knowledge operator Know(¢, s) (“¢ is known in s”) is defined as an abbreviation,

Know(¢, s) oof

Vs’ B(s',s) D @[], (2.10)
where ¢[s] stands for the formula that is like ¢ but substitutes s for the special “index-
ical” situation term now (as we previously discussed with respect to ConGolog). (We
assume the variable introduced by the expansion of Know, here written as s’, does not
appear as a free variable in ¢). Again, we may suppress now arguments, e.g., writing
Know(F(x, now), s) as Know(F'(z), s). Note that unlike with ConGolog programs, there
is no encoding of formulas as terms involved in defining knowledge.

While Scherl and Levesque required what was known to be true, we will sometimes
use Know in cases where B isn’t reflexive. Note also that (of course) not all true things

have to be known, since there may be accessible situations where those things are false.

Remark 2.3.1. To illustrate the importance of using now within the Know operator,

note for example that for any fluent F', it follows from the definition of Know that
= VZ. F(Z,So) D Know(F(Z,Sp),So)-

It’s only by having the known formula depend on now that we can get interesting knowl-
edge (the agent in Sy doesn’t have to know whether F'(Z, now) is true, because they don’t
know that they're in Sp). So fluents now serve a second purpose: we may want to describe
properties like F' as fluents (i.e., taking a situation argument) even if they can’t change,

just so that the agent can fail to know whether they're true.

Remark 2.3.2. The domain of objects does not depend on the situation. A consequence
of that is that Scherl and Levesque’s account results in the Barcan and converse Barcan

formulas holding in all situations.

To allow the agent to learn about its environment, Scherl and Levesque allowed actions
to provide sensing information. To represent this, a predicate SF(a,s) can be used.*
Intuitively, executing an action a in s produces a binary sensing result, and SF(a, s) is

true iff that result is positive. The SF predicate can be described in an action theory with

4The SF predicate was introduced by Levesque (1996). Scherl and Levesque used a function instead
of a predicate and so did not restrict sensing results to be binary.
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an additional set of axioms (beyond those from Definition 2.2.5), sensing azioms, which

are sentences of the form
SF(a(Z), s) = ¢u(, s)

where « is an action function symbol and ¢,(Z, s) is a formula uniform in s whose free
variables are among 7 and s. Note that a sensing axiom is like a precondition axiom

except for referring on the LHS to the SF predicate instead of Poss.

To illustrate, the sensing axiom
SF(sense,s) = Jz. Holding(z, s)

says that the sense action senses whether anything is currently being held. If for a par-
ticular action function symbol o we don’t want it to provide any sensing information, we
can just set the sensing result to always be True, i.e., write SF(a/(Z), s) = True. We will

sometimes refer to actions which do provide sensing information as sensing actions.

Scherl and Levesque gave this SSA-like axiom for B:

B(s",do(a,s)) = [3s. B(s',s) A (s" = do(a,s")) A

(2.11)
Poss(a, s') A (SF(a,s") = SF(a, s))]

That is, for a situation to be accessible after performing an action a, that situation must
be the result of doing a in some other situation that was previously accessible, a must
have been possible to execute, and the sensing result of a must reflect the true value. We
will call Equation 2.11 the SSA for B even though, strictly speaking, it doesn’t match

the definition of an SSA since the RHS is not a uniform formula.

Note that this SSA means that the accessibility relation will be such that the agent
always knows exactly which actions have occurred (assuming that only initial situations
are initially accessible). More complicated accessibility relations which don’t require that
have also been proposed (see e.g., Shapiro and Pagnucco, 2004; Kelly and Pearce, 2015),

and will be considered later in this thesis.

Scherl and Levesque (2003, Theorem 6) showed that if any of various restrictions
— reflexiveness, Euclideanness, symmetry, or transitivity — is imposed on the initial ac-
cessibility relation (i.e., on what situations are accessible from initial situations), that
restriction will continue to hold after any number of possible actions (i.e., possible as
specified using Poss). Furthermore, Scherl and Levesque showed how the procedure of

regression (§2.2.2.4) can be extended to also regress formulas using the Know abbrevia-
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tion.

In the approach of Scherl and Levesque (2003), the SSAs, preconditions axioms, and
sensing axioms in the theory apply to all situations, so the agent always knows them. An
alternative approach, suggested by Lakemeyer and Levesque (1998) (and also followed
by other papers like (Schwering and Lakemeyer, 2014, 2015)), allows actions to behave
differently in different situations. The following definition is useful for describing their

work:

Definition 2.3.1 (relativized axiom). Let ¢(s) be such that Vs. ¢(s) is an SSA,
precondition axiom, or sensing axiom. Then the corresponding axiom relativized to o,

where o is situation term, is the formula Vs. (o C s) D ¢(s).

Intuitively, relativized axioms only constrain the behaviors of actions on the (sub)tree

rooted at o. Let us also introduce some notation, which we will find use for later:

Definition 2.3.2 (I":c). Let I" be a set of SSAs, precondition axioms, and/or sensing ax-
ioms. Given a situation term o, I relativized to o, written I":0, is the set of corresponding

axioms relativized to o.

For example, if Y, is a set of SSAs, then Y,:Sq is the set of corresponding relativized
axioms that only constrain the behavior of actions on the tree rooted at Sy. Lakemeyer
and Levesque suggested including SSAs, precondition axioms, and sensing axioms rela-
tivized to Sg in the action theory. Furthermore, they suggested having the agent believe
(potentially different) sets of SSAs, precondition axioms, and sensing axioms relativized
to now. This allowed for incorrect beliefs about dynamics to be represented in a simple
way. They also had a more complicated axiom (their Axiom F8) for describing what ini-
tial situations exist, so as to have initial situations from which actions behave in arbitrary

ways (so that the agent could consider those ways possible).

2.4 Belief revision

We have already considered change in knowledge, as Scherl and Levesque (2003) allowed
for an agent to gain information by sensing. However, in their approach there was no way
for the agent to retract conclusions. Since Scherl and Levesque assumed knowledge was
true, there didn’t need to be. However, when an agent has false beliefs, then it’s desirable
to be able to correct them. How beliefs should be revised is the topic of the field of belief
revision. A survey of the field was made by Peppas (2008). We will give a brief overview,

before describing how belief revision has been modelled in the situation calculus.



CHAPTER 2. BACKGROUND 32

2.4.1 Overview

Much of the traditional work in belief revision does not actually use epistemic logic, but
rather implicitly represents the beliefs of an agent as a set K of propositional formulas,
closed under logical consequence. The question is how that set of formulas should be
modified to incorporate new information (possibly inconsistent with what was originally
in the set). That is, what constraints should there be on K * ¢, the revision of K by a
(propositional) formula ¢?

Alchourrén, Gérdenfors, and Makinson (1985) proposed a set of postulates that a
rational belief revision operator * should follow. These have been called the AGM postu-
lates, after the initials of the authors. The postulates have not been universally accepted,
but are very influential. We list them below (with names from (van Ditmarsch, 2005)).
Note that K + ¢, called the expansion of K by ¢, is just the closure under logical conse-
quence of K U {¢}.

(AGMx1) K * ¢ is deductively closed type
(AGMx2) ¢p € K % ¢ success
(AGMx*3) K*x¢p C K+ ¢ upper bound
(AGMx4) If = € K, then K + ¢ C K x ¢ lower bound
(AGMx5) K * ¢ is inconsistent iff = —¢ triviality
(AGMx6) If = ¢ =9, then K x¢p = K %1 extensionality
(AGMx7) K *x (o AN) C (K *¢) + 1 iteration upper bound
(AGMx*8) If —¢p & K x ¢, then (K x @)+ C K x (¢ A1). iteration lower bound

The first postulate just ensures that K * ¢ has the right type, that of a deductively
closed theory (like K'). Postulate (AGM=x2) says that revision is successful, in that the
formula revised by is believed. Postulates (AGM=x3) and (AGM=x4) relate revising by ¢
to expanding by ¢. The triviality postulate requires the agent to incorporate the new
information in a consistent way, if there’s any way to do so. The extensionality postulate,
(AGMx6), says that the results of revising by equivalent formulas should be the same.
The last two postulates relate revising by a conjunction ¢ A v to first revising by ¢ and
then expanding by 1.

Note that the postulates are not sufficient to specify a unique revision function .
Various revision functions have been proposed in the literature. As Peppas and Williams

(2018) note, many do not satisfy all the postulates.
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Grove (1988) showed that any AGM revision operator corresponds to a “system of
spheres” | essentially an ordering on worlds (technically, a preorder, since distinct worlds
can be equally ranked). After revision by ¢, beliefs are determined by the best worlds
(according to the ordering) in which ¢ is true. We can think of the ordering as representing
plausibility to the agent.

The AGM postulates are intended to describe changes of belief resulting from gaining
information in a setting where the world itself does not change. A different set of pos-
tulates, the KM postulates, have been proposed to describe belief change in cases where
the world changes (Katsuno and Mendelzon, 1991). Those are called cases of belief update
rather than belief revision.

Belief revision has also been considered in modal logics (e.g., Segerberg, 1995; van Dit-
marsch, 2005). One relevant work to this thesis is that of Friedman and Halpern (1999a).
They considered belief change over time in a modal temporal logic, and modelled both
revision and update by having a prior plausibility measure on worlds (a generalization
of a system of spheres), and conditioning that on observations. Their framework is very
general, but under some conditions, conditioning basically just involves discarding worlds
that are inconsistent with observations.

Other approaches to iterated (i.e., repeated) belief revision involve changing the plau-
sibility ordering when a revision is made. For example, revising by ¢ could correspond
to making all worlds in which ¢ is true more plausible than any world in which ¢ is
false. A large number of ways of modifying the plausibility ordering for belief revision are
catalogued by Rott (2009). Axioms for iterated revision have also been proposed (e.g.,
Darwiche and Pearl, 1997).

Belief revision has also been considered within the fluent calculus (Jin and Thielscher,
2004), event calculus (Tsampanaki et al., 2019), and the situation calculus. We will now

consider the situation calculus in more detail.

2.4.2 In the situation calculus

In this section we describe the approach of (Shapiro, 2005; Shapiro et al., 2011) to iterated
belief revision (and update) within the situation calculus.

The approach builds on the work of Scherl and Levesque and uses the B and SF
predicates we previously described in §2.3.2. In order to allow for beliefs to be retracted
(which Scherl and Levesque did not), Shapiro et al. defined belief as truth in the most
plausible accessible situations rather than in all accessible situations. With this approach,

sensing can cause an agent to lose a belief by making inaccessible all the situations that
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were previously the most plausible accessible ones. Sensing still worked the same way as
in (Scherl and Levesque, 2003); situations incompatible with sensing results became in-
accessible. Therefore the approach to belief revision is similar to Friedman and Halpern’s
(1999a). (Schwering et al. (2017) gave an approach to belief revision in the situation
calculus where the plausibility ordering was modified instead.)

Shapiro et al. used a function pl to assign plausibility levels (natural numbers) to
situations, where lower numbers indicate higher plausibility. Their SSA for pl specifies

that the function never changes:

pl(do(a, 5)) = pl(s).

Belief was defined in terms of plausibility and accessibility. We’ll find the following ab-

breviation convenient:
Definition 2.4.1. s <, &’ o pl(s) < pl(s)

That is, s <p ¢’ if s is at least as plausible as s’ (note the order). Shapiro et al. (2011)
defined MPB(s', s) to mean that that s’ is one of the most plausible situations accessible

from s.

Definition 2.4.2 (MPB).
MPB(s’,s) % B(s,s) AVs". B(s",s) D s <p s
They used MPB in defining a belief operator Bel:
Bel(¢,s) < Vs'. MPB(s',s) D ¢[s]

So Bel(¢, s) is true if ¢ is true in the most plausible accessible situations from s. This can
be contrasted with Know(¢, s) from Scherl and Levesque, which was defined to be true
if ¢ is true in all the situations accessible from s. Note that belief is still closed under
logical consequence, since it’s still defined in terms of what’s true in a set of situations.

They showed that their approach mostly satisfies the AGM postulates for belief revi-
sion. It also satisfies some of the KM postulates for belief update, and some of the DP
postulates for iterated belief revision (Darwiche and Pearl, 1997).

Here, we will explain how Shapiro et al. related their approach to the AGM postulates,
as this will be relevant in Chapter 3. In their approach, revisions are brought about by
certain actions (since all change is the result of actions in the situation calculus). Now,

the first thing that we have to do is define a language for the beliefs that the postulates
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will apply to. The AGM postulates would not be expected to apply to beliefs about the
past, for example. To see why, note that (AGM=x3) and (AGM=4) require that revising by
a sentence that is already believed should produce no change in beliefs at all. However,
performing any action (including a revision action) will cause the agent to believe that

that action has been performed.

Definition 2.4.3 (L,ow). The language L, is the set of sentences uniform in now that

do not refer to any functional fluents.

Recall that uniform formulas can’t refer to the B predicate or quantify over situations,
50 Lnow cannot refer to beliefs. Shapiro (2005, p. 72) assumed that £, was propositional
and finite, but only needed that for proving one of the KM postulates (Katsuno and
Mendelzon, 1991), which we aren’t concerned with here.

Now that we have a language, we can define belief states and expansions. Note that,
following Shapiro, the definitions are made in terms of a given model J of the action
theory . The reason for this is that ¥ itself may not provide enough information to

determine exactly what the agent believes in a given situation.

Definition 2.4.4 (Shapiro, 2005, Definition 3.4.22). The belief state in a ground
situation term o (w.r.t. J) is denoted by K (o) and defined to be

K(0) % {4) € Loow : T = Bel(1h,0)}
That is, the belief state in o (w.r.t. J) is just the set of sentences (in Lney) that the

agent believes at the situation denoted by ¢ in the model 7.

Definition 2.4.5 (Shapiro, 2005, Definition 3.4.23). The expansion of a ground
situation term o by ¢ (w.r.t. J) is denoted by o + ¢ and is defined as

def

o+¢ = {Y€Lw:TEBell¢p D,0)}

So the expansion of o by ¢ is another belief state (set of sentences), including the
sentences the agent (in the situation denoted by o) believes are implied by ¢.

Now we define “revision actions”. As this definition does not depend on what the
agent believes, it is made in terms of the action theory Y rather than a particular model

of 3, unlike the last two definitions.

Definition 2.4.6 (Shapiro, 2005, Definition 3.4.10). Given a sentence ¢ uniform in

now, a ground action term « is a revision action for ¢, with respect to an action theory
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Y., if the following holds:

Y = Vs. Poss(a, s) A [SF(a, s) = ¢[s]] A /\ VE. F(Z,s) = F(Z,do(a, s))

F a fluent

That is, « is a revision action for ¢ if in every situation, the action «
e is possible,

e senses whether ¢ is true,

e and doesn’t change the value of any fluent.

Using revision actions, revision can then be defined. Note that since revision actions are
sensing actions, it’s only possible to revise by true formulas (i.e., performing a revision

action for ¢ will only cause the agent to believe ¢ if ¢ is true).

Definition 2.4.7 (Shapiro, 2005, Definition 3.4.24). Suppose that « is a revision
action for ¢ and o is a ground situation term. The revision of o by ¢ (in terms of «, and
w.r.t. J) is denoted by o * ¢ and is defined as

do(cv,0)  if J = ¢[o]

undefined otherwise

oxp=

So the revision of o by ¢ is a situation term, the result of doing a revision action
for ¢. Note that there’s an asymmetry between how revision and expansion are defined:
o+ ¢ is a belief state, whereas o * ¢ is a situation term. Therefore, the K function needs
to be applied to get the belief state after revision, K (o * ¢).

All this notation requires the AGM postulates to look a bit different. We quote the
translation by Shapiro (2005, pp. 74-75) into this notation below:

(AGMx1) K(o * ¢) is deductively closed type
(AGM=%2) ¢ € K(o * ¢) success
(AGMx3) K(o*x¢) Co+ ¢ upper bound
(AGMx4) If —¢ & K(0), then 0 + ¢ C K (o * ¢) lower bound
(AGMxb) K (0 * @) = Lyow iff = ¢ triviality
(AGMx6) If = ¢ =9, then K(o * ¢) = K(0 %)) extensionality
(AGMx7) K(oxp A1) C (0% @)+ iteration upper bound
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(AGM=x8) If ~¢ & K (o * ¢), then (0% ¢) +1 C K(o* ¢ A1) iteration lower bound

Shapiro (2005) showed that all the postulates other than (AGM=x*5) were satisfied,
when revision was defined. The reason (AGMx5) is not satisfied is that the agent’s beliefs
may become inconsistent after revising by ¢, if there were not previously any accessible
situations where ¢ was true (furthermore, if the agent’s beliefs are inconsistent they will
remain so after any revision). Later, Shapiro et al. (2011, p. 178) showed that under the
assumption that the accessibility relation is reflexive, (AGMx5) will be satisfied (because

revision is defined only for true formulas).

2.5 Conclusion

In this chapter, we have reviewed logical formalizations of action and change, knowledge
and belief, and belief revision. In particular, we have focused on modeling those things

in the situation calculus, which we will be using throughout the rest of this thesis.



Chapter 3

Specifying plausibility levels

3.1 Introduction

In this chapter,! we present a framework supporting

1. iterated belief change (including retraction of beliefs) and
2. the modeling of action and change, in the context of

3. a simple qualitative specification of what the agent considers plausible.

To do so, we build on the work of Shapiro et al. (2011), who created a framework for
modeling iterated belief change in the situation calculus, as we described in §2.2.2. Their
approach already has properties (1) and (2); to achieve (3), we incorporate a way of
specifying levels of plausibility.

Recall the relevance of plausibility to Shapiro et al.’s frameworks: A central idea be-
hind their approach to belief change is that the agent’s beliefs are determined by truth
in all the most plausible accessible situations, and it is the accessibility relation, not the
plausibility levels, that changes over time. However, the initial plausibility levels still have
to be described somehow, which has been viewed as difficult. Writing initial state axioms
to explicitly assign plausibility levels can be inconvenient. As Schwering and Lakemeyer
(2014) (and even Shapiro et al. themselves) point out, the actual numbers used for plau-
sibility levels are not very important. We may also note that writing explicit numbers
in an action theory may make it harder to modify. To avoid using plausibility levels at
all, Demolombe and Parra (2006) even created an alternative approach to belief revision
that instead had sensing actions modify “imaginary” situations that were accessible to

agents.

!This chapter is based in part on a paper that appeared at KR 2018 (Klassen et al., 2018).

38
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We propose to specify plausibility levels by counting the extensions of distinguished
“abnormality” fluents. This approach is based on cardinality-based circumscription (CBC)
(Liberatore and Schaerf, 1995, 1997; Sharma and Colomb, 1997; Moinard, 2000), a tech-
nique for non-monotonic reasoning. We provide background on non-monotonic reasoning
in §3.2 before describing the details of our approach in §3.3. Counting abnormalities will
be the basis for plausibility and belief throughout all the rest of this thesis. In §3.3.4 we
introduce immutable abnormality action theories (IAATSs) that are used in this chapter
and the next, and which make the assumption that abnormality fluents don’t change over
time (corresponding to how Shapiro et al. had fixed plausibility values).

In §3.4 we compare our approach to specifying plausibility levels against potential
alternatives. Shapiro et al. had suggested constraining plausibility levels by describing
conditional beliefs. Schwering and Lakemeyer (2014) built on that idea by automatically
deriving plausibility levels from a set of conditionals. This derivation is essentially the
same as the one used by System Z (Pearl, 1990), a system for non-monotonic reasoning,
in ranking models based on conditionals. As we will show, Schwering and Lakemeyer’s
approach inherits some limitations of System Z, which our approach does not share. We
then explain why we aren’t basing our work on traditional (not cardinality-based) circum-
scription (McCarthy, 1980, 1986; Lifschitz, 1994). Finally, we provide further evidence
for the utility of cardinality-based circumscription by proving that it is more general than
another non-monotonic system, lexicographic entailment.

In §3.5 we suggest two ways of enriching the action theories that we use. First, it is
natural to consider allowing (non-sensing) actions to change the extensions of abnormality
fluents. This turns out to provide a simple way of representing the plausibility of exoge-
nous events, which is more general than a previous extension of the framework of Shapiro
et al. to exogenous events that was proposed by Shapiro and Pagnucco (2004). However,
we also show that theories with changing abnormalities can exhibit some unusual behav-
ior with respect to beliefs about the past. Second, in §3.5.2 we present another form of
action theory in which separate axioms are used to describe the agent’s beliefs about the
environment’s dynamics and the actual dynamics (as in Lakemeyer and Levesque, 1998).
We show that the AGM postulates mostly hold for these theories as well.

Finally, before concluding we discuss some further related work in §3.6.

3.2 Background on non-monotonic reasoning

As previously mentioned, our approach to specifying plausibility levels will be based

on cardinality-based circumscription, a form of non-monotonic reasoning. The alterna-
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tive approaches we compare against in §3.4 will also be based on various forms of non-
monotonic inference. Therefore, in this section we provide a brief background on what
non-monotonic reasoning is, and give traditional (not cardinality-based) circumscription

as an example.

In classical logic, if a set of sentences I' entails ¢,

F):qb?

then the union of I' with any other set of sentences A will also entail ¢:
FT'UA E ¢.

That is, adding more premises cannot reduce the set of conclusions that can be drawn.
This property is called monotonicity. Logics, entailment operators, or reasoning proce-

dures that do not have that property are therefore non-monotonic.

Non-monotonic reasoning shows up in many commonsense inferences, like drawing
“default” conclusions such as assuming that a bird can fly until given evidence otherwise.
There have been a wide variety of approaches to non-monotonic reasoning studied within
the field of knowledge representation, including default logic (Reiter, 1980), autoepistemic

logics (Moore, 1985; Levesque, 1990), and various conditional logics (more on these later).

For this section we will just present circumscription (McCarthy, 1980, 1986; Lifschitz,
1994), one of the most widely-studied forms of non-monotonic inference. There are a
number of variants. Here, to give the flavor we present the simple version from Brachman
and Levesque (2004, §11.3).

We suppose that there are number of distinguished predicate symbols, Aby, ..., Ab,,
which we will call abnormality predicates (the term “abnormality” relates to the idea
that in default reasoning, people assume that things are normal). We are going to define
a form of entailment which, instead of considering all models, considers only the least

abnormal models.

Definition 3.2.1 (<g.). Given interpretations J; = (D,Z;) and Jy = (D, Z,) with the

same domain D,

J1 <dire Jo iff for every i, it is the case that Z;[Ab;] C Z,[Ab;]

That is, J; < Jo if the extension of each abnormality predicate in J; is a subset of
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the extension of that predicate in J,. We can then define
j1 <cire j2 iff j1 Scirc 32 and not 32 Scirc j1

The < relation is then used in defining an entailment operator that only considers the

least abnormal models.

Definition 3.2.2 (=.). For I' a set of formulas and ¢ a formula,

r ):circ 2

if for every model J of I, either J |= ¢ or there is another model J' of I" such that
T <gire J.

This form of entailment amounts to considering what’s true in the least abnormal
models of I', assuming there are no infinite descending chains of less abnormal models of
I'. We can use = for default reasoning, like the classic example of inferring that a bird

flies (included for instance in (Brachman and Levesque, 2004, §11.3)).

Example 3.2.1.
We have that

{Vx. (Bird(z) A =Ab(z)) D Fly(x), Bird(tweety)} |=circ Fly(tweety).

That is, if Tweety is a bird, and a bird x flies unless Ab(z) is true, then Tweety is assumed

to fly. This is because in the minimal models, Ab is minimized so Ab(tweety) is false.

Note that if we were to add Ab(tweety) to the left-hand-side of the entailment in
Example 3.2.1, then we would no longer get the right-hand-side, which shows that .
is indeed a non-monotonic entailment operator.

In more general forms of circumscription, abnormalities can be given priority levels,
so that it’s preferable to minimize one abnormality predicate rather than another (if
the choice has to be made). Also, some predicates can be kept fized during minimiza-
tion. Being able to keep some predicates fixed has uses, e.g., to prevent minimizing the
set of abnormally non-flying birds from minimizing the set of penguins, but it also in-
troduces complications (Brachman and Levesque, 2004, §11.3.3). We should also note
that circumscription can be described using second-order logic, in that, given a sentence

«, it’s possible to define a second order sentence that classically entails ¢ just in case

{a} Fire ©-
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Note that many interpretations, even ones sharing a domain, will be incomparable
by <ere. Incomparable interpretations are however treated by .. as though they were

equally abnormal. This motivates the following definition:

Definition 3.2.3 (<g.). Given interpretations J; and J, with the same domain, we
define 77 g Jo if either J; < . Jo, or the interpretations are incomparable by <.

(i.e., neither J; <gye Jo nor Ty <gje J1).

So J1 Scrc Jo can be read as saying that J; is at least as normal as J,. We will
shortly be using “abnormalities” to describe implausibility, and we would like to have
the at-least-as-plausible-as relation be transitive (Grove (1988) showed that any AGM
revision operator corresponds to a transitive plausibility relation). Unfortunately, <gyc is
not transitive, as the following example shows.

Suppose that Ab;, Aby, and Abs are the only abnormality predicates in the language,
all with the same priority and all O-ary, and that interpretations J;, J, and J3 have the

same domain and are such that

J1 = Aby A —Aby A —Abs
32 ’: _'Ab1 N Ab2 A _|Ab3
Js = Aby A =Aby A Abs

Then we have that J; <g. J3 but it can be seen that any other pair of these three
interpretations is not comparable using <. Therefore, we have J3 <. Jo and Ty Scirc
J1, but not I3 S¢ire J1.

For a plausibility ordering to not be transitive can produce some undesirable behavior,
as we will revisit in §3.4.3. The form of cardinality-based circumscription we will present

will involve a transitive plausibility relation.

3.3 Defining plausibility and belief with abnormali-
ties

In this section we develop our alternative for specifying plausibility levels. As we’ve
said, it involves counting abnormalities, an idea from cardinality-based circumscription.
Therefore, we will first describe CBC (§3.3.1) and show how it can be expressed in second-
order logic (§3.3.2). We then show how we can use that second-order formulation as the
basis for determining plausibility levels in the situation calculus (§3.3.3), and introduce

the action theories that we’ll be using in this chapter (and the next) in §3.3.4.
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3.3.1 Cardinality-based circumscription (CBC)

Cardinality-based circumscription is a variant of circumscription that has not been com-
monly used, but has appeared a few times in the literature. Sharma and Colomb (1997)
used CBC for diagnosis. Liberatore and Schaerf (1995, 1997) defined CBC in a proposi-
tional setting, and showed that it was closely related to certain belief revision operators.
Moinard (2000) proved a number of properties of propositional CBC.

Here we present a simple but first-order form of prioritized CBC, where prioritized
“abnormality” predicates are minimized and no predicates are kept fixed.? We will be
using the abnormality predicates as a way of measuring plausibility (which may lead one
to want to write slightly different theories than if they were really measuring normality,
though we will not discuss this distinction further).

Suppose that we have a finite set of abnormality predicates Aby, Aby,...Ab,, each
with an associated priority (intuitively, a higher priority abnormality is a sign of greater
implausibility). Let us say that there are k distinct priority levels, and that Al is the list
of abnormality predicates of the ith highest priority.

Definition 3.3.1 (abnormality vector). To any interpretation J = (D,Z), with do-
main D and interpretation mapping Z, we can assign a k-ary abnormality vector ¢(J)
where each entry is either a natural number or oo, and whose ith entry is the sum of the

cardinalities of the extensions of the priority ¢ abnormality predicates, i.e.,

A= 3 |Z(Ab])

Abe A

Note that we do not distinguish between different infinite cardinalities (i.e., there is
only one c0), and that for a 0-ary predicate, the cardinality of its extension will either

be 0 or 1 (depending on whether the interpretation makes it false or true).

Example 3.3.1.

Suppose that Ab; is a unary predicate with the highest priority, the binary predicate Aby
and 0-ary predicate Abs have lower priority (the same as each other), and Ab, is a unary
predicate that has the lowest priority. So A' = (Aby), A% = (Aby, Abs), and A = (Aby).

Then consider an interpretation J = (D, Z) where

D=N (the set of natural numbers)

2It’s similar to that used by Klassen et al. (2017).
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and

Z[Aby] = {42,64}

I[AbQ] = {<17 2)? <37 4>7 <77 0>}

Z[Abs] = {()} (that is, Abg is true in the interpretation)
Z[Aby) = {n:n > 5}

Then ¢(J) = (2,4, 00).

Abnormality vectors can be ordered in a lexicographic way, i.e., we define an ordering

< on abnormality vectors as follows:

Definition 3.3.2. Given interpretations J; and Js, we define ¢(J;) < ¢(J2) if there is

<
some 7 so that ¢(J;); < ¢(Jz); and so that for all j < i, we have ¢(J1); < ¢(J2);.

That is, lesser abnormality vectors are ones that count a smaller number of abnor-
malities, giving higher priority to the higher priority abnormalities (one higher priority
abnormality outweighs any number of lower priority abnormalities). We can then define
(as usual for circumscription) a form of entailment in which only the minimal models
are considered, where minimality now means having a minimal abnormality vector (note
that since the abnormality vectors are well-ordered, there are never infinite descending

chains of models).

Definition 3.3.3 (|=card). For A aset of sentences and 3 a sentence, we write A |Ecaq 0 if
for every interpretation J such that J = A, either J |= 8 or there is another interpretation
3" such that ¢(J3’) < ¢(J) and 3" = A.

To give an example, Example 3.2.1 about Tweety flying is simple enough that CBC

behaves like traditional circumscription on it:
{Vz. (Bird(z) A =Ab(z)) D Fly(z), Bird(tweety)} Fcara Fly(tweety).

This is because in the minimal models, the cardinality of the extension of Ab is minimized
(and so has cardinality 0 in this case).
On the other hand, it’s not hard to find examples on which ¢4 and =g differ. For

example, if Aby, Absy, and Abs all have the same priority, we have

((Aby A Ab3) V Aby) =carg Aby
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since models in which only Ab, is true have fewer abnormalities than models in which
Ab; A Abs is true. However,

((Aby A Abs) V Aby) Fcire Abs

since {Aby} is not a subset of {Ab;, Abs} (there are subset-minimal models in which both
Ab; and Abj are true).
Finally, note that the ordering on interpretations induced by the ordering of their

abnormality vectors is transitive, unlike the <. relation.

3.3.2 Expressing CBC in second-order logic

As for regular circumscription, it’s also possible to describe CBC using formulas of second-
order logic. This was shown for some forms of CBC by Sharma and Colomb (1997, §4.1.1),
and we can do the same for ours, based on their approach. This machinery will be useful
when we turn to incorporating counting abnormalities into the situation calculus. The
main thing to take away from this section will be the ordering <24 in Definition 3.3.6,
which can be used to compare the cardinality of the extensions of predicates, taking
priority levels into account. In order to define that, though, we first define a couple simpler
orderings, which we call <.,,4 and <2 ,. Neither of these relations consider priority levels,

Scard-
and the one with the simplest definition, <.,q, does not compare infinite cardinalities in
the way that we want.

Suppose that P = (Py,...,Py,) and Q = (Q1,...,Qn) are lists of predicates. Note
that the cardinality of any set is at most the cardinality of another iff there is an injective
function from the first to the second. Furthermore, the sum of the cardinalities of two sets

is equal to the cardinality of their disjoint union. Therefore, it can be seen that the sum

of the cardinalities of the extensions of Py, ..., P, is at most the sum of the cardinalities
of the extensions of Jy,...,Q,, iff there is an injective function from the disjoint union
of the extensions of Py, ..., P, to the disjoint union of the extensions of Q1,...,Q,,. We

can express this property in second order logic, and do so in the following definition (note
that Sharma and Colomb (1997, Definition 4.4) did so for the case where m = 1).

Definition 3.3.4. We will use the abbreviation P <card Q to stand for the second-order

sentence

HFy:1<4,j <k} INJECTIVE(F; : 1 <i,5 <k)A
A; [\m Py(%;) DV, 3 (Ej@,y}) A Qj(?)}))}
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where INJECTIVE(F}; : 1 <i,j < k) is an abbreviation for

P Ve By (B 3) A Fy(3) D = ) A
/\i,j,k:i;ék Vi, Ty, _‘[Fij@z'y 37]) A ij(fka ?7])]

We can read P < aq Cj as saying that the sum of the cardinalities of the extensions
of Pi,..., P, is at most the sum of the cardinalities of the extensions of Q1,...,Qm.
However, while the <., relation compares predicates by cardinality, it’s in a way that
is a bit more fine-grained than what we want, since it discriminates between differing
infinite cardinalities — unlike the abnormality vectors we defined earlier. To match those,
we want to define a relation that is like <.,q4 except for treating all infinities as being
equal.

To do so, let us first define that INF(P), where P is a predicate symbol, abbreviates

the second-order sentence
3R. VT, y, 2 [R(Z,9) A R(Y, Z) D R(7, 2)] AVZ [~R(Z,Z) A 3y P(y) A R(Z,9)],

saying that there is a transitive, irreflexive, serial relation on the extension of P. This is
true iff P has an infinite extension. Note that the number of entries in each of Z, 1, and
Z in the expansion of INF(P) matches the arity of P. Finally, we can define a relation

<4 that is like <., except for treating all infinities as being equal.

Definition 3.3.5. We define P <o C} as the sentence

(ﬁ <card Q) \% \/i,j (INF(PZ) A INF(Q]))
We also define P <X, Q as —|(Q <&, )

Finally, we want to define a relation that treats some predicates as higher priority than
others. Suppose that we partition the elements of P among ﬁl, e Pk (where kK < m), so
that P! contains the highest priority predicates from ]3 P? contains the second highest

priority predicates, and so on. Then we define the prioritized relation <2, as follows:
Definition 3.3.6. Let P!, ... P <® Q' ... Q" abbreviate
\/ (Pl <card ( /\j<’L P —card j) ) :

We can then also define P, ... Pk <= Q... Q% as ~(Q',..., Q" P, ... P").

card
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o0

20 4 to define a second-order sentence

Finally, given a sentence «, it is possible to use <
that entails 5 just in case & Fcarg B (similarly to for traditional circumscription). However,

we will not need that in this thesis.

3.3.3 Determining the plausibility of situations

We now return to discussing the situation calculus. In order to compare the plausibility
levels of situations, we propose to introduce abnormality fluents. Each abnormality fluent

keeps the same value over time, as specified by SSAs of the form
Ab;(Z,do(a, s)) = Ab;(Z, s) (3.1)

for each 7. Later on (in §3.5.1) we will explore relaxing this condition, but for now we are
following the approach of Shapiro et al., where plausibility levels do not change.

There are priorities associated with the abnormality fluents. Let us use the notation
A[s] to refer to the list of priority i abnormality fluents, with their situation terms fixed
to s. We can now redefine the relation <y (from Definition 2.4.1) to describe when one

situation is at least as plausible as another.

Definition 3.3.7 (redefining <, (from Definition 2.4.1)). We redefine s <, s as

an abbreviation for a second-order formula:
s <o s S A, AV < A, AV

Where before the plausibility of s and s” was compared by comparing pl(s’) and
pl(s”), now we check in which situation more abnormal fluents hold (taking into account
priority). All the rest of the machinery of Shapiro et al. will still work as originally in-
tended. The only role of the plausibility values was to define a total preorder on situations

(Shapiro et al., 2011, p. 169 footnote), which we now get by comparing abnormalities.

Remark 3.3.1. If we wanted to continue using Shapiro et al.’s (2011) plausibility func-
tion pl, we could relate it to abnormalities by including a second-order axiom like this in

our action theories:

[Init(s) A Init(s")] D [(pl(s) < pl(s)) = (s <p &)]

Note however that this could require that pl’s range not be the natural numbers, because

there is not in general a way to assign natural numbers to situations that will give the
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same ordering as that derived from counting abnormalities (consider what number would

have to be assigned to a situation with infinitely many abnormalities).

Since abnormality fluents will define the plausibility of situations in a fixed, domain-
independent way, to specify what an agent considers plausible for a particular domain
it’s necessary to use the accessibility relation to associate abnormality fluents and regular
ones. To illustrate, suppose that the axiomatizer wants to have the agent think that birds
most plausibly fly. To get that it would suffice to have the accessibility relation set so
that in the accessible situations with the fewest abnormalities, each bird flies.

One way to describe the accessibility relation is with formulas describing beliefs.
For example, the formula Bel(Vz. (Bird(z) A =Ab(z)) D Fly(z),Sy) says that in all the
most plausible situations accessible from Sy, non-abnormal birds fly. However, this is not
sufficient to specify that it’s most plausible that each bird flies. For instance, we could
have an action theory ¥ (similar to a BAT, but including the axioms from Equations 2.6

and 2.7 allowing for multiple initial situations), which does not refer to belief, such that
> U {Bel([vyc. (Bird(x) A =Ab(z)) O Fly(z)] A Bird(tweety), so)} £ Bel(Fly(tweety), So).

That is, believing that non-abnormal birds fly and Tweety is a bird does not necessarily
mean that it is believed that Tweety flies. This is because |= is classical (second-order)
entailment, which is monotonic, and —~Bel(—Ab(tweety), Sy) can be consistent with what’s
on the left-hand-side.

We can resolve this, while staying with classical entailment, by addressing two issues:

1. The accessibility relation is underconstrained — we’ve failed to say, for instance,
that it’s not a condition for a situation to be accessible that Ab(tweety) is true
there.

2. The set of initial situations is also underconstrained — we’ve failed to say that there

even exist situations (accessible or not) in which Ab(tweety) isn’t true.

To address the first issue, we will fully specify the initial accessibility relation, us-
ing only-knowing (Levesque, 1990; Lakemeyer and Levesque, 1998). To define an only-
knowing operator OKnow, we first define an expression SameHist(s’, s) that is true when

s and s’ have the same action histories from possibly different initial situations.
Definition 3.3.8 (SameHist). We define SameHist(s, s’) as the following abbreviation
(from Lakemeyer and Levesque (1998)):

SameHist(s,s') < VP. [... D> P(s, )],
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where P is a second-order variable and the ellipsis abbreviates the conjunction of the

following:

Vs1, so. (Init(s1) A lnit(se)) D P(s1, s2)
Va, s9, s9. P(s1,$2) D P(do(a, s1),do(a, sq))

Now, we can get to defining the only-knowing operator.

Definition 3.3.9 (OKnow).

OKnow(¢, s) v B(s,s) = (¢[s'] A SameHist(s', 5))

That is, ¢ is all that is known if the accessible ones are exactly those in which ¢ is
true — and which have the same action history, since the agent is always aware of the
actions that have occurred. Plausibility is not involved here: what’s only-known is known
with certainty. (Note that for the rest of this thesis, we are only going to be concerned
with what is only-known in Sy, for which purpose it would suffice if SameHist(s’, s) were
defined as Init(s').)

Remark 3.3.2. Only-knowing was originally introduced for formalizing a form of non-
monotonic reasoning that arises when the only-known formula refers to beliefs (Levesque,

1990). We will not be considering any instances of that in this thesis.

To address the second issue, similarly to Levesque et al. (1998, p. 173) we can include
among the foundational axioms in the action theory a second-order axiom that specifies
there are initial situations with all combinations of fluent values (our Equation 2.8 on
page 20). So finally, by including that extra foundational axiom in the action theory X,
we have that if all that is known is that non-abnormal birds fly and Tweety is a bird,
then it will be believed that Tweety flies:

YU {OKnow([Va:. (Bird(z) A =Ab(z)) D Fly(z)] A Bird(tweety), SO>} = Bel(Fly, Sy).

In general, we can specify what an agent considers plausible by having it only-know a
knowledge base that relates regular fluents to abnormality ones. The action theories that
we will be considering next will actually themselves include an axiom to specify what is

only-known in Sy.
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3.3.4 Immutable abnormality action theories (IAATSs)

Definition 3.3.10 (IAAT). An immutable abnormality action theory (IAAT) is a set

of axioms
Efound ) Zssa U Z]plre U Esense U Z]0 U Euna U {OKI’IOW(/\ EKB) SO)}

where

® Yitund is the set of foundational axioms, including Equations 2.1, 2.3, 2.4, 2.6, 2.7,
an axiom asserting the existence of initial situations with all combinations of fluent

values (Equation 2.8), and Equation 2.9 (for root(s));

e Y., is a set of successor state axioms, including Equation 2.11 for B, axioms for
each abnormality fluent in the form of Equation 3.1, and axioms for every other

fluent;
e Y. is a set of precondition axioms, one for each action function symbol;
® Y.nse 1S a set of sensing axioms, one for each action function symbol,
e Y, is a set of initial state axioms, which are uniform in Sy;
® Y.n, is a set of unique names axioms for actions;

e and Ykg is a set of axioms (uniform in now) describing what the agent initially

knows.

We require X to obey the consistency property for functional fluents from (Reiter, 2001, p.
60). Finally, for later use (in Chapter 4) we’ll find it convenient to have a functional fluent,
history(s), which stores a representation of the sequence of actions that have occurred in
s. To define the history fluent, we assume ¥ contains an axiomatization of lists, specifying
how concatenation works, and that - is a function symbol for concatenation. We require
that s, contain the following SSA:

history(do(a, s)) = history(s) - a.

¥y should contain history(Sy) = () and Xkg should contain history(now) = (), where ()
denotes the empty list.

The main difference between IAATs and the theories of Shapiro et al. is in how the
initial plausibility levels are specified, and so TAATs have many similar properties. In

particular it can be seen that IAATSs satisfy the AGM postulates to the same extent.
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Proposition 3.3.1. Let X be an IAAT. For any model J of ¥ and any ground situation
term o, all the AGM postulates other than (AGM=x5) are satisfied when revision is defined.

Proof. The proof is essentially the same as the ones in (Shapiro, 2005, §3.4.6) and
(Shapiro et al., 2011, Appendix A), except that the pl function is not used in deter-
mining plausibility. [l

The following example illustrates how an IAAT can be used to model plausible beliefs

in a dynamic setting.

Example 3.3.2.

Consider a domain with a light. There are two actions, the sensing action senselit that
senses whether the light is on (Lit), and the action flipUp, which flips the light switch
up (Up) and also turns the light on (Lit) if it is not burnt out (Burnt). The agent knows
that initially the light is on iff the switch is up and the light isn’t burnt out (and the
environment dynamics ensure this relationship continues to hold at all times). In the real
initial situation, the switch is up but the light is burnt out. The agent initially considers
that it would be implausible for the switch to be down and even more implausible for
the light to be burnt out. In formalizing all this below, we make use of two abnormality
predicates, Ab;(s) and Aby(s), where Aby(s) has higher priority. Ab; will be associated
with the switch being up and Aby with the light being burnt out. The TAAT is described

below:

OKnow([-Ab; D Up] A [#Abs D —Burnt] A [(Up A =Burnt) = Lit], So)
=Lit(So) A Up(Sp) A Burnt(Sy)

Burnt(do(a, s)) = Burnt(s)

Up(do(a, s)) = a = flipUp V Up(s)

Lit(do(a, s)) = (a = flipUp A =Burnt(s)) V Lit(s)

SF(senselLit) = Lit(s)

SF(flipUp) = True

The agent will at first believe the light is on. After sensing that it isn’t, the agent will then
believe (incorrectly) that the switch is down. After also performing the flipUp action and
sensing again, the agent will finally realize that the light is burnt out. This is formalized

by the proposition below.

Proposition 3.3.2. Let ¥ be the TAAT described above. Then X entails each of the

following;:



CHAPTER 3. SPECIFYING PLAUSIBILITY LEVELS 52

1. Bel(Lit A Up A =Burnt, Sy)

2. Bel(—Lit A =Up A =Burnt, do(senselLit, Sy))

3. Bel(—Lit A Up A Burnt, do([senseLit, flipUp, senseLit], Sy))
Proof. We consider each of the three points.

1. There are accessible situations from Sy where both Ab; and Ab, are false; that is,

it can be shown that
Y E 35’ B(s',Sg) A =Aby(s") A —Aby(s")

Therefore, those are the most plausible accessible situations from S, i.e., we get
¥ EVs'. MPB(s',Sg) D [-Ab;(s") A =Aby(s')]

So by the definition of Bel, we get

b ): BE|(_|Ab1 A _|Ab2, So>

We also get that the formula that ¥ specifies is initially only-known is believed
(since whatever is true in all accessible situations must be true in all the most

plausible accessible situations):
Y = Bel([-Ab; D Up] A [-Aby D —=Burnt] A [(Up A —=Burnt) = Lit], Sp)

From that and the previous entailment we get the desired result, since beliefs are

closed under logical consequence.

2. After the sensing action senselLit is performed, the agent learns that Lit was initially
false (and must still be false, since the sensing action didn’t change that). So we

have

¥ = Bel(—Lit, do(senselLit, Sy))

Since no world-altering actions have been performed, we still have that the agent

believes the only-known formula from the theory:

¥ = Bel([=Ab; D Up] A [-Aby D —Burnt] A [(Up A =Burnt) = Lit], do(senseLit, Sy))
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Therefore, the agent can conclude that either Up is false (in which case Ab; must be
true), or Burnt is true (in which case Aby must be true). This means that there are

no situations accessible from do(senseLit,Sy) where both abnormalities are false:

¥ E —3s". B(s', do(senselLit, Sg)) A —=Ab; (s") A =Aby(s")

However, it can be seen that there are accessible situations where only one of them
is true. The more plausible of those are the ones where Ab; is true, since it has

lower priority (so it matters less that it’s true). Therefore, we have
Y. |= Bel(Ab; A —Ab,, do(senselLit, Sy))

The result then follows.

3. In the situation considered here, the agent flipped the switch up (flipUp) before
sensing again (and finding that the light is still not on). We no longer need to
consider plausibility. Since the agent knows the SSA of Up, at this point, every
accessible situation has Up true, and because of the sensing action just performed,
in every accessible situation Lit is false. Using the SSA for Lit the agent can conclude
that Burnt must have been true (and is still true, since the SSA for Burnt says that
doesn’t change). O

This example did not illustrate it, but recall that a single higher priority abnormality
is more important than any number of lower priority abnormalities. This can be useful for
modelling domains with some extremely implausible events (e.g., alien abductions) but
sometimes we may want to, for example, model scenarios where evidence accumulates and
eventually grows strong enough for the agent to accept some implausible proposition. For
that, a different approach may be more convenient. We could associate numeric weights to
abnormalities to determine how much they contribute to the implausibility of a situation.
The difference between weights and priorities is that, unlike with priorities, enough low
weight abnormalities will outweigh a high weight abnormality. We could introduce weights

without changing the formalism by introducing the shorthand

- def RN
Ab¥ (i, 5) = /\jf':1 Ab;(j,Z, s).
Intuitively, Abf behaves as an abnormality fluent with weight k£ should; for it to be true
is counted as k abnormalities. Note that Example 3.3.2 would have worked the same if
we had just given Aby a higher weight than Aby, rather than a higher priority. We will

make more use of weights in Chapter 4.
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3.4 Comparisons

CBC has been seldom used in the literature. Below, we provide support for why CBC is
an appropriate choice for specifying plausibility levels by considering some alternatives.
First, we consider a technique Shapiro et al. had proposed for constraining the plausibility
levels by encoding conditional beliefs. We then consider only-believing, a more sophisti-
cated technique proposed by Schwering and Lakemeyer (2014) that also was based on
conditional beliefs. Afterwards, we explain why we could not have used regular circum-
scription in the way we have used CBC. Finally, we show how CBC is more general than

another technique that might be considered, lexicographic entailment.

3.4.1 Using conditional beliefs

Shapiro et al. (2011, p. 177) suggested that “To facilitate the specification of the initial
belief state of the agent” a conditional belief operator can be used. Intuitively, a condi-
tional belief in ¢ given ¢, which we will write as Bel (¢ = 1, s), means that in the most
plausible accessible situations from s where ¢ is true, v is also true. This can be defined

as an abbreviation using <.

def

Bel (¢ = ¢,s5) = Vs'. [B(s',s) A@[s'] AVs". (B(s",s) AN @[s"]) D s <p s"] Du[s].

Note that = is not the material conditional (which we write as D), but is more similar
to the counterfactual conditional from Lewis (1973).

Shapiro et al. use this for one example, where they have an action theory including
sentences specifying several conditional beliefs and negations of conditional beliefs. The
theory does not entail a unique assignment of plausibility values to situations, but does
establish enough of an ordering to get the relevant results for the example.

Schwering and Lakemeyer (2014) criticized this approach for requiring the use of
negated conditional beliefs and not uniquely determining the plausibility levels. They
presented an approach which also is based on conditionals but avoids those problems,

which we therefore turn to.

3.4.2 Only-believing

A proposal to address the problem of specifying plausibility levels can be found in the
logic £SB (Schwering and Lakemeyer, 2014; Schwering et al., 2017). In ESB, which is a
modal version of situation calculus without any explicit situation terms, initial plausibility

levels can be determined from a set of conditionals that are “only-believed”.
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In the semantics of ESB, an epistemic state is a sequence e = (e, €z, e3,...) of sets
of worlds, where e; C e;41 (and the sequence converges, in that for some N, e, = ey
when n > N). For our purposes, it will suffice to understand a world as providing truth
values for first-order sentences (we will not go over how actions are handled in £SB).
The idea is that the entries eq, €5, €3, ... in an epistemic state e correspond to plausibility
levels, with less plausible worlds only being in higher-numbered entries (so the epistemic
state can also be thought of as an ordering on worlds). An epistemic state e satisfies the
sentence B(¢ = 1) if 4 is true at all the most plausible worlds where ¢ is true (it’s the
modal version of Bel (¢ = 1, s)). Belief in ¢ can be defined with B(True = ¢).

Now, let us explain only-believing. Suppose that T' = {¢1 = U1,...,0m = Un},
where each ¢; and 1); is an objective formula (not containing any belief or knowledge
operators). Let IV be the set {¢1 D ¥1,...,0m D ¥} that is like I' but with the
conditional symbols replaced by material conditionals. The semantics of only-believing
is as follows: an epistemic state e = (eq, eg, €3, ... ) satisfies the sentence O(T") (“T" is all
that is believed”) iff e; satisfies all the material conditionals in IV and e;;; satisfies the
subset of those material conditionals whose antecedents are not true in any world in e;.
That is,

ep={w:wpkE AI'"}

and for each j > 1 we have that

eir1 ={w:wkE N{(g; DY) eIV : V' € ej,w = ¢} }.

The ordering on worlds given by this epistemic state is essentially that which System Z
(Pearl, 1990) would have derived from the conditionals, as described by Schwering (2016,
§4.7).

A feature of only-believing is that any conditional only-believed is also believed, which
is convenient if the axiomatizer wants to ensure that a conditional is believed. In contrast,

if in our approach a knowledge base includes a sentence like

(i N —Ab;) D Yy

that doesn’t guarantee that the most plausible worlds in which ¢; is true will have 1);

true, because that depends on the rest of the knowledge base (which could, for example,
also include (¢; A =Ab;) D —;).

However, the similarity of only-believing to System Z means that some limitations
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are inherited, as Schwering et al. (2017, p. 75) note. In particular, the conditionals that
are only-believed are not treated as being fully “independent” of each other. Adapting

an example from Pearl (1990, §3) gives
O(Penguin = Bird, Bird = Fly, Penguin = —Fly, Bird = Beak) = —B(Penguin = Beak).

An intuitive reading of what’s believed is that a penguin most plausibly is a bird (Penguin =
Bird), a bird most plausibly flies (Bird = Fly), a penguin most plausibly doesn’t fly
(Penguin = —Fly), and a bird most plausibly has a beak (Bird = Beak). With these
beliefs, the agent unfortunately does not believe that a penguin most plausibly has a
beak (Penguin = Beak). This has been called the “drowning problem”, and what is
lacking from System Z and other systems with this problem has been called “strong

independence” (Strasser and Antonelli, 2016).

To give perhaps the simplest example that shows the problem, the epistemic state
corresponding to O(True = P, True = Q) — that is, to only-believing that P is most

plausibly true and that Q is most plausibly true — has only two distinct entries:

e ={w:wkEPAQ}

ey = e3 = ey = ... 1is the set of all worlds

If the agent with this epistemic state were to learn that P were false, on revising their
beliefs they would also lose their belief in Q (since they would discard all worlds from e ).
Intuitively, we would like to have that P and Q are features that independently contribute

to the plausibility of a world.

The following example illustrates that [AATs can easily represent independent beliefs

(avoiding the drowning problem).

Example 3.4.1.

In the domain for this problem, there are two fluents, P(s) and Q(s), whose values never
change, and two sensing actions, senseP and senseQ, which respectively sense the values
of P and Q. We'll also make use of two abnormality fluents, Ab;(s) and Aby(s), of the
same priority. In Sy, the actual initial situation, P and Q are false. However, the agent
does not know this. Instead, its knowledge base says that P is true (unless there is an

abnormality) and Q is true (unless there is a different abnormality). For our action theory,
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we can axiomatize this description as follows:

P(do(a, s)) = P(s) Q(do(a, s)) = Q(s)
SF(senseP, s) = P(s) SF(senseQ, s) = Q(s)
=P (So) A =Q(So)
OKnow((—Ab; D P) A (=Aby D Q),So)

Initially, the accessible situations are exactly those initial situations where (—=Ab; D
P) A (-Aby D Q) is true. Because belief is defined as what is true in the accessible
situations with the fewest abnormalities, the agent initially (mistakenly) believes P A Q.
If it performs the sensing action senseP, it will come to correctly believe that P is false
(but retain its belief that Q is true). If it then also performs senseQ, it will correctly

believe that both P and Q are false. The proposition below formalizes these claims.

Proposition 3.4.1. Let ¥ be the TAAT described above. Then ¥ entails each of the

following:
1. Bel(PAQ,Sy)
2. Bel(=P A Q,do(senseP, Sy))

3. Bel(=P A —Q, do([senseP, senseQ], Sy))

Proof. This follows straight-forwardly from minimizing abnormalities. The agent always

assumes that as few of {Ab;(now), Aby(now)} are true as its observations allow. O

Aside from the lack of strong independence, another issue with only-believing is that
despite being used in a first-order logic, it works essentially the same as the propositional
System Z. The epistemic state induced by only-believing a finite number m of conditionals
will only have a finite number of distinct entries — at most m + 1 (Schwering, 2016,
Theorem 4.5.3). However, it’s easy to come up with examples for which it’s desirable to
distinguish between a number of plausibility levels that does not have a clear bound. For
example, for every n, an agent might think that a conspiracy involving n people is more
plausible than one with n + 1 people. Again, using our approach we can easily formalize

that, as we show below.

Example 3.4.2.
This example will show the benefits of being able to define an unbounded number of

plausibility levels.
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Consider a language with the unary relational fluent Conspirator, where the intended
meaning of Conspirator(z) is that z is part of a conspiracy. There is one (sensing) action,
reveal(z), which reveals to the agent whether Conspirator(z) is true. Who is a conspirator
never changes, and in the actual initial situation Sy, everyone is a conspirator. However,

the agent thinks that situations with fewer conspirators are more plausible:

SF(reveal(x), s) = Conspirator(z, s)
Conspirator(z,do(a, s)) = Conspirator(z, s)
Conspirator(z, Sp)

OKnow (Vz. ~Ab(z, now) > —Conspirator(z, now), So)

The following proposition says that the agent always believes that the only conspirators

are those that have been revealed.

Proposition 3.4.2. Let X be the IAAT described above, and let ¢y, ¢o, c3, ... be constant
symbols. Then for any k,

Y BeI(‘v’x. Conspirator(z, now) = [\/f:1 xr = cz},

do([reveal(cy), . .., reveal(cy)], SO))

Proof. After the actions reveal(cy),. .., reveal(cy), the agent has learned that Ab(c;, now),
..., Ab(cy, now) must be true, but can still assume that no other object is abnormal (and

so no other object is a conspirator). O

So we see that our approach has a couple advantages over only-believing. We can

easily represent independent beliefs, and infinitely many plausibility levels.

3.4.3 Subset-based circumscription

The original, and by far the most commonly considered, form of circumscription involves
comparing sets, not by cardinality, but by set inclusion (see §3.2). We will call this
“subset-based circumscription” or SBC to distinguish it from CBC.

In contrast to SBC, CBC requires the axiomatizer to make the stronger commitment
that any set of n + 1 abnormalities is less plausible than any set of n abnormalities (if
all are at the same priority level), regardless of set inclusion. Furthermore, cardinality-
based minimization can behave counterintuitively when infinitely many abnormalities are

believed, as the following example shows.
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Proposition 3.4.3. Suppose that ¥ is an TAAT including
OKnow(Yi. (35. i = 2 x j) D Ab(i, now), So),
that is, the agent thinks that all even numbers are abnormal. Then
YEVi. (3j.i=2xj+1) D -Bel(Ab(i, now),Sy) A =Bel(=Ab(i, now), Sp).

That is, for each odd number, the agent neither believes that number is abnormal, nor

that that number is not abnormal.

Proof. All the most plausible situations accessible from Sy have infinitely many abnor-
malities in them (because every even number must be abnormal). The cardinality of the
set of even numbers is equal to the cardinality of the union of the set of even numbers and
any subset of the odd numbers. Therefore, for any odd number 7, there are most plausible

accessible situations from Sy where Ab(7) is true and ones where Ab(7) is false. O

Therefore, one might wonder why we aren’t using SBC. A key point is the lack of
transitivity of the subset-based plausibility relation <g.. Recall that the framework of
Shapiro et al. (2011) obeys (a slightly modified version) of the AGM postulates for belief
revision (Alchourrén et al., 1985). This remains true when using CBC to describe the
plausibility levels instead of the pl function. However, if we tried to make use of SBC
instead of CBC, that would violate (AGM=x4), as we explain in the rest of this section.

Recall from §2.4.2 that Shapiro et al. defined the belief state K (o) of an agent (with
respect to a situation term o), the expansion o + ¢, and the revision o x ¢ (all relative to
a model J of the action theory ¥). Shapiro et al.’s translation of the AGM axioms into

this notation included the following:
(AGMx4) If —¢ & K(0), then 0 + ¢ C K (o * ¢)

Another way to put (AGM=x4) is that if an agent believes a material conditional and
doesn’t believe its antecedent to be false, then after revising by the antecedent the agent
should believe the consequent.

We will show that this axiom can be violated if SBC is used. Suppose that ¥ is an
action theory like the IAATSs we considered before, except the comparison of abnormality
predicates by cardinality is replaced by subset inclusion, i.e., s is more plausible than s’
if the extension of each abnormality fluent in s is a subset of its extension in s (for this

example we assume all the abnormality fluents have the same priority level).
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Suppose further that there are three abnormality fluents Ab;(s), Aby(s), and Abs(s),
and that X includes

OKnow (Ab; (now) V Aby(now), Sg).

Consider a model J of ¥ such that J = ¢¢[So], where ¢ stands for —=(Ab; A =Abj). Note
that J must satisfy all of the following (by virtue of satisfying X):

Vs. MPB(s, So) D [[Abi(s) A =Aby(s) A =Abs(s)] V [2Aby(s) A Aby(s) A —Abs(s)]]
ds. MPB(s, So) A [Aby(s) A =Aby(s) A =Abs(s)]
ds. MPB(s,So) A [Aby(s) A Aby(s) A —=Abs(s)]

From the last of those we can conclude that J = Bel(—¢y, Sp), that is,
—pg & K(So).

Furthermore, observe that we have J |= Bel(¢g D Aby,Sg). So (¢o D Aby) € K(Sy), and

SO
Aby € S + ®o-

Now suppose that « is a revision action for ¢q. It can be seen that J satisfies each of the

following;:

Vs. MPB(s,do(c, Sp)) D [[Abi(s) A ~Abay(s) A Abs(s)] V [=Aby(s) A Aba(s) A —~Abs(s)]]
ds. MPB(s, do(a, Sg)) A [Aby(s) A =Abay(s) A Abs(s)]
ds. MPB(s, do(a, Sg)) A [7Aby(s) A Aby(s) A =Abs(s)]

Note that for Ab; A =Abs A Abs to be true is just as plausible as for =Ab; A Aby A =Abjs to
be true, since to determine plausibility we are not counting abnormalities but comparing
by set inclusion. Therefore, we have that J [~ Bel(Aby, do(a, Sp)), i.e.,

Ab2 ¢ K(SO * ¢0),
contradicting (AGMx4).

Note that the reason that the situations accessible from (the denotation of) Sy where

Ab; A—=Aby AAbs was true were not then among the most plausible was because there were
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also accessible situations where Ab; A =Aby A =Abs was true. However, after the revision
action, none of the latter type of situations were accessible (since ¢y was not true at
them). There were still most plausible accessible situations where =Ab; A Aby A —Abg is
true, but because the subset-based plausibility “ordering” is not transitive, those were

not ranked as more plausible than the situations where Ab; A =Aby A Abs is true.

So subset-based comparisons cannot be used in the way that we have used cardinality-
based ones. For the same reason, we also could not use an alternative form of CBC that
compared cardinalities for each predicate individually (see Moinard, 2000, Remark 14),
instead of summing together the cardinalities of the extensions of all predicates of the

same priority.

3.4.4 Lexicographic entailment

Recall that Schwering and Lakemeyer’s only-believing operator determined a plausibility
ordering like that given by System Z. There is no reason that we can’t define versions of
only-believing based on other systems from the extensive literature on using conditionals
for default reasoning (e.g., Geffner and Pearl, 1992; Goldszmidt et al., 1993; Benferhat
et al., 1993; Lehmann, 1995; Kern-Isberner and Eichhorn, 2014; Beierle et al., 2017).
In this section we will consider using one of these systems, lexicographic entailment, in
defining an alternative “only-believing” operator. We will then show that CBC is a more

general approach.

Lexicographic entailment comes from the work of Benferhat et al. (1993) and Lehmann
(1995). The version of lexicographic entailment we’'ll describe is based on the presentation
by Eiter and Lukasiewicz (2000) of lez,-entailment (with some notation changed to aid

comparison).

In this system, a knowledge base is given as a pair (o, ') where « is a sentence and

[={é1=t1,....0m = U}

is a set of conditionals (again, ‘=’ is not the material conditional). Traditionally, a, ¢;,
and ; were considered to be propositional, but we can let them be first-order. Each
conditional ¢; = 1); is associated with a priority level from {1,... k} (where 1 is the
most important). Given («, '), we can associate with every interpretation J a preference
vector 0(3) € {0,...,m}* where the ith entry of £(J) is the number of values of j for
which (¢; = ;) is a priority ¢ conditional and J = (¢; D ¥;).
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We will say that (o, ") lexicographically entails ¢ = 1, written

<Oé, F> ):Iex ¢ = 1/}7

—

if 1) is true in every interpretation J with minimal ¢(J) such that J = a A ¢. As with

abnormality vectors in CBC, minimality is determined by lexicographic comparison:
0(3,) < 0(3,) if there exists an i so that £(J;); < 0(J5); and for all j < i we have
(3

—

)i < £(J2);-
Note that there are only a finite number of distinct vectors in the image of £(-), so we
can number them El, Zg, 0 ~ so that E_; < é_;;_i_l. We could define another only-believing

operator, which we’ll call O, by “embedding” lexicographic entailment within it.

Definition 3.4.1 (Oj). Suppose I' = {¢1 = Y1, ..., ¢ = ¥} is a set of conditionals
with associated priority levels, and Zl < ZQ << 0 ~ are the distinct preference vectors

in the image of ¢(-) (defined w.r.t. I'). For e = (ey, eq,...) an epistemic state (defined as
in §3.4.2), we define

€ IZ O|EX(F)

—

to hold iff each e; contains every world w where £(w) < ¢; (let ¢; = ey when i > N).

This new form of only-believing avoids the drowning problem, insofar as lexicographic

entailment does. For example, we have the following:
Proposition 3.4.4. O (True = P, True = Q) = B(—-FP = Q) AB(—-Q = P)

Proof. In the epistemic state e = (ey, ey, ... ) that satisfies the left-hand side, e; contains
the worlds where both (True D P) and (True D () are true, and ey contains the worlds
where at least one of those conditionals is true. So @) is true at the most plausible —P-

worlds (which are in e;), and similarly P is true at the most plausible =Q-worlds. O

As their similarity suggests, there is a sense in which lexicographic entailment can be

easily translated into CBC.

Lemma 3.4.1. Suppose that Aby,...Ab,, are all the abnormality predicates and are all
O0-ary, and ¢1, ... om, Vi, . . ., ¥, are sentences not including any Ab; symbol. Let us define
(3) relative to

<Oé, {¢1 = 1/}17 e -;¢m = ¢m}>7
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where the priority of v¥); = ¢; is the same as the priority of Ab;. Then for every interpre-
tation J such that

TJEN{-Ab; = (¢; D ;) : 1 <i<m},

—

we have ¢(J) = £(7).

Proof. It 3 = N{—Ab; = (¢; D 1) : 1 <i < m}, then for each i such that J |~ (¢; D ),

— ~

we have J = Ab; (and vice versa). The definitions of the abnormality vector ¢(J) and

preference vector £(J) make them the same in that case. ]

Proposition 3.4.5 (translating lexicographic entailment into CBC). Let Aby, ...,

Ab,., &1, ... Om, iy ..., Um, and £(J) be as in Lemma 3.4.1 above. Suppose that «, 5,

and [y are sentences not including any abnormality symbols. Then

<Oé, {¢1 = 'le, s 7¢m = wm}> ):lex Bl = /82

if and only if
{a A B} U{=Ab; = (¢; D) 1 1 <i <m} Feard Po

Proof. Immediate from Lemma 3.4.1. O]

This resembles how formula circumscription (McCarthy, 1986) can be defined in
terms of (traditional) predicate circumscription. Lexicographic entailment is essentially
a form of cardinality-based formula circumscription. This relationship between CBC and
lexicographic entailment is straightforward but to the best of our knowledge has not been
previously reported on.

Note how for this translation we used only O-ary abnormality predicates in the result.
When none of the abnormality predicates take any arguments, we can also go in the other
direction and translate CBC into lexicographic entailment, as the following proposition

shows.

Proposition 3.4.6. Suppose that Abq,...Ab,, are all the abnormality predicates and

are all 0-ary. Then, for any sentences o and [ (possibly referring to abnormalities),

{05} }:card 6
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if and only if
(a, {True = —Aby, ..., True = -Ab,,}) Fiex True =

where the priority of each conditional True = —Ab; is the same as the priority of Ab;.

Proof. It’s easy to see that for any interpretation J, 5(3) = ¢(J). Therefore, § is true in

every interpretation J with minimal ¢(J) such that J = « A True just in case f is true in
J

J
every interpretation J with minimal ¢(J) such that J = a. O

A consequence of this is that techniques for computing propositional lexicographic
entailment, such as the MAXSAT-based approach from Borges Garcia (2005), can be
applied almost directly to computing propositional CBC.

However, CBC isn’t restricted to O-ary abnormality predicates, and works sensibly in
the first-order case. By having the abnormality predicates take arguments we can easily
get an infinite number of distinct abnormality vectors (as we saw in Example 3.4.2). On
the other hand, O only gives us at most m + 1 distinct plausibility levels. We should
however note that there is a first-order version of lexicographic entailment from Benferhat
and Baida (2004), which is similar to CBC, though defined in a more complicated way (it
involves considering what is entailed by “weakened” knowledge bases in which universally

quantified formulas have been syntactically modified by listing exceptions to them).

3.5 Extensions

In this section we consider other forms of action theories that, like IAATS, measure
plausibility by counting abnormalities, but change some other feature. First, in §3.5.1
we consider allowing abnormalities to change over time, leading to mutable abnormality
action theories. Then in §3.5.2 we consider “dual” TAATs, theories in which the agent may
not know the true dynamics of the domain — i.e., successor state axioms, preconditions
axioms, and sensing axioms — because there are separate dynamics axioms to describe

what the agent believes.

3.5.1 Changing plausibility over time

Shapiro et al. specified that the plausibilities of situations never changed, and we have
followed suit by keeping abnormalities fixed. An obvious alternative would be to instead
allow actions to change what is abnormal. This could be useful for reasoning about

exogenous actions, such as rain starting, or a flood occurring (we will consider handling
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exogenous actions in a different way in Chapter 5). Intuitively, the situation resulting

from one of those actions could be more plausible than the other.

There is one thing to be careful with when updating plausibilities in this way. The
agent believes what is true in all the currently least abnormal accessible situations, re-
gardless of how many abnormalities previously existed. So if we write an action theory
so as to say that an action removes or adds an abnormality, we have to be careful that
what we mean is that the occurrence of that action really does make the situation (with
its history) more or less plausible. As we will see at the end of this section, changing

abnormalities seems to lead to some quirks regarding beliefs about the past.

However, we will first show some examples involving exogenous actions in which
changing abnormalities do give intuitive results. To do so, we are going to build on the
approach of Shapiro and Pagnucco (2004). They generalized the framework of Shapiro
et al. (2011) to allow exogenous actions, but in their work the agent could not compare the
plausibility of exogenous actions, but just assumed there were as few exogenous actions
in the past as possible. To be more precise, belief was defined as truth in the “minimal”
situations, where minimality was defined in terms of pl values (as in Shapiro et al.) except
that ties in pl values were broken by favoring situations with shorter histories. We can

generalize that.

Shapiro and Pagnucco divided actions into two types, exogenous and endogenous.
They had unary predicates Exo and Endo to identify them. They required that ex-
ogenous actions not provide useful sensing information, by having the axiom Exo(a) D
(Vs).SF(a, s). Furthermore, instead of the axioms constraining B that we have previously

seen, they used an axiom that can be written as
Vs’ s. B(s',s) = SameVisHist(s, s'),

where SameVisHist(s, s') is an abbreviation for a formula saying that s and s’ have the
same endogenous actions in their histories in the same order (and with the same sens-
ing results), but with possibly different exogenous actions interleaved among them. In-
tuitively, this reflects how the agent is aware what it itself does, but is not aware of

exogenous actions (except of what it can infer through sensing).

As Shapiro and Pagnucco note, this axiom does more than a successor state axiom
usually does — it also describes B in initial situations. In their approach the accessibility
relation is domain-independent, and it is only by specifying the plausibility function that
the axiomatizer gets to determine what the agent believes. This is rather the opposite of

the approach we have been taking, where the plausibility of an initial situation is fixed
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by what abnormalities exist there, and the beliefs of the agent are determined by how
the axiomatizer specifies the accessibility relation (with only-knowing).

Instead of using their axiom for B, we can specify what the agent knows was true
in the initial situation by including a sentence of the form Qinit(¢) in an action theory,

where
Oinit (o) vy s, B(s', s) = [SameVisHist(s, s') A ¢[root(s")]].

Oinit(¢) says that accessible situations must have the same endogenous actions in the
same order, and furthermore the knowledge base ¢ must have been true at the initial

situations in their histories.

Remark 3.5.1. This specification of the accessibility relation allows the agent to be
uncertain what exogenous actions have occurred, and so Qinit(¢) holding does not nec-
essarily mean that the agent initially believes ¢ is currently true (since it may consider

it possible that exogenous actions have already made ¢ false).
So, now we can consider mutable abnormality action theories (MAATS).

Definition 3.5.1 (M AAT). MAATS are like TAATS, except that abnormality predicates
are now allowed to have different SSAs, MAATSs specify which actions are exogenous (and

that those actions don’t provide sensing information), and MAATS use Oinit(¢) to specify
B.

Example 3.5.1 (counting exogenous actions).
First, let’s consider how we might emulate in a MAAT the way Shapiro and Pagnucco
counted exogenous actions to determine plausibility. We can define a fluent Clock that

counts actions:
Clock(i,do(a,s)) = dj. i =j+ 1 A Clock(j, s).

We use the following SSA for Ab(i, s), which says (in part) that Ab(i, s) is true if there is

a situation s’ C s where Clock(7, s") was true and in which an exogenous action occurred:
Ab(i,do(a,s)) = (Clock(i,s) A Exo(a)) V Ab(i,s).
By including

Oinit(Clock(0) A Vi. =Ab(i) A [i # 0 D =Clock(i)] A «)
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in the MAAT — where « is any formula, and the rest specifies that the agent knows
the initial time was 0 and there were no abnormalities then — we then have that for an
accessible situation s, Ab(i, s) is true iff the ith action in the history of s was exogenous.
Consider how this affects the plausibility of accessible situations. If all other abnormal-
ities have higher priority than Ab and never change, this amounts to breaking ties in

plausibility by counting exogenous actions, as in Shapiro and Pagnucco’s approach.

Example 3.5.2 (the plausibility of rain versus flooding).

This example, in which we will model rain as more plausible than flooding, shows how we
can go beyond just counting exogenous actions to determine the plausibility of situations.
We have two exogenous actions, rain (rain) and flooding (flood) either of which causes
the ground to be wet (Wet). For the purposes of this example, rain and flooding will be
modeled as occurring independently. There is an endogenous sensing action see which

checks if the ground is wet.

Wet(do(a, s)) = (a = rain V a = flood) V Wet(s)
SF(see,s) = Wet(s)

We also have two abnormality fluents, Ab; and Aby, where Ab; has higher priority than
Ab,. Suppose we have an SSA for Clock as before. We can set up the SSAs for Ab; and
Ab, so that flooding at time ¢ causes Ab;(7) to become true, and rain at time 7 causes

Abs (i) to become true:

Ab;(i,do(a, s)) = [Clock(i,s) A a = flood] VV Aby (i, s)
Aby(i,do(a, s)) = [Clock(i, s) A a = rain] V Aba(i, s)

Furthermore, the agent thinks that initially the ground was not wet, the time was 0, and

there were no abnormalities.
Oinit(—~Wet A Clock(0) A Vi. =Aby (i) A —=Aba(i) A [i # 0 D =Clock(i)])

The next proposition says that after an exogenous action occurs and the agent then
senses that the ground is wet, the agent believes (possibly mistakenly) that it rained.
The reason for this is that the agent knows that it either rained or flooded, but considers

the rain more plausible.

Proposition 3.5.1. Let 3 be the MAAT described above. Then ¥ entails each of the

following;:
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e Bel(3s. do(rain, s) T now, do([rain, see|, Sy))
e Bel(3s. do(rain, s) C now, do([flood, see], Sp))

That is, after the action sequence [rain, see] or [flood, see|, the agent believes that a rain

action occurred in the past.

Proof. In either do(]rain, see]) or do([flood, see|,Sy), the accessible situations all have at
least one rain or flood in their history. The most plausible such situation has (just) one

rain action. O

Example 3.5.3 (the fate of abandoned money).

Sometimes, for an exogenous action to have occurred may seem more likely than not.
For example, if there was money on the street, you might expect that it will have been
taken.

Suppose that there is one exogenous action, steal (and possibly some number of en-
dogenous actions). There is a fluent OnStreet indicating that money is on the street. The
steal action results in any money on the street disappearing. For there to be money on
the street is abnormal (Ab). The agent believes that initially there was money on the

street (abnormally). This description is formalized below:

OnStreet(do(a, s)) = (OnStreet(s) A a # steal)
Ab(do(a, s)) = (OnStreet(s) A a # steal)
Oinit(OnStreet A Ab)

Recall (from Remark 3.5.1) that we are no longer assuming that an agent realizes
when it is in an initial situation. An agent in Sy can believe (mistakenly) that some
exogenous actions have taken place. In this example, although the agent in Sy believes
that initially there was money on the street, it also believes that the money has already

been stolen.
Proposition 3.5.2. Let X be the MAAT described above. Then
Y = Bel(3s. do(steal, s) = now, Sy).

Proof. The initially accessible situations are initial situations (where Ab is true) and

situations where steal just occurred (and Ab is false). The latter are more plausible. [J
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An issue with forgetting past assumptions

As we alluded to earlier, peculiar things may happen to beliefs about the past when
abnormalities can change. To talk about this, let’s first follow (Shapiro et al., 2011,

Definition 15) in their definition of an operator Prev:
Prev(¢,s) & (35, a).s = do(a, s') A ¢[5]

That is, Prev(¢, s) holds if ¢ was true in the situation preceding s.
Now consider a simple MAAT ¥ with endogenous actions makeAB and deleteAB (and

no exogenous actions), and where the agent initially doesn’t know anything.

Ab(do(a,s)) = (a = makeAb) V (Ab(s) A —deleteAB)
OKnow(True, Sy)

As you would expect, we have that the agent believes Ab is initially false (because the
initial situations where Ab is true are less plausible), and after performing makeAb, the

agent believes that Ab is true.

¥ = Bel(—Ab,S)
5 = Bel(Ab, do(makeAb(Sy))

However, we also have that after performing makeAb, the agent no longer believes that

Ab was initially false:
Y. = —Bel(Prev(—Ab), do(makeAb, Sy))

Why is this? From the situation do(makeAb,Sy), all accessible situations have Ab true,
and so are all equally plausible (regardless of whether Ab just became true in those
situations, or had been true for a while).

Similarly, if the deleteAb action is performed, the agent will believe that Ab is false,

but will lose its assumption that Ab was initially false.

¥ = Bel(—Ab, do(deleteAb, Sy))
¥ = —Bel(Prev(—Ab), do(deleteAb, Sy))

The last entailment holds because from the situation do(deleteAb,Sy) all accessible sit-

uations have Ab false, and so are equally plausible (regardless of their history). So after
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performing deleteAb, the agent will have no opinion as to whether there never was an

abnormality or whether there was one that was just removed.

It seems strange that the agent may retract its past assumptions based on a non-
sensing action without preconditions. Perhaps there is some interpretation of the mean-
ing of abnormalities which would justify it. Alternatively, the issue might be addressed
by somehow restricting how abnormalities can change in an action theory, or by somehow
considering which abnormalities that were true in the past when evaluating the plausi-
bility of a situation. However, we will not be exploring the matter further. Instead, when
we return to the topic of exogenous actions in Chapter 5, we will show how to handle
them without mutable abnormalities (see in particular §5.2.6, where the new approach

is related to the examples we’ve seen here).

3.5.2 Action theories with separate believed dynamics

In TAATS, like in many other situation calculus theories, the axioms describing the dy-
namics — successor state axioms, precondition axioms, and sensing axioms — apply to all
situations. However as we mentioned in Chapter 2, some authors, like Lakemeyer and
Levesque (1998) and Schwering and Lakemeyer (2014, 2015), have used action theories
that have two collections of axioms for describing the dynamics. One collection describe
the real dynamics, and the other what the agent believes. For readers interested in those
sorts of theories, in this section we show that that approach is fully compatible with how

we measure plausibility.

We will introduce a new form of action theories which are like TAATSs, but allow
for different SSAs, precondition axioms, and sensing axioms to apply to epistemically
accessible situations than in the actual situation. Our action theories will have two main
components: one, similar to a basic action theory, describes the way the environment
actually is (i.e., in the situation tree rooted at Sp), while another describes the way the
agent (possibly mistakenly) thinks the environment is. Our main result will be that these

theories also mostly satisfy the AGM postulates, in much the same way as TAATSs do.

Recall from Definition 2.3.2 that if I is a set of SSAs, precondition axioms, and/or
sensing axioms, then I':o is the set of corresponding relativized axioms that only apply
to situations on the situation (sub)tree with root o. In the action theories we will be
introducing, there will be “real” SSAs, preconditions, and sensing axioms relativized to

Sp, and ones which the agent believes, relativized to now.

We finally get to our main definition.



CHAPTER 3. SPECIFYING PLAUSIBILITY LEVELS 71

Definition 3.5.2 (DIAAT). A dual IAAT (DIAAT) is a set of axioms
Y= Ebasic U {OK"OW(/\ H, So)}
where intuitively Yp.sic describes reality and II what the agent believes. Formally,

Ebasic = ({Essa U 2pre ) Esense}:SO) U 20 U Z]1"ound U z]una
IT = ({Hsa UTlpre U Hgense }:mow) U Sgp

Yesa and I, are sets of successor state axioms, where the ones in Y, are the “real”
ones. The SSAs that the agent believes are in Ils,, meanwhile. Y., Yeense, and X are
the real precondition axioms, sensing axioms, and initial state axioms, respectively. IT.
and Ilgnse are the precondition axioms and sensing axioms the agent believes. Ykg is a
set of sentences uniform in now, as in an IAAT. Note that we don’t need versions of the
foundational axioms or unique names axioms in II, since those apply to all situations
(and so to all epistemically possible situations).

Both Y, and Ilg, should contain the SSA in Equation 2.11 for B. Furthermore, we
require that both Y, and I, contain the SSA in Equation 3.1 for any abnormality fluent
Ab;. Y¢oung 18 the set of foundational axioms. Compared to in an IAAT, the foundational
axiom about the existence of initial situations has to be modified to assert there exist
initial situations where all fluents and Poss and SF take arbitrary values and from which
they evolve in arbitrary ways (similar to Axiom F8 in Lakemeyer and Levesque (1998)).

Meanwhile, ¥,,, are unique names axioms for actions.

Example 3.5.4.
DIAATS allow for the agent to believe sensing axioms that are different from the “real”
ones. Let’s give a very simple illustration. Consider a DIAAT ¥ with two fluents, P(s)

and Q(s), and a sensing action, sense. Ygense includes
SF(sense, s) = Q(s)
but Ieense (What the agent initially believes) includes
SF(sense, s) = P(s).

Intuitively, the sensing action sense really senses whether Q is true, but the agent thinks
that it senses whether P is true. Furthermore, >xg is empty, so the agent does not initially
know whether P (or Q) is true. ¥y contains Q(Sp). We assume that ¥ is such that the
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agent is certain that sensing cannot alter the truth of P or Q.
If the agent performs sense in Sy, it will get a positive response (because Q is true)
but the agent will interpret that as meaning that P is true. The following proposition

shows this.
Proposition 3.5.3. For ¥ as described above, ¥ |= Bel(P(now), do(sense, Sp)).

Proof. By the SSA for B (Equation 2.11), ¥ entails

Vs'. B(s', do(sense, Sg)) =
Js. B(s,So) A (s = do(sense, s)) A Poss(sense, s) A (SF(sense, s) = SF(sense, Sy)).

Furthermore, > = SF(sense, Sg) because Q is true in Sg, but we also have
Y = Vs. B(s,So) D (SF(sense, s) = P(s))

because of the sensing axiom in Ilsense. The result follows. O

Relation to the AGM postulates

Since DIAATSs allow actions to behave differently depending on the initial situation, we
cannot directly use the results from Shapiro (2005) or Shapiro et al. (2011) regarding the
relation of the framework to the AGM postulates. However, through a simple modifica-
tion of their definition of what revision actions and revisions are, we can recover results
analogous to theirs, and we do so in this section.

As with Shapiro’s approach, all revisions of belief are the result of actions. We will
define revision actions corresponding to revising by particular formulas. Shapiro did this
as well, but required that a revision action have the same preconditions, effects, and
sensing results in all situations (see Definition 2.4.6). In DIAATS, no action has those

properties.

Definition 3.5.3 (redefining a revision action for ¢). Given a sentence ¢ uniform
in now, a ground action term « is a revision action for ¢ with respect to a DIAAT ¥ if
) entails that

Vs 3Sp. Vs'. B(s',8) D

(Poss(&, s"Y N [SF(a, ") = ¢[s]] A /\ VE. F(Z,s') = F(#,do(a, s’))])

F a fluent
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That is, « is a revision action for ¢ if in any situation (reachable from Sg), the agent

is certain that o
e is possible,
e senses whether ¢ is true,
e and doesn’t change the value of any fluent.

In contrast, Definition 2.4.6 had required each of those points to be true of « in every
situation.

For the purposes of establishing the AGM postulates, like Shapiro we will limit our
attention to a restricted set of formulas, those in the language Lo, defined in Defini-
tion 2.4.3. We use the same definitions of belief state (Definition 2.4.4) and expansion
(Definition 2.4.5) as Shapiro. However, we redefine the revision of o by ¢ (from Defini-
tion 2.4.7).

Definition 3.5.4 (redefining o * ¢). Suppose that « is a revision action for ¢ and o
is a ground situation term. We define the revision of o by ¢ (in terms of «, and w.r.t. a

model J) as

def do(«, o) if 3 = SF(a, 0)
xp =

undefined  otherwise

Revision by ¢ is not always defined, even when there is a revision action for ¢, because
any revision must come about as the result of a positive sensing result. Note that our
definition differs from Definition 2.4.7 in that, where we require that the model makes
SF(o, @) true for o * ¢ to be defined, Definition 2.4.7 requires that the model makes ¢[o]
true. The definitions would be equivalent if we assumed that « senses the true value of
¢ (as Shapiro did), but we don’t make that assumption.?

Recall that Shapiro (2005) defined a version of the AGM postulates. Our framework
satisfies seven of the eight postulates, the same ones that Shapiro’s does (Shapiro, 2005,
Theorem 3.4.25).

Proposition 3.5.4. Let X be a DIAAT. For any model J of ¥, and any ground situation
term o = do(f, So), all the AGM postulates other than (AGMx5) are satisfied when

revision is defined.

30ne consequence of that is that in our framework, unlike Shapiro’s, the agent can revise by a logically
invalid sentence. This is not of great use to us, though, since after revising by such a sentence the agent’s
beliefs will remain inconsistent regardless of whatever else subsequently happens.
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Proof. The proof is very similar to the ones by Shapiro (2005, §3.4.6) and Shapiro et al.
(2011, Appendix A). Like those, it is rather long, and is included in Appendix A. ]

We do not get (AGM=x5) for the same reason that Shapiro (2005, p. 79) didn’t: if there
are no accessible situations in which the formula to be revised by is true, then there will

be no accessible situations left after revision.

3.6 Discussion and related work

Here we briefly discuss a few as-yet-unmentioned works.

Pagnucco et al. (2013) were concerned with implementing the framework of Shapiro
et al. for a robotics application. They suggested a way of constraining the initial plausi-
bility levels (for use by a robot in interpreting directions) which resembles our approach.
The idea is that a number of literals referring to the initial situation are “told” to the
robot, and initial situations where more of those literals are true (taking into account
priorities given to the fluent symbols in the literals) are constrained to be more plau-
sible. Pagnucco et al. do not discuss using the accessibility relation to associate more
complex sentences with these “told” literals, in contrast to the way we use only-knowing
to associate abnormalities with other things.

The approach of del Val and Shoham (1994) to belief revision and update in a variant
of the situation calculus also (like ours) featured abnormality predicates. However, their
use of circumscription was to minimize change of “persistent” properties from situation
to situation (they did not have Reiter-style successor state axioms).

Demolombe (2003, p. 192) suggested specifying plausibility levels by, for each plau-
sibility level n, having an axiom characterizing which situations have that plausibility
level. They were concerned with a modal version of the situation calculus, but in our

setting that might amount to having axioms of the form
[B(s',S0) API(s") =n] = ().

They assumed that there were only finitely many plausibility levels, which also was a
limitation of Schwering and Lakemeyer’s (2014) approach.

Fang and Liu (2013) considered belief change in a multi-agent version of the situation
calculus, which could also model actions that an agent was unaware of (like our exogenous
actions). Following work in dynamic epistemic logic (Baltag and Smets, 2008), they made
use of two plausibility orderings, one on situations and one on actions, and updated

the plausibility of situations by giving priority to the plausibility of the last action to
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have been performed (the so-called “action-priority update”). This is in the spirit of the
importance placed on recent information in the AGM approach, but we would argue that

is not the most natural way to reason about exogenous actions.

3.7 Conclusion

In order to apply Shapiro et al.’s (2011)’s framework for iterated belief change, an action
theory has to be written, in which it is necessary to specify the plausibility levels of
accessible situations somehow. We have provided a way of using counting abnormalities,
in association with characterizing the accessibility relation using only-knowing, for this.
We have shown that this approach has advantages over competitors like Schwering and
Lakemeyer (2014). Note that our approach to specifying plausibility levels could also be
applied outside the situation calculus — indeed, it was first used in a modal temporal
logic (Klassen et al., 2017).

We mostly focused on immutable abnormality action theories (IAATS), involving
abnormalities that do not change over time (which is consistent with Shapiro et al.’s
use of fixed plausibility levels). We also considered changing abnormalities, though there
would be further work needed there to determine how to make beliefs about the past
work correctly. There may be some way to relate changing abnormalities to the versions of
belief revision that involve changing the plausibility order (Rott, 2009). Another idea that
might be considered is, instead of evaluating the plausibility of a situation by counting
the abnormalities true in it, summing together the abnormalities true in that situation
and all its predecessors. Note that a side-effect of that would be that if not all actions
were observable by the agent, the agent would find it more plausible that there were
fewer predecessors to the current situation rather than more.

Another direction for future work would be to consider the multi-agent case. That
would require a multi-agent version of only-knowing (Aucher and Belle, 2015), which is
much more complicated. One might also want to use separate sets of abnormalities fluents
in defining the belief operators for each agent (though if the action theory in question
does not make any “objective” references to abnormalities, then the same abnormality
fluents could easily be reused for different purposes within the different agents’ knowledge
bases).

In the next chapter, we will see how IAATSs can be used to model belief change about

domain dynamics. We will also address how to perform regression (recall §2.2.2.4) for
TAATSs.



Chapter 4

Changing beliefs about domain

dynamics

4.1 Introduction

In the previous chapter we described how we can use counting abnormalities to establish
initial plausibility levels, in the model of belief in the situation calculus proposed by
Shapiro et al. (2011). In this chapter,! we apply our immutable abnormality action the-
ories (IAATS, Definition 3.3.10) to specify the plausibility of various aspects of domain
dynamics: effects of physical actions, results of sensing, and action preconditions. This
will support having the agent change its beliefs about dynamics in reaction to observa-

tions of the environment (i.e., the information gained from sensing actions).

First, in §4.2 we provide some general results on how what an agent believes about
domain dynamics can be determined for an TAAT. We then suggest patterns to follow
when writing SSAs which can control the extent to which observations change the agent’s
beliefs about action effects (§4.3). It will be up to the axiomatizer to specify the generality
of the conclusions the agent should draw from observations (e.g., whether observing a
failed attempt to pick up a cup means that that cup can never be picked up, or some

broader or narrower conclusion).

We illustrate the change in beliefs that our account can support with an extended
example in §4.4. In this example (previously mentioned in §1.2.2), we will describe an
action theory about picking up and holding objects, where the agent changes its beliefs

about how the fluent Holding(z, s) (x is held in s) changes over time. There’s an action

IThis chapter is based in part on a paper to appear at KR 2020 (Klassen et al., 2020).
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pick(z) (the agent tries to pick up x). At one point the agent can believe
Holding(z,do(a, s)) = a = pick(z) V Holding(z, ), (4.1)

(i.e., that it’s holding an object if it just tried to pick it up or if it was previously holding
it). After sensing its failure to pick up a cup, the agent will no longer believe (4.1) but

will believe something of the following form:

Holding(z,do(a, s)) = [a = pick(z) A (... Az = cup)] V Holding(z, s), (4.2)

where the ellipsis stands for an expression identifying when the failure occurred. That is,
the agent believes that while it did fail to pick up the cup, that failure was a one-time
event. So the agent believes that it will be holding anything it picks up except for that
one-time failure. Furthermore, after a second time failing to pick up the cup, the agent

will no longer believe (4.1) or (4.2), but will now believe the following:
Holding(z,do(a,s)) = (a = pick(z) Az # cup) V Holding(z, s), (4.3)

i.e, that it can only pick up objects other than the cup. Finally, after trying to pick up
another object also doesn’t result in it being held, the agent will no longer believe (4.1),
(4.2) or (4.3), but will now believe the following:

Holding(z,do(a,s)) = (a = pick(z) A —Slippery(z, s)) V Holding(z, ), (4.4)

i.e., that it can only pick up non-slippery objects (it assumes the objects it couldn’t pick
up were slippery). As we will see in §4.4, all these beliefs will derive from a single TAAT
with single SSA for the Holding fluent written using the patterns described in §4.3.

We further show in §4.5 that our approach also handles changing beliefs about sensing
axioms and preconditions. In §4.6, we show how regression rewriting can be used with
TAATS, and provide a result about how (potentially changed) beliefs about domain dy-
namics can be incorporated into regression. Then we consider related work (§4.7) before

concluding.

4.2 Determining beliefs about dynamics

We will be exploring beliefs entailed by IAATs about SSAs, precondition axioms, and
sensing axioms, and how to determine them. Later (§4.3) we suggest having the descrip-

tions of SSAs in the theory refer to abnormalities, so as to describe less plausible ways
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that the domain might behave. The techniques of this section can then allow us, in some
cases, to find beliefs about SSAs that don’t refer to abnormalities. We will also consider
sensing axioms in §4.5.1 and preconditions in §4.5.2.

In this chapter, we’'ll make extensive use of weights on abnormalities. None of the
examples will involve priority levels, on the other hand, though those would be compatible
with the approach in this chapter as well. (Recall that the difference between weights
and priorities was described on page 53.)

To get started, we will find it useful to have a symbol to denote the part of an TAAT

that describes the domain dynamics.

Definition 4.2.1 (X4yn). Given an action theory ¥ including SSAs Y,, precondition

axioms Yy, and sensing axioms Yeense, We define

def
Z:dyn = 2ssa U z:pre U 2sense-

Note that given any TAAT X, the agent will always believe the SSAs, precondition
axioms, and sensing axioms written in it, since they hold at all situations (this is in
contrast to the DIAATSs from §3.5.2, which did not have dynamics axioms that applied
to all situations). However, we are more interested in what the agent believes about
the domain’s dynamics in the situation tree it’s on, i.e., in situations following from
root(now), rather than in all situations. Therefore, we will use the notion of an axiom
that holds on a (sub)tree, rooted at o (Definition 2.3.1). Henceforth, when we informally
talk about the agent believing an axiom about dynamics, we really mean that it believes
the corresponding axiom relativized to root(now).

In terms of axioms relativized to root(now), the agent will still believe the axioms in

Ydyn, 1.€., we will always have that
Y = Vs. Bel (A Xgyn:root(now), s).

However, as the agent changes its beliefs about the abnormality fluents, it may come to
believe that various other axioms are equivalent to the original ones, and so also believe
them. For example, if 3 includes the SSA

Holding(z,do(a, s)) = (a = pick(z) A —=Aby(s)) V Holding(z, s) (4.5)

and the agent comes to believe that Ab; is true on the situation tree it’s on, then the

agent will as a result believe a simpler (relativized) SSA saying that Holding does not
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change:
Holding(z,do(a, s)) = (a = pick(z) A —=True) V Holding(z, s)

That can be simplified to Holding(x, do(a, s)) = Holding(z, s).
The following definition will be useful in describing what the agent believes about

abnormalities.

Definition 4.2.2 (Ab account). Suppose we have a language with n abnormality

fluents, Abq, ..., Ab,, of possibly differing arities. An Ab account £ is an expression
&(now) o /\ VZ. Ab;(Z, now) = &(T),
Ab;eR
where R C {Aby,...,Ab,}, containing a conjunct corresponding to each Ab; fluent in R.

If Ab; is an (m + 1)-ary fluent (where the last of those arguments is the situation) then

the expression &; is of the form

(VA==

for some ¢ > 0, where the 7;;, are ground terms that do not refer to any situation term.
We call R the range of &.

Intuitively, an Ab account £ characterizes the extension of each abnormality fluent
in its range. Note that if Ab; is a unary fluent (taking only a situation argument), the
expression &; in an Ab account £ is either True or False. Also, any Ab account requires
that there be only finitely many abnormalities, so there can be situations in which no Ab
account is true.

Ab accounts are not normally included in action theories, but are things that may be
believed or disbelieved by the agent. For example, suppose we’re working with a theory
including the SSA from Equation 4.5. If the agent observes that pick(x) fails to make
Holding true of =, then the agent may come to believe the Ab account (Aby (now) = True).
Recall that abnormalities do not change over time, so if Ab; is true “now”, it was always
and will always be true. So, as the next lemma notes, if an agent believes an Ab account

holds now, then it believes that account has held and will hold forever.

Lemma 4.2.1. For any TAAT X, Ab account £, and ground action sequence &,

¥ = Bel({(now) D Vs J root(now). £(s), do(d, Sp))
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Proof. This follows from abnormalities not changing and the terms in £(s) not depending

on s. O

The main role to which we put abnormalities is as markers of subjective plausibility.
We are typically more interested in the non-abnormality fluents, and what the agent

believes about them, i.e., in beliefs about normal formulas.

Definition 4.2.3 (normal formula). A formula is normal if it doesn’t refer to any

abnormality fluents.

The following definition describes a syntactic transformation that can (in some cases)

produce normal formulas.

Definition 4.2.4 (normalization). Given a formula ¢ and an Ab account &, the nor-
malization of ¢ w.r.t. £ is a formula ¢’ which is like ¢ but, for each Ab; in the range of &,
replaces each occurrence of any subformula of the form Ab;(7, o) (where o is a situation

—

term and 7 are other terms) with &(7)
For example, if ¢ is the SSA from Equation 4.5,
Holding(z, do(a, s)) = (a = pick(z) A =Ab;(x, s)) V Holding(z, s),

and ¢ is the Ab account Ab;(z, now) = (x = ¢V = d), then the normalization of ¢ with

respect to & is
Holding(x,do(a, s)) = (a = pick(z) A =(z = ¢V x =d)) V Holding(z, s).

Note that normalization is defined for any formula ¢, and if an Ab account ¢ includes in
its range every abnormality fluent mentioned by ¢ then the result of normalizing ¢ w.r.t.
¢ will be a normal formula.

We will see that in some cases the agent will believe the normalizations of certain

sentences it believes.

Proposition 4.2.1. Let X be an TAAT. Let Vs. ¢(s) be an SSA, precondition axiom, or
sensing axiom in . Let & be a sequence of ground actions. If there is an Ab account &
such that

S |= Bel(¢, do(&, So))
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and ¢’ is the normalization of ¢ with respect to &, then
¥ = Bel(Vs d root(now). ¢'(s),do(d@, So)).

Proof. Suppose that there is an Ab account ¢ such that ¥ = Bel(§,do(d,Sy)) and ¢’ is
the normalization of ¢ with respect to £&. By Lemma 4.2.1 we have that

Y = Bel(Vs J root(now). £(s),do(d, Sp)),
and it’s easy to see that
¥ | Bel(Vs J root(now). £(s) D [¢'(s) = ¢(s)],do(a, Sy)).

Therefore, since the agent believes Vs 1 root(now). ¢(s) in do(d,Sy), we get the result.
[l

Proposition 4.2.1 can be applied to show, given particular action theories, that after
certain actions the agent believes simpler dynamics axioms than those that were written
in its initial knowledge base (we will put it to use in later sections).

A generalization we can make to Proposition 4.2.1 is to consider cases where the
agent believes a disjunction of Ab accounts (but not necessarily any of the disjuncts).
To illustrate why that is useful, consider a scenario where an agent unexpectedly fails
to pick up an object and doesn’t know if that failure was because the object was red or
because the object was fuzzy. Then we might want the agent to believe the disjunction of
“I can pick up any non-red object” and “I can pick up any non-fuzzy object”. For cases
like this, the more general Proposition 4.2.2 below is relevant (we won’t be looking at

such cases in the rest of this chapter, though).

Proposition 4.2.2. Let ¥ be an TAAT. Let Vs. ¢(s) be an SSA, precondition axiom,
or sensing axiom in Y. Let @ be a sequence of ground actions. If there are Ab accounts
€Y, ..., €% such that

> = Bel (\/f:1 ¢, do(a, so))

and ¢, is the normalization of ¢ with respect to &' for each i, then

S | Bel (\/f:1 Vs 3 root(now). ¢/(s), do(d, so)) .
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Proof. Similarly to in the proof of Proposition 4.2.1, it’s easy to see that for each 4,

Y k= Bel(Vs J root(now). £'(s) D [#i(s) = ¢(s)],do(d, Sp)).

)

Therefore, since the agent believes Vs J root(now). ¢(s) in do(&,Sp), we can get the

result (using Lemma 4.2.1). O

The results in Proposition 4.2.1 and Proposition 4.2.2 apply to any dynamics axioms.

In the next section we consider SSAs that are written in a particular way.

4.3 Patterns to follow in writing SSAs

In this section we focus on one aspect of domain dynamics, action effects. We consider
how the axiomatizer should write SSAs, so that the agent will change its beliefs by the
desired amount given new evidence. We suggest some patterns to follow, based on a
traditional way of writing SSAs in terms of positive and negative effects.
Following Reiter (2001, §3.2.7), an SSA for a fluent F'(z, s) would be written in the
form
F(z,do(a,s)) = v (z,a,s) V (-7 (z,a,5) A F(z,a,s)) (4.6)

where the formula ' describes positive effects on F', i.e., conditions under which F
becomes true, and the formula v~ describes negative effects on F, i.e., conditions under

which F' becomes false. Our next definition generalizes that.

Definition 4.3.1 (revisable SSA). We will say that an SSA is a revisable SSA if it is

written in the form

F(z,do(a,s)) = (v (z,a,s) A=V, Imp;(z,a,s)) v
(ﬂ'y_(x, a,s) A F(x,a,s))

where 7" and 4~ are normal formulas and each Imp, is a formula.

The intended use of each Imp; in a revisable SSA is to describe a less plausible case
in which action a fails to make F'(z) true. Observe that the structure of a revisable SSA
could easily be rearranged to instead describe less plausible cases in which F' may fail to

become false,

F(x,do(a,s)) =~"(z,a,s) V
(v (x,a,s) A=V, Imp;(x,a,s)) A F(z,a, s)),
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may become true,

F(z,do(a,s)) = (v (z,a,s) VV,Imp(z,a,s)) Vv
(—vy’(:c, a,s) N\ F(z,a, s)),

or may become false,

F(z,do(a,s)) =~ (x a,s)V
(v (z,a,s) vV, Imp;(z,a,s)) AN F(z,a,s)).

Those cases are similar, so we’ll just consider Definition 4.3.1.
What might we want the Imp, formulas to look like? We suggest three forms, for
dealing with exceptional objects, exceptional classes, and one-time exceptions. We will

shortly show how these influence how the agent’s beliefs can change.

Exceptional objects We may want an agent to conclude from an unexpected obser-
vation involving a particular object that actions always affect that object differently. To

achieve this, we could make Imp;(z, a, s) take the form
Abj(x,s).

Intuitively, if the agent comes to believe that Ab;(c, now) is true of a particular object
c (e.g., by sensing that F' did not become true of ¢ when expected), then the agent will
conclude that all actions will fail to make F' true of c. Note that it’s not necessary for
the action theory to say anything else about Ab; for this to work (other than Ab;’s own
SSA, specifying that it doesn’t change).

Exceptional classes Another sort of generalization that we might want the agent
to make on observing an unexpected (non-)effect is that that unexpected behavior will
always occur when dealing with objects from a particular class. For example, an agent
might conclude from failing to pick up an object that some objects are too slippery to

be picked up. To achieve this, we could make Imp,(z, a, s) take the form
[P(z,5) A Abj(s)]

where P is a fluent. Note that Ab;(s) does not take x as an argument, so it being true

would mean that any objects on the situation tree which s is part of behave abnormally
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when they have property P.

One-time exceptions We may want an agent to, when observing an unexpected (non-)
effect of an action a in situation s, just accept that a had that (non-)effect in s, while
not changing its beliefs about how any action will behave in any other situation. This
can be viewed as a sort of minimal way of adjusting the agent’s beliefs to keep them
consistent. We will call such isolated unexpected (non-)effects “one-time exceptions”. We

could make Imp,(z, a, s) take the form
Ab;(history(s), z, a, s)

(recall from Definition 3.3.10 that history(s) is a functional fluent whose value is the list
of actions that have occurred in s). Because the abnormality depends on the sequence of
actions, each new unexpected action outcome would require another abnormal atom to
be true.

We call a revisable SSA that uses only these three patterns a simple SSA:

Definition 4.3.2 (simple SSA). A revisable SSA is a simple SSA if each Imp,(z,a, s)

is in one of the following forms (the abnormalities may have associated weights):
1. Ab;(z,s) (for exceptional objects),
2. [P(x,s) A Ab;(s)] (for an exceptional class),
3. or Ab;(history(s), x,a, s) (for one-time exceptions).

We want to show that simple SSAs behave as desired. To facilitate exposition we

introduce the next abbreviation.

Definition 4.3.3 (@ ~ ¢). Suppose @ is a sequence of action terms and ¢ is a formula.
Then we define

def

a~ ¢ = Bel(V(root(now) C s D ¢), do(d,Sp))
In the case where the length of @ is 0, we write ~ ¢.

That is, ay, . .., ag ~» ¢ is a formula saying that after performing the actions ay, ..., ay
starting from Sg, the agent believes the universal closure of ¢, where the variable s is

restricted to be a successor of root(now), what the agent thinks is the initial situation.
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For example,
a ~ [Holding(z,do(a, s)) = a = pick(z) V Holding(z, s)]

says that after the actions @, the agent believes that for any situation s which is on the
tree rooted at root(now), and for any object x and action a, the stated relation holds
(i.e., x is held after performing @ in s just in case a = pick(x) or x was already held in s).

The following proposition illustrates what sorts of normal SSAs an agent may believe

when a simple SSA is used in Y,. We’ll see a more concrete example in the next section.

Proposition 4.3.1. Suppose X is an [AAT with a simple SSA for F', and & is a sequence

of ground actions. If there is an Ab account ¢ such that
by ): Bel(&ﬂ dO(O?, SO))a
and which has in its range all the abnormalities referred to by F’s SSA, then

Y Ed~ F(z,do(a, s) = [(vF (2, a,5) A —¢(z,a,s)) V
(ﬂ'y_(:zr,a, s) N F(z, s))}

where ¢ is a (possibly empty) disjunction, containing the following disjuncts, depending
on the original simple SSA:
1. For each Imp;(x,a,s) of the form Ab;(z,s), ¢ contains either no corresponding

disjunct, or a disjunct of the form [\/__;(z = 7)] for some finite set T" of ground

terms.

2. For each Imp;(x, a, s) of the form [P(z, s) AAb;(s)], ¢ contains either no correspond-

ing disjunct, or P(x, s).

3. For each Imp;(x,a,s) of the form Ab;(history(s),z,a,s), ¢ contains either no dis-

junct, or a disjunct of the form

[v<7'1,7'2,7'3>€T (hiStory(S) =T NT = To Na = 7'3)]

for some finite set T of triples of ground terms.

Proof. In the normalization of the original SSA by &, the abnormal atoms in each of the
Imp,(x, a, s) expressions will get replaced, yielding an SSA as described (for (2), there’s
some additional simplification needed to remove expressions that include True or False).
That that SSA is believed follows from Proposition 4.2.1. O
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Intuitively, in part (1) of Proposition 4.3.1, T is a list of exceptional objects, the result
in (2) depends on whether the agent has determined P to be an exceptional class, and in
(3), T identifies very specific circumstances for one-time exceptions. Note that a reason
we used the history fluent in our one-time exception pattern, rather than just referring
to a situation (which also stores a list of actions), is because the right-hand-sides of SSAs
are supposed to be uniform formulas, and so cannot refer to equality of situation terms
(while they can refer to expressions like history(s) = 7).

The next proposition says that if we write the SSA for F' as a simple SSA, then (under

some conditions) the agent will initially believe the traditional SSA from Equation 4.6.

Proposition 4.3.2. Let X be an TAAT. Suppose that the SSA for F in Y, is a simple
SSA and that Ykg (the agent’s initial knowledge base, from Definition 3.3.10) does not

refer to any abnormality fluent. Then
Sk - [F(7,do(a,5) = 7" (7,a,5) V (~(Z,0,5) A F(#,a, 5))]

Proof. Since Y kg does not refer to abnormalities, it’s easy to see that there are accessible
situations from Sy in which every abnormality is false. So in Sy the agent believes the
Ab account A]_, VZ. Ab;(Z) = False. The normalization of any simple SSA w.r.t. that
Ab account is (after some simplification) F(Z,do(a,s)) = [y7(Z,a,s) V (v (Z, a, s) A
F(Z,a,s))]. The result follows from Proposition 4.2.1. O

While Proposition 4.3.1 and Proposition 4.3.2 only consider SSAs dealing with less-
plausible failures of positive effects, analogous results could be shown for SSAs dealing
with other types of less plausible behavior. Note that in some cases it may be possible to
more compactly write the SSA by distributing the less plausible conditions throughout

it rather than grouping them together as we’ve done.

4.4 An extended example

We are now ready to formalize the revision sequence (Equations 4.1-4.4) described in
the example from the introduction (§4.1). We do so by constructing an IAAT X yoiing
with the fluents Holding(x, s), saying that x is being held in s, and Slippery(z, s), that
x is slippery in s. The actions are pick(z), the action to (try to) pick up z, and sense,
which senses whether anything is held. There are constants cup and dish (to represent a

cup and a dish), and ¥ specifies that they are distinct (cup # dish).
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The sensing axioms are
SF(sense,s) = Jz. Holding(x, s) SF(pick(z)) = True

Note that picking up does not provide sensing information. All actions are always possible

to execute. The SSAs are

Slippery(x,do(a, s)) = Slippery(z, s)
Holding(x,do(a, s)) = [(a = pick(z) A =/, Imp;(a,z,s)) V Holding(z, s)]

where \/, Imp,(a, z, s)) is
Ab? (history(s), z,a, s) V Abj(xz, s) V [Slippery(x, s) A Abs(s)]

The disjuncts with lower associated weights (superscripts) are the ones that the agent
will tend to find more plausible. So, a one-time exception is more plausible than an
exceptional object, which is more plausible than not being able to pick up slippery things
(i.e., that slippery objects are an exceptional class). Meanwhile, what’s slippery never

changes. The initial state axioms include
—Holding(z, So) Ab3(z,So)

That is, nothing is initially held, and every object is actually abnormal — a consequence
of this is that no object will be held in any successor of Sg. So in reality, pick actions are
ineffectual; they cannot cause anything to become held. The agent’s initial knowledge
base, Ykg, is empty (except for specifying that history is initially empty). The theory
> Holding 15 summarized in Figure 4.1.

The first four points in Proposition 4.4.1 below show how during the action sequence
pick(cup), sense, pick(cup), sense, pick(dish), and sense (trying to pick up the cup twice,
then trying to pick up the dish, and sensing after each attempt) the agent believes the
SSAs from Equations 4.1-4.4. The later points illustrate further aspects of the agent’s
beliefs over time: (5) shows a one-time exception in a different situation, (6-7) and (9-12)
look at what the agent believes about what it’s holding, and (8) considers a belief about

the future.

Proposition 4.4.1. Let g4y be the IAAT described in Figure 4.1. Then it entails

each of the following:

1. ~ [Holding(z,do(a,s)) = a = pick(z) V Holding(z, s)]
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Yssa = {Slippery(z,do(a,s)) = Slippery(z, s),
Holding(z,do(a, s)) =

[(a = pick(z) A = (AbQ(hlstory( ),x,a,s)V Ab3(z,s) V
[Sllppery(x, s) A Ab4( )})) V Holding(z, s)},
B(s",do(a, s)) = [3s". B(s',s) A (s" = do(a, s)) A
Poss( a,s') A (SF(a, s') = SF(a, s))],
history(do(a, s)) = history(s) - a

} U{Ab;(Z,do(a,s)) = Ab;(Z,s) | Ab;is an abnormality fluent}.

Ypre = {Poss(sense, s) = True,
Poss(pick(x),s) = True}.

Yeense = {SF(sense, s) = Jz. Holding(z, s),
SF(pick(z)) = True}.

Yo = {—Holding(z, Sy),
Abg(ﬂ?,SO),
cup # dish,

history(Sg) = ()
} U {the axioms describing lists}.

Ykg = {history(now) = () }.

Figure 4.1: Axioms in ¥ poiging

38
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2.

10.

11.

12.

pick(cup), sense ~~
Holding(x,do(a, s)) = [a = pick(z)A—(history(s) = ()Az = cup)]VHolding(z, )

pick(cup), sense, pick(cup), sense ~~
Holding(z,do(a, s)) = (a = pick(z) Az # cup) V Holding(z, s)

pick(cup), sense, pick(cup), sense, pick(dish), sense ~~
Holding(x,do(a, s)) = (a = pick(xz) A =Slippery(z, s)) V Holding(z, s)

. sense, pick(cup), sense ~ [Holding(z,do(a, s)) =

[a = pick(z) A —(history(s) = (sense) A z = cup)| V Holding(z, s)]
pick(cup) ~~ Holding(cup, now)
pick(cup), sense ~» =Holding(cup, now)
pick(cup), sense ~~ Holding(cup, do(pick(cup), now))
pick(cup), sense, pick(cup) ~ Holding(cup, now)
pick(cup), sense, pick(cup), sense ~ =Holding(cup, now)
pick(cup), sense, pick(cup), sense, pick(dish) ~» Holding(dish, now)

pick(cup), sense, pick(cup), sense, pick(dish), sense ~~ =Holding(dish, now)

Proof. We sketch the reason for each entailment. By using Proposition 4.2.1, believed

SSAs can be determined by showing which abnormalities the agent believes in the relevant

situations. We use the notation (ag,...,ax) for the term representing the sequence of
actions aq, ..., ay.
1. In the initial situation, it’s consistent with the agent’s knowledge that all abnor-

malities are false.

. After the actions pick(cup) and sense, the agent knows that executing pick(cup)

(from a situation with an empty history) failed to cause Holding(cup). So
Ab?((), cup, pick(cup)) V Abj(cup) V [Slippery(cup) A Abj]

must be true at all accessible situations. The most plausible of those are where
Ab?((), cup, pick(cup)) is true and all other abnormalities are false (because Ab? has
the lowest weight). (Note that an a = pick(cup) condition could be include in the
believed SSA but is redundant.)
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3. After pick(cup), sense, pick(cup), sense, the agent has observed two cases in which
picking up cup failed. The most plausible accessible situations are those where
Ab3(cup) is true and all other abnormalities are false. Note that situations where

instead there were two one-time exceptions, i.e.,

Ab7({), cup, pick(cup)) Ab7({pick(cup), sense), cup, pick(cup))

are less plausible, as the sum of their weights is four.

4. After these actions, the agent has seen two failures to pick up cup and one to pick
up dish. The most plausible accessible situations are those where slippery objects
can’t be picked up (and cup and dish are slippery), i.e., where Abj A Slippery(cup) A

Slippery(dish) is true, and there are no other abnormalities.

5. This is like point (2) above, except that the pick(cup) action was executed in a

situation with history (sense) instead of ().

6-7, 9-12. For (6), (9), and (11), note that in the situations involved, the agent still
believes the SSAs from (1), (2), and (3), respectively (the agent does not gain
information from trying to pick something up). From each of those SSAs, and the
actions that have occurred, it follows that the agent must be holding the relevant

object.

For (7), (10), and (12), the result follows because the agent has just performed a

sensing action, and so no accessible situation has the agent holding anything.
8. This follows from the agent believing the SSA from (2). O

So, as promised in the introduction, we have demonstrated how the axiomatizer can
control how the agent’s beliefs are changed by observations. Our approach could also
easily handle other changes of beliefs beyond those we’ve shown. For example, if we
wanted the agent to not conclude the cup was abnormal until observing that it had failed
to pick up the cup three times (instead of just twice), we could achieve that by changing
the relative weights associated with the abnormalities. Also, while we wrote the action
theory so that in actuality nothing could ever be picked up, that of course is not essential.
Note that if the agent observes enough failures to pick up the cup to conclude that the
cup is abnormal, but then senses that it’s successfully picked up the cup, the agent would
be forced to retract its belief that the cup was abnormal (and instead explain the past

failures as each being a one-time exception).
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4.5 Beyond SSAs

The previous section was concerned with SSAs, but beliefs about other aspects of the
dynamics of the domain — sensing and preconditions — can change as well. We consider

some examples in this section.

4.5.1 Changing beliefs about sensing

By having sensing axioms refer to abnormalities, we can easily allow for the agent to
change its beliefs about what sensing tells it. The following examples show how we can

model inaccurate and noisy sensors.

Example 4.5.1.
Suppose that we have another IAAT ¥ describing a setting where there are two actions
(corresponding to two different sensors), sense; and sensey. The agent’s initial knowledge

base, Ykg, is empty (except for specifying that history is initially empty). Yeense contains
SF(sensey, s) = Q(s) SF(sensey, s) = [Q(s) V Ab(s)]

That is, sense; senses whether () is true, and the agent knows that. However, the agent
initially believes that sense; does the same (because the agent assumes Ab is false). But

Yo includes

Ab(So) A =Q(So),

so in reality the sensor represented with sense; is broken and always returns a positive
result. The SSA for Q says Q never changes. By using both sensors and comparing their
results, the agent can come to learn the truth about senses, as the following proposition

says.

Proposition 4.5.1. For ¥ as described above,
Y |= sensey, sensey ~~ [SF(sensey, s) = True]

Proof. The result will follow (using Proposition 4.2.1) from showing that ¥ = Bel(Ab,

do([sensey, sensey))).

It can be shown that any situation accessible from do([sense;, senses], Sy) must have



CHAPTER 4. CHANGING BELIEFS ABOUT DOMAIN DYNAMICS 92

the same action history, and the same sensing results on that history. That is, we have

¥ | Vs B(s, do([sense;, senses], Sg)) D (Is. s’ = do([sensey, senses), s) A
[SF(senseq, s) = SF(senseq, Sg)] A
[SF(sense,, do(sensey, s)) = SF(sense,, do(senses, S))])

It can be seen that ¥ = SF(sense;, Sy) = False and ¥ |= SF(sensey, do(sensey, Sp)) = True.

Therefore,

¥ = Vs'. B(s, do([sense;, senses], Sg)) D (Is. s’ = do([sensey, senses], s) A
[SF(sensey, s) = False] A [SF(sense;, do(sensey, s)) = True]).

Using the sensing axioms and SSAs we can equivalently rewrite that as

¥ = Vs'. B(s', do([sense;, sensey], Sg)) D (Is. s’ = do([sensey, senses], s) A
[Q(s) = False] A [(Q(s) V Ab(s)) = True]).

The result that the agent believes Ab in do([sense;, senses], So) then follows easily. O

If the agent can change its beliefs both about SSAs and about sensing axioms, should
it explain an unexpected sensor reading by concluding that the sensor behaves differently
from expected, or by concluding that some prior action had an unexpected effect and the
sensor is working as expected? Or should the agent be uncertain which of those is the
case? Any of those might be a reasonable outcome, and so we allow the axiomatizer to

arrange for what they want. The following example illustrates this.

Example 4.5.2.
We consider another action theory ¥ about picking up objects, this time using this SSA
for Holding:

Holding(z,do(a, s)) = (a = pick(x) A =Ab; (history(s),z,a, s)) V Holding(z, )

(which says pick-up actions might implausibly fail in a one-time way). Furthermore, the

domain has one sensing action, sense, which now has this corresponding sensing axiom:
SF(sense, s) = Jx. Holding(z) A =Aby(history(s), z, s)

So, not only does the agent think that pick actions may implausibly fail, the agent also

thinks that sense actions may implausibly give a false negative result, i.e., indicate that
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nothing is being held even though something is really being held. The agent’s initial
knowledge base, Ykg, is empty (except for specifying that history is initially empty).
Finally, in actuality, pick-ups always fail: ¥ includes Vz, y, a. Aby(z,y, a,So).

The following proposition considers the agent’s beliefs after trying to pick up the cup
and then sensing that it’s not holding anything. Depending on the relative weights of Ab;
and Aby, the agent will either conclude that the pick action failed (so the cup is now not
being held) or that the sense action gave a false negative result (so the cup is now being

held), or be unsure which of those occurred.

Proposition 4.5.2. Let X be the IAAT described above. Then
e If Ab; has higher weight than Aby, then ¥ |= pick(cup), sense ~~ Holding(now).
e If Ab; has lower weight than Abs, then X |= pick(cup), sense ~» —Holding(now).
e If Ab; and Ab, have the same weight, neither of the above entailments holds.

Proof. After the two actions, the agent knows that either the pick-up failed or the sensor

gave a false negative result. Therefore, at least one of

Ab;((), cup, pick(cup)) and Abs ({pick(cup)), cup)

is true in all accessible situations. Giving a higher weight to Ab; and a lower one to Aby
makes the more plausible situations those in which the first is false and the second is
true. Assigning weights in the opposite way gives the opposite result. Assigning the same
weights to each will result in there being most plausible situations in which either one is
true. 0

So we see that beliefs about the combination of world-altering actions and sensing

actions behave in a sensible and controllable way.

4.5.2 Changing beliefs about preconditions

Beliefs about the preconditions of actions can change over time, similarly to what we

have already seen for SSAs and sensing axioms.

Example 4.5.3.
Suppose we have an IAAT X where Y, includes

Poss(pick(x),s) = (—Ab;(s) V Vy. =Holding(y, s)),
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saying that it’s possible to pick up z if either a plausible condition (—Ab;) holds or
nothing is held. Furthermore, Y. specifies that the sense action senses whether Ab; is

true,
SF(sense,s) = Ab(s),
and Xy specifies that Ab; really is true:
Ab;(Sp).

It can be seen that the agent will initially believe that it’s always possible to execute
the pick action (because the agent will assume Ab; is false). However, after a sense action
the agent will believe that objects can always be picked up just in case nothing is already
held (because it will have concluded that Ab; is true). The following proposition formalizes
this.

Proposition 4.5.3. The IAAT X described above entails each of the following:
1. ~~ Poss(pick(x), s) = True
2. sense ~~ Poss(pick(x), s) = Vy. —Holding(y, s)

Proof. Initially, the most plausible accessible situations have Ab; false in them, but after
the sense action all accessible situations have Ab; true in them. The result then follows

from Proposition 4.2.1. O

In that example, the agent came to believe that a precondition was more restrictive
than initially thought — the action can be executed in fewer situations. Coming to believe
that a precondition is less restrictive can be handled similarly (consider what happens if

you remove the negation before Ab; in the example’s original SSA).

4.6 Regression

We now turn to considering regression, the syntactic procedure often used in automated
reasoning about situation calculus formulas. As described in §2.2.2.4, Pirri and Reiter
(1999) showed that a certain class of formulas, the regressable formulas, can be rewritten
using regression so as not to refer to any non-initial situations (this can make them easier
to prove, since some axioms will no longer be needed). Recall that for a basic action
theory ¥ (Definition 2.2.5) we have that ¥y U X, will entail the regression rewriting of

a regressable formula iff ¥ entails the original formula (Proposition 2.2.2).
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When using IAATS, we’ll often want to regress formulas referring to belief. For that,
it’s fairly straight-forward to adapt the approach by Schwering and Lakemeyer (2015)
from the modal situation calculus, which involves the use of conditional beliefs. We do so
in §4.6.2. (Note that we cannot just use the procedure for regressing formulas referring
to knowledge from Scherl and Levesque (2003), since we have to take plausibility into
account. )

More interestingly, though, we first present a way beliefs about SSAs and other domain
dynamics could be taken advantage of in regression. Recall that the essential feature of
regression is recursively replacing substitution instances of the left-hand-sides of SSAs
with their right-hand-sides. In regression as it’s usually considered, the SSAs used are
those the axiomatizer wrote. A novel alternative that our work suggests is to use other
SSAs that the agent happens to believe at a given time. A computational advantage
might be gained in some cases, because some believed SSAs may lead to much smaller

or larger regression rewritings than others. To illustrate, an agent could believe both the

SSA

P(z,do(a,s)) = (P(f(z),s) AP(g(z),s))
and the SSA

P(z,do(a,s)) = P(z,s).

The first SSA’s right-hand-side has twice as many atoms as its left-hand-side, so regressing
with it could cause an exponential (in the number of applied actions) blowup, while that
doesn’t happen using the second SSA. For IAATS, the SSAs given by the axiomatizer
will often refer to various implausible conditions, and in many situations the agent will
believe simpler SSAs.

We will prove (in §4.6.1) that an agent can use a form of regression, working with any
set of SSAs (and precondition axioms and sensing axioms) it believes, to reason about
its beliefs. Note that here we apply regression to formulas only within belief operators.
To regress the whole formula, you would need to additionally apply another form of
regression — the one that we previously mentioned, described in §4.6.2, which we will call
full regression because it can be applied to a complete sentence including belief operators.

To illustrate the distinction between regression within beliefs and full regression,

suppose that we have an IAAT ¥ and we want to regress a sentence

Bel(F(do(J3, now)), do(&, So))
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where @ and [ are sequences of action terms. We have the option to use regression within

beliefs, using any dynamics axioms that the agent believes, to rewrite that expression as
Be|(¢a dO(O?, SU))

where ¢ is the regression of F(do(3, now)), and is uniform in now (and so no longer refers
to the future). Then, we can apply full regression (using the actual dynamics axioms from
Yayn) to further rewrite that formula to remove the reference to the non-initial situation
do(&, So).

We could alternatively just have applied full regression to the original sentence,
Bel(F(do(f3, now)),do(&@, Sp)). However, again, by doing some of the computation with
believed SSAs, there could potentially be computational savings. We leave to future work
the important question of how to automatically choose a set of believed SSAs for which

regression will be more efficient.

4.6.1 Regression within beliefs

Formulas within beliefs typically refer to now. To regress them, we will require them to

be “now-regressable”, which we define similarly to regressable (Definition 2.2.7).

Definition 4.6.1 (r-regressable). Given a situation term r (e.g., now), a first-order

formula ¢ is r-regressable if

e for each term of sort situation mentioned by ¢, the term has the syntactic form

do(&,r) where @ is a sequence of 0 or more action terms

for each atom of the form Poss(«, o) or SF(«, o) mentioned by ¢, a has the syntactic

form o/(7) where o' is an action function symbol

¢ does not have quantification over situations

¢ does not mention C or compare situations for equality

¢ does not mention the B predicate.

¢ does not mention any functional fluents (this is just for simplicity)

The definition of regression is as follows (based closely on (Reiter, 2001, Definition
4.5.3)).
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Definition 4.6.2. Let A = Ay, U Ape U Agense be a set of sentences including SSAs,

precondition axioms, and sensing axioms for all the fluents and actions. Let ¢ be a

now-regressable formula, where WLOG we assume that any variables appearing in ¢ are

distinct from those mentioned by A. Then the regression of ¢ with respect to A is written

R2 [¢] and defined case-by-case as follows:

1.

¢ is a situation-independent atom, or a relational fluent atom of the form F(7, now).
Then R [¢] = ¢.

¢ is a relational fluent atom F(7,do(a, o)), where the SSA for F' in Ay, is
F(fa dO(CL, S)) = ¢F(fv a, S)‘

Then RE [¢] = R [¢r(F, a, 0)].

¢ is a formula of the form Poss(a(7T), o) where « is an action function symbol and the
precondition axiom for v in A is Poss(a(Z), s) = ¢o(T, s). Then RE [Poss(a(7T), o))
= ,RflA [¢0¢ (7?7 U)]

¢ is a formula of the form SF(a(7), o) where « is an action function symbol and the
sensing axiom for a in Agnse is SF(a(T), s) = ¢u(Z, s). Then R2 [SF(a(7),0)] =
R [¢alT, 0)].

¢ is a non-atomic formula. Regression is defined inductively as follows:
R [-¢] = ~RT [¢]

RY (01 A do] = R [91] AR (0]
RE 3z, ¢] = Tz RY (9]

This is a traditional regression procedure, with now serving the role that Sy usually

plays. It can be shown that regressing a now-regressable formula yields a formula uniform

in now. The next proposition says that an agent can reason using regression using any

set of SSAs that it believes, in the following sense: the agent will believe that any now-

regressable formula is equivalent to its regression with respect to those SSAs.

Proposition 4.6.1. Let A = Ay, UApe U Agense be any set of sentences including SSAs,

precondition axioms, and sensing axioms for all the fluents and actions. Suppose that ¢*

is a ground situation term such that

¥ E Bel( A Ainow, o*),
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i.e., the agent in situation ¢* believes that the axioms in A apply to future situations.

Then for any now-regressable formula ¢ (which WLOG uses distinct variables from A),
S = Bel(v(6 = R [4]), o°).

Proof. Our proof resembles that of the related (Pirri and Reiter, 1999, Theorem 2). We
assign any now-regressable formula ¢ a triple of numbers, index(¢) = (b,d,c), where
b is 1 if an atom of the form Poss(a, o) or SF(a, o) appears in ¢ (and 0 otherwise),
d is the greatest depth of nesting of do functions in ¢, and ¢ is the number of logical
connectives/quantifiers in ¢. The proof is by induction on index(¢), with respect to a

lexicographic ordering, which we call <3.

1. When its index is (0, 0,0), ¢ is either a situation-independent atom or a relational

fluent atom F (7, now). In either case, R [¢] = ¢, so the result is trivial.

2. When its index is (0, d, 0) for d > 0, ¢ is a relational fluent atom F (7, do(a, 0)). We
want to show that ¥ entails Bel(V(F(7,do(a, o)) = R{ [¢r(T, o, 0)]),0") where
¢ is from the RHS of the SSA for F'in A,. First, because the agent believes that

that SSA applies to now and its successors (and o is one of those), we get that
¥ E Bel(Y(F(7,do(a, 0)) = ¢p(7, , 0)),0")
It can be seen that index(¢r(t, o, o)) <5 (0,d — 1, ¢) for some ¢, and since
(0,d —1,¢) <3 (0,d,0),
by the inductive hypothesis we get that
Y | Bel(Y(¢r(7, a,0) = RT [¢r(T, @, 0)]),07)

Since belief is closed under logical consequence we can put this together with the

previous entailment to get the result we want.

3. When its index is (1, d, 0), ¢ is an atom either of the form Poss(«a/(7), o) or SF(a(7),
o). In either case, the regression of ¢ is RY [po(7)] where ¢, comes from the RHS
of a precondition or sensing axiom. It can be seen that index(¢q(t, o)) <3 (0,d, c)
for some ¢, and (0,d, c) <3 (1,d,0). Therefore, this case can be shown similarly to

the previous one.
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4. When its index is (b, d, c) with ¢ > 0, ¢ is a non-atomic formula. The result can be

seen to follow from the inductive hypothesis and belief being deductively closed. [

So we can preform regression within belief using believed SSAs. Again, this may be
advantageous because believed SSAs may be much simpler than the ones written in the

action theory. The next section will consider regression outside of beliefs as well.

4.6.2 Fully regressing formulas

To fully regress formulas containing beliefs (and not just regress formulas within beliefs),
we adapt the approach by Schwering and Lakemeyer (2015) from the modal situation
calculus. This will not subsume the previously described procedure R, since for full
regression we will not in general be able to make use of axioms that are merely believed.
Instead, the relation between the two approaches is complementary; we can (optionally)
first use R; to make formulas within beliefs uniform in now, and then apply the full
regression procedure, which we’ll call R, to the entire formula. (Also, R; is used as a
subprocedure by R, in a limited way.)

The main result of this section is Proposition 4.6.4, which is a version of the regres-
sion theorem (Proposition 2.2.2) that applies to IAATs. To get there, following Schwering
and Lakemeyer’s approach we make use of conditional beliefs. The full regression proce-
dure involves both regressing formulas within conditional beliefs, and regressing formulas
which refer to conditional beliefs. We have results for each of those aspects (Lemma 4.6.1
and Lemma 4.6.2, respectively), adapting work by Schwering and Lakemeyer. Finally, to
show that not all axioms from an IAAT are needed to entail a fully regressed formula, we
make use of another result that we prove, Proposition 4.6.3. (The final result is still not
quite as strong as the regression theorem for BATs, as not all second-order components
are eliminated, as we will see.)

Recall from §3.4.1 that a conditional belief in 1) given ¢, which we write as Bel(¢ =
1, s), intuitively means that in the most plausible accessible situations from s where
¢ is true, ¢ is also true. Belief can be related to conditional belief in the usual way,
i.e., Bel(¢,s) could equivalently be defined as Bel (True = ¢, s). When fully regressing
formulas containing beliefs, we will assume that any expression of the form Bel(¢, o) has
been replaced with Bel (True = ¢, 0).

Let’s consider regression within conditional beliefs (this will be a part of the full
regression procedure). It turns out that we can use the regression operator R that
we previously defined within conditional beliefs, though unlike in Proposition 4.6.1 it

will not suffice for the agent to just believe the dynamics axioms A used by regression,
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because in the most plausible accessible situations where the conditional’s antecedent is
true, merely believed axioms may not hold. It will suffice, though, to use axioms A that
the agent is certain of, in that they hold in all accessible situations (not just the most
plausible). Recall that Know(¢, s) is true if ¢ is true in all situations accessible from
s (Equation 2.10). Therefore, we can use Know to indicate what the agent is certain
of (however, we are not assuming what is “known” must be true). Lemma 4.6.1 below
shows how regression within conditional beliefs can be performed using known dynamics

axioms.

Lemma 4.6.1. Let X be an IAAT and A = Ay, UApe U Agense @ set of axioms such that
Y = Know (A A:now, Sy) .
Then for any now-regressable formulas v); and 1y using distinct variables from A,
S |= V[Bel (¢ = t2,S0) = Bel (R [¢1] = RY [], So)]-
Proof. The key is to note that it would suffice to show that

Y | V[Know((¢n = RT [11]) A (Y2 = RE [t2]), So)l-

This is because that would mean that the most plausible accessible situations where 1,
is true are exactly the most plausible accessible situations where R{ [1h1] is true, and
whether v is true at those situations is equivalent to whether R% [1)5] is true at those
situations. The proof is similar to that of Proposition 4.6.1 but substitutes Know for
Bel. O

In Lemma 4.6.1, we considered conditional beliefs only in Sy, because that’s all we’ll
need for the role that R, plays within the broader procedure R, that we’re going to
define.

For Ry we need to establish how conditional beliefs in a situation are related to the
previous situation. Schwering and Lakemeyer (2015, Theorem 5) described this, and we
adapt their result below. Note that Lakemeyer and Levesque (2011, Theorem 4) had
earlier presented a similar result about how knowledge in a situation is related to the

previous situation.
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Lemma 4.6.2. For any IAAT ¥ and now-regressable formulas 1 and 1),

Y | Va, s. Bel () = 1,do(a, s))
([SF(a, s) A Bel (x

"(a)
[=SF(a,s) A Bel (x~

= 1y[do(a, now)], s)] v
where

(a) = 1hy[do(a, now)], s)])

e \"(a) abbreviates SF(a, now) A Poss(a, now) A 1;[do(a, now)], and

e x (a) abbreviates =SF(a, now) A Poss(a, now) A v, [do(a, now)]

Proof. For readability in this proof, let’s introduce the abbreviations

L B(s',5) A @[]
MPC(6, s, s)

C(p,s',s) ANVs". C(p,5",s) D s <

That is, MPC(¢, s’, s) means that s’ is one of the most plausible accessible situations
/

from s where ¢ is true. Observe that Bel () = 1, s) expands to the same thing as
Vs'. MPC(vy, ', s) D 1sls'].

Now consider any model J of ¥ and an arbitrary variable assignment p. We’ll assume
that

J, 1 = SF(a, s)
(the other case is symmetric). Then what we want to show is that

J, 1 f= Bel (1 = 1y, do(a, 5))

Bel (SF(a, now) A Poss(a, now) A ¢;[do(a, now)] = s[do(a, now)], s)
To establish that, it will suffice to show that

p = MPC(¢y,do(a, s), do(a, s))

(4.7)
MPC(SF(a, now) A Poss(a, now) A ¢, [do(a, now)], s', s

(note that there can’t be situations accessible from the situation denoted by do(a, s)
where the action denoted by @ has not just occurred)
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Because J satisfies SSA for B (Equation 2.11), it’s easy to see that
J, = B(do(a, s'),do(a, s)) = B(s,s) ASF(a,s’) A Poss(a, s')
Therefore, we can conjoin 1 [do(a, s)] to both sides of the equivalence, yielding

J,p = (B(do(a, s'),do(a, s)) Ay[do(a,s')]) =
(B(s',5) A SF(a, s') A Poss(a, s') A1bi[do(a, s)]).

Observe that that can be rewritten as
J, 1 | C(¢q,do(a, s'),do(a, s)) = C(SF(a, now) A Poss(a, now) A ¢ [do(a, now)], s, s).

The desired result (Equation 4.7) then follows from the plausibility level of a situation

not changing as a result of doing an action. O]

Now we are almost ready to describe the full regression procedure, Rs. First, we define
a class of formula that can be fully regressed. Note that, for simplicity, we're not allowing

nested beliefs.

Definition 4.6.3 (fully-regressable). A formula ¢ is fully-regressable if the following
hold:

e for each term of sort situation mentioned by ¢ (outside beliefs), the term has the

syntactic form do(a@, Sp) where @ is a sequence of 0 or more action terms

e for cach atom of the form Poss(«, o) or SF(a, o) mentioned by ¢, « has the syntactic

form o/(7) where o is an action function symbol

e ¢ does not have quantification over situations (except in the expansions of condi-
tional beliefs)

e ¢ does not mention [ or compare situations for equality

e the only uses of B or second-order quantification in ¢ are in the expansions of

conditional beliefs
e for any expression Bel (1 = v, o) appearing in ¢,

— 1)1 and 1y are now-regressable
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— not only is o of the form do(&,Sy), but each action term « in the sequence o

has the syntactic form o/(7) where o is an action function symbol?

e ¢ does not refer to functional fluents (as with now-regressable formulas, this is just

for simplicity)

We can now describe the regression procedure, which is much like that from Schw-
ering and Lakemeyer (2015). Note that the first five cases are analogues of the ones in
Definition 4.6.2.

Definition 4.6.4. Let I' = I'sc; U 'pre U I'sense be a set of sentences including SSAs, pre-
condition axioms, and sensing axioms for all the fluents and actions. The (full) regression
of ¢ with respect to I', where ¢ is fully-regressable (and uses distinct variables from I'),

is written R [¢] and defined case-by-case as follows:

1. ¢ is a situation-independent atom, or a relational fluent atom of the form F(7,Sy).
Then RS [¢] = ¢.

2. ¢ is a relational fluent atom F'(7,do(«, o)), where the SSA for F in I is
F(fa do(a, 8)) = ¢F(fa a, S)'

Then RY [¢] = RY [¢r(F, a, 0)].

3. ¢is a formula of the form Poss(a(7), o) where « is an action function symbol and the
precondition axiom for v in I is Poss(a(T), s) = ¢o(Z, s). Then RY [Poss(a(7), o)] =
R} [¢a(7,0)].

4. ¢ is a formula of the form SF(a(7T), o) where a is an action function symbol and
the sensing axiom for o in T' is SF(a(Z),s) = ¢ (7, s). Then RY [SF(a(F),0)] =
R} [¢a(T,0)]

5. ¢ is a non-atomic formula. Regression is defined inductively as usual:

R [-¢] = =R} [¢]
Ry (01 A ¢2] = Ry [d1] A RY [¢2)]
Ry [Fz. ¢] = Fz. R} [¢]

2This will ensure that when regressing conditional beliefs, which produces atoms using Poss and SF,
which precondition/sensing axioms are relevant to regress those atoms can be determined. Schwering
and Lakemeyer (2015) do not require this, but in their theories write precondition and sensing axioms
differently, so that there is only one precondition axiom and one sensing axiom for all actions.




CHAPTER 4. CHANGING BELIEFS ABOUT DOMAIN DYNAMICS 104

6. ¢ is a formula of the form Bel (¢; = 19,do(c, 0)). Let 5(a, s) abbreviate the fol-

lowing expression from Lemma 4.6.2:

[SF(a, s) A Bel (x*(a) = 1s[do(a, now)], s)] v
[=SF(a, s) A Bel (x~(a) = t»[do(a, now)], s)].

Then

R [Bel (1 = 13,do(a, )] = R [B(ev, 0)]

7. ¢ is a formula of the form Bel (¢); = 15, Sg). Then
Ry [Bel (41 = ,S0)] = Bel (R [¢1] = R{ [15],So)

where R is the regression operator from Definition 4.6.2.

Proposition 4.6.2. Suppose that ¥ is an IAAT. For any fully-regressable formula ¢
(not sharing variables with S4,), ¥ = V(6 = R5*" [¢]).

Proof. This can be proved by induction. The correctness of case (6) can be shown using
Lemma 4.6.2. Observe that f(«, o) will be a fully regressable formula, because a will be
of the form o/(7) where o is an action function symbol. For case (7), the result follows
from Lemma 4.6.1. O]

Note that while the result of case (6) is a complicated-looking expression, the number
of actions referred to by situation terms outside of belief is reduced (the number of
actions referred to by situation terms inside beliefs may be increased, but those can
later be removed through applications of case (7)). It can be shown that the result of
full regression (on a fully-regressable formula) will be a formula where all the situation
terms outside of conditional beliefs are Sy, and all the ones inside are now. If there
are conditional beliefs, it will not be a formula uniform in Sg; we will instead call it

quasi-uniform in Sy. This is defined below.

Definition 4.6.5 (quasi-uniform). A situation calculus formula ¢ is quasi-uniform in
a situation term o if ¢ satisfies the conditions of being uniform in ¢ with the exception
that ¢ can include subformulas of the form Bel (11 = 19, o), where ¢ and 15 are uniform

n now.

We’ll conclude by showing how not all axioms from the theory are needed to entail

the regressed formula — similarly to in the regression theorem for basic action theories
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(Proposition 2.2.2). In proving the regression theorem, Pirri and Reiter used an inter-
mediate result, the “relative satisfiability” of BATs (Pirri and Reiter, 1999, Theorem 1).
We will prove a similar result for IAATSs — actually, we will need it for a slightly broader

class of action theories, that we will call quasi-IAATS.

Definition 4.6.6 (quasi-IAAT). A quasi-IAAT is an action theory like an IAAT except
that X is only required to be quasi-uniform in Sy, rather than uniform in Sy. (Note that
every TAAT is also a quasi-IAAT.)

Let’s name the conjunction of the axiom specifying what initial situations exist and
the sentence Init(Sg) as “initials”. We now prove a version of relative satisfiability for
(quasi-)IAATS.

Proposition 4.6.3 (Relative satisfiability for quasi-IAATSs). An quasi-IAAT X is
satisfiable iff ¥y U X, U {OKnow (/A Xkg, So)} U {initials} is satisfiable.

Proof. Given a model of ¥y U X, U{OKnow(/ Xkg, So)} U{initials}, a model of ¥ can
be constructed. The proof is similar to the analogous result for basic action theories (Pirri
and Reiter, 1999, Theorem 1). The most significant difference is that, unlike with BAT's,
there are multiple initial situations to deal with, and so the domain of situations that we
construct is different. We also have to deal with interpreting the B and SF predicates.

Suppose Jo = (Do, Zy) is a model of ¥ U X0 U {OKnow(A kg, So)} U {initials},
where the domain Dy is the disjoint union of the domain of situations Dj, domain of
actions D', and domain of objects DS. Then we construct a model J = (D,Z) of &
where D is the disjoint union of the domain of situations Dg (defined below) and the
same domains of actions and of objects from Dy.

The domain of situations D we construct is the smallest set such that the following
holds: for every 8 € DJ such that § is an initial situation according to Jg (i.e., such
that Zy[do](a, 8') # § for all & € D§' and &' € DJ), and for every finite (possible empty)
sequence (G, . . .,ay) of elements each from Dy, the sequence (3, ay, ..., a) is an element
of D,

We define interpretations of the symbols Sy, C, do, and root as follows:

Z1So] = (Zo[Sol)
7[c] = {(5,8) € D’ x D% : 5 is a proper initial subsequence of §'}
T[do](ars1, (8,61, ...,a1)) = (8,41, ..., Gn, Ggyr), for each (3, aq,...,a;) € DY

and a4, € D

T[root]((3, a1, ...,az)) = 4, for each (5,a1,...,a;) € D°
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It can be seen J therefore satisfies all of the foundational axioms, other than the one
regarding the existence of initial situations with all combinations of fluent values (we
have not yet specified how to interpret fluent values with J).

Next, we define J to agree with Jy on the interpretations of non-fluent predicates and
functions. Therefore, J will satisfy ¥, since Jy does.

We also define J so that for each initial situation (5) € D, relational and functional
fluents (which do not include the special B predicate) take the same value there as J, gives
the fluents in the situation § € Dj. We now can show that J satisfies the axiom about
existence of initial situations — its initial situations are in a one-to-one correspondence
with those of Jy, and get the same fluent values as their counterparts there. So all the
foundational axioms have been satisfied at this stage of the construction.

Next, we define the interpretation of B in Sy so that the accessible situations are
exactly the (counterparts of ) the situations accessible from Sy according to J. We thereby
get that J satisfies {OKnow(/ ¥g, So)}, since Jy does.

Also, J satisfies ¥ (since Jg does), so it only remains to complete the construction
of J so that Xgyn (i.e., Xssa U Epre U Leense) 1s satisfied. This proceeds similarly to (Pirri
and Reiter, 1999, Theorem 1). We first determine the interpretations of Poss and SF in

initial situations:

e How Poss should be interpreted in an initial situation can be determined from the
precondition axioms and the values of fluents there. Because J, satisfies X,,,, the
precondition axioms cannot contradict each other. A complication that Pirri and
Reiter note is that there may be actions in the domain which do not correspond
to any action function symbol (and therefore aren’t covered by any precondition

axiom). Their approach was to assume that these actions are always possible.

e Pirri and Reiter did not have to deal with the SF predicate (which does not appear
in BATSs), but its interpretation in an initial situation can be constructed exactly

analogously to Poss’s, using sensing axioms instead of precondition axioms.

Finally, the interpretations of fluents, B, Poss, and SF in non-initial situations are con-
structed inductively. Suppose we have interpreted fluents, B, Poss, and SF in situations
in which £ actions have been performed. We then can interpret them in situations in

which k& + 1 actions have been performed as follows:

e Using the SSAs, the values of fluents (and B) in a situation in which k + 1 actions
have been performed will be uniquely determined by its predecessor situation, in

which k actions have been performed.
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e The values of Poss and SF in non-initial situations will be determined analogously

to in initial situations.
This construction leads to X4yn being satisfied, and completes the proof. O
Finally, we can prove our version of the regression theorem for IAATS.

Proposition 4.6.4. Suppose that ¥ is an TAAT. For any fully-regressable sentence ¢

(not sharing variables with Xgyn),
Ske¢ i SoU S U {OKnow(A Sks, So)} U {initials} = RS*" [4].

Proof. Observe that ¥ |= ¢ iff ¥ U {—¢} is unsatisfiable, which holds iff ¥ U {ﬂRQZ > o)}
is unsatisfiable, which (by Proposition 4.6.3) holds iff

S0 U Suna U {OKnow(A Ske, So)} U {initials} U {~R5*" [¢]}
is unsatisfiable. The reason Proposition 4.6.3 applies is that ¥y U {ﬁRQEdy” [¢]} is quasi-

uniform in Sg and so could be the set of initial state axioms in a quasi-IAAT. n

So regression removes the need for further use of the dynamics axioms, as with basic

action theories.

Discussion

Proposition 4.6.4 is not quite as easy to make practical use of as the regression theorem
for basic action theories. Recall that no second-order reasoning is needed to determine if a
BAT entails a regressable sentence. In contrast, applying Proposition 4.6.4 to a reasoning

problem still leaves some second-order components. In particular,

e The “initials” axiom regarding what initial situations exist is second-order.

e The fully-regressed sentence can refer to conditional beliefs, which are abbreviations

for second-order expressions (that involve counting abnormalities).

Note that we cannot just dispense with the “initials” axiom after regression, as the

following proposition shows.

Proposition 4.6.5. There exists a quasi-TAAT Y such that
o U Zuna U {OKnow( /\ Tkg, So)} U {initials}

is not satisfiable, but ¥ U X,,, U {OKnow(A Xkg, So)} is satisfiable.
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Proof. Consider a quasi-IAAT 3 where Yxg = {True} and
Yo = {Bel (True = P(now),So)}

(and X, is arbitrary). The “initials” axioms requires that there be initial situations
where P and all abnormalities are false, and OKnow(True,Sy) requires those situations
to be accessible from the situation denoted by Sg. That contradicts ¥y, which requires
that P be true in all the most plausible accessible situations from the situation denoted
by Sp. However, ¥y U 3,,, U {OKnow(A Xkg,So)} can be seen to be satisfiable (e.g.,
with a model in which there is only one initial situation, the denotation of Sy, where P
is true). O

In the modal situation calculus, Schwering and Lakemeyer (2015, §5) were able to
reduce entailments about conditional beliefs to entailments about objective formulas
(though they relied on there being finitely many plausibility levels). We leave to future
work how to do something similar for IAATSs.

Another topic for future work is how to accomplish a greater share of the reasoning
process using believed SSAs instead of the ones written in the theory. It’s worth observing
that we could get a similar result to Proposition 4.6.1 with a variant of the regression al-
gorithm R, that applied to root(now)-regressable formulas within beliefs, rewriting them
into formulas uniform in root(now). (We would need not just A:now but A:root(now) to
be believed at the start, where A are the dynamics axioms used by the algorithm.) How
would that be useful? Suppose that we want to know whether an IAAT entails a formula
like

Bel(F(do(, now)), do(&, So)).

We could rewrite that formula as Bel(F (do([d, 3], root(now))), do(&, So)) (since the agent
knows what actions have occurred) and then regress F(do([&@, ], root(now))), which
is root(now)-regressable, to get an expression Bel(¢,do(d,Sy)) where ¢ is uniform in
root(now). Intuitively, compared to if we had regressed F (do(g, now)) to get a formula
uniform in now, this might leave less work for a subsequent full regression procedure (so
the SSAs written in the theory, as opposed to believed SSAs, would get used less). That’s
because within belief we've already regressed through all the actions in @ and B , instead
of just E :

Finally, another thing to note is that formulas that are root(now)-regressable are

much more expressive than now-regressable ones. While now-regressable expressions can



CHAPTER 4. CHANGING BELIEFS ABOUT DOMAIN DYNAMICS 109

only talk about the present and future, root(now)-regressable expressions can also talk
about the past and counterfactual action histories. For example, we might be interested
in whether the agent believes, after performing action «y, whether ' would have been

true had action s been performed instead, i.e., whether the action theory entails
Bel(F'(do(az, root(now))), do(as, Sp)).

Through regression that could be transformed into the question of whether the theory

entails

Bel (¢, do(a, So))

where ¢ is uniform in root(now).

4.7 Discussion and related work

Past approaches to belief revision in the situation calculus have supported having SSAs
describing conditional effects and the agent revising its beliefs about when those condi-
tions hold. For instance, Schwering et al. (2017, §4.2) gave an example where there is an
SSA saying that dropping fragile objects breaks them, and the agent revises its beliefs
about whether a particular object is fragile. However, the effect of such revisions on what
SSAs the agent believes was not discussed (and so neither was regression with SSAs that
the agent believes but were not written by the axiomatizer).

Delgrande and Levesque (2013) considered actions which could fail (and non-determin-
istic actions more generally). Their formalization (also in the situation calculus) was
rather different from ours, as the failure of an action was represented by the agent “in-
tending” to execute one action but actually executing another. Fang and Liu (2013) sim-
ilarly had an approach, in a multi-agent setting, where agents could be uncertain about
what actions had occurred. These works did not discuss having the agent generalize from
past failures to reach new conclusions about future action behavior.

A limitation of our approach is that beliefs about domain dynamics are only changed
in response to observations of the present state, as opposed to in response to being given
arbitrary facts about dynamics, such as you might read in a physics textbook or a fantasy
story. For propositional languages, there has been some work about revising or contract-
ing by beliefs about dynamics (e.g., Herzig et al., 2006; Eiter et al., 2010; Varzinczak,
2010; Van Zee et al., 2015). However, they have not usually been concerned with how to

specify the generality of conclusions the agent should draw. An exception may be Eiter
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et al. (2007, 2010), who describe how a preference order can be defined on propositional
transition diagrams by valuing a diagram as the weighted sum of the “query” formulas
it entails (Eiter et al., 2007, §4.2). The queries are written in a propositional temporal-
logic-like language. It appears this approach could describe preferences on how general
of effects action have. However, unlike our work theirs is in a propositional setting and
there are no sensing actions.

Another limitation of our approach is that the generalizations the agent can draw from
observations have to be specified in advance, as opposed to being determined by some
general inductive principles (e.g., for the example in §4.4, the theory had to explicitly
identify the possibility of one-time exceptions, that objects could be exceptional, and that
slippery objects could be an exceptional class). In contrast, research in inductive logic
programming (ILP) (Muggleton and de Raedt, 1994; De Raedt, 2017) has dealt with
the problem of inducing general first-order rules given examples. ILP has been applied
to learning event calculus theories (e.g., Moyle and Muggleton, 1997; Katzouris et al.,
2019), and also to learning action models in the field of relational reinforcement learning
(e.g., Walker et al., 2007; Rodrigues et al., 2010). On the other hand, we have focused
on providing a way for the axiomatizer to precisely and explicitly control the plausibility
assigned to different possible dynamics.

Working within the event calculus, Mueller (2006, Chapter 12) used abnormality
predicates within descriptions of the environment dynamics, so as to model phenomena
like default effects and default events. That was not combined with explicitly modelling
belief or belief revision, though.

Britz and Varzinczak (2018) distinguish in an example between two reasons a light
might fail to turn on, “either because the light bulb is blown (the current situation is
abnormal) or because an overcharge resulted from switching the light (the action behaves
abnormally).” In our framework, we would represent both cases as abnormal situations
(with the latter using an abnormality fluent that also takes as arguments the action and

history, so as to treat overcharges like “one-time exceptions”).

4.8 Conclusion

People can change their beliefs about how the world works, and this is a desirable prop-
erty for artificial agents as well. In this chapter, we have shown how changes of beliefs
about SSAs, precondition axioms, and sensing axioms can be modelled using IAATs. We
described several patterns for writing SSAs that refer to abnormalities, to allow for more

general or less general changes of belief in response to unexpected observations. We have



CHAPTER 4. CHANGING BELIEFS ABOUT DOMAIN DYNAMICS 111

also shown how beliefs about domain dynamics can be incorporated in regression, raising
the prospect of computational consequences.

As has been mentioned, with TAATSs the original dynamics axioms from the theory
will always be believed (though others may also be). If it were desired to have the agent
not believe the actual dynamics, the approach of this chapter could be adapted to be
used with DIAATs (§3.5.2) instead.

We've assumed that the agent always knows what actions have occurred. However,
it would be natural for the agent to also change its beliefs about that. For example,
perhaps the reason it’s not now holding the cup is that someone else took it. We did
consider unobserved exogenous actions in §3.5.1. The next chapter will consider a more
general epistemic accessibility relation, allowing for varying degrees of information about
the actions that have occurred, and also considers using a program to describe what can

exogenously occur.



Chapter 5

Environment processes and knowing

how

5.1 Introduction

In the previous chapters, we’'ve seen how we can use abnormalities in theories to express
plausibility of initial state properties and domain dynamics. In this chapter, we consider
another aspect of the environment that an agent can have plausible beliefs about, the
exogenous processes that are occurring around them. (We did previously briefly consider

exogenous actions in §3.5.1.)

We present a modified version of belief, where plausibility is still taken into account
by counting abnormalities as before, but where accessible situations are constrained to
be ones reachable through the execution of a program. Furthermore, we also allow for
actions that aren’t observed by the agent, following an approach by Kelly and Pearce
(2015) (they had also suggested using a program as we are as future work). The resulting
new type of action theory, which we call programmed action theories (PATs), allow for
easily representing beliefs about what happens in the environment (at a potentially longer
time-scale than just single-step transitions). The program is written in the ConGolog
programming language, a standard language for use with the situation calculus (see
§2.2.2.5). ConGolog programs can be non-deterministic, giving one way to represent
uncertainty about the various things that are happening concurrently in the environment.

We also give a formalization of knowing how to achieve goals in such a setting, gener-
alizing a definition by Lespérance et al. (2000) to take exogenous processes into account.
Since our model of belief incorporates a notion of plausibility, we allow for beliefs (in-

cluding beliefs about how to achieve a goal) to be revised when things are seen by the
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Figure 5.1: The fox-chicken-grain problem, after the farmer has carried the chicken north
across the river.

agent to change in unexpected ways.

We will illustrate our approach using a version of the classic fox-chicken-grain problem
(Ascher, 1990) where a farmer is trying to transport a fox, a chicken, and some grain
across a river one at a time (see Figure 5.1).! A solution cannot allow either the fox and
chicken or the chicken and the grain to be left alone together (because the fox may eat
the chicken, and the chicken may eat the grain). The problem is usually formalized in a
way that does not explicitly represent what the chicken and fox are doing. We will show
how their actions can be modelled, as well as how certain unexpected events that occur
while the farmer is solving the problem (including bad weather) can cause the farmer to
change his beliefs about whether the goal is achievable at all, or in some cases, whether

the goal is still achievable but with a modified plan.

This chapter is structured as follows. In §5.2, we describe our model of belief with its
program-based accessibility relation. In §5.3 we define our new form of knowing-how in
terms of belief, and prove some formal properties of our approach in §5.3.4. We formalize
the fox-chicken-grain problem in §5.4, and also consider an example requiring a potentially

unbounded number of actions in §5.5. We discuss related work in §5.6 before concluding.

5.2 Belief in the presence of exogenous processes

In this section we present our model of belief that takes into account exogenous actions
taking place according to a program. We first describe how exogenous processes are
represented, then how we incorporate them into the definition of our new accessibility

relation for belief.

We will suppose that our language includes a predicate Exo(a) to identify which

!The emoji in this chapter are from the Twitter Emoji library (https://github.com/twitter/
twemoji) and are copyright Twitter, Inc and other contributors, licensed under CC-BY 4.0 (https:
//creativecommons.org/licenses/by/4.0/). The chicken emoji was modified.


https://github.com/twitter/twemoji
https://github.com/twitter/twemoji
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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actions are exogenous, and define

Endo(a) & —Exo(a),

so that Endo(a) means that an action is endogenous.

5.2.1 The exogenous program

As we've said, in the framework that we’re presenting, there will be a (ConGolog) program
that governs what occurs in the environment. We will borrow an idea from Lespérance
et al. (2008) and have that program be of the form

6Ea:0 >> 6End0

where the program dg,, describes exogenous actions (by the environment) and the pro-
gram 0 g,q, describes endogenous actions (by the agent). Recall that “))” is the prioritized
concurrency operator in ConGolog, so dg,, is run with higher priority (so endogenous ac-
tions only occur when dp,, is blocked, i.e., cannot execute an action). The endogenous

process 0 gnqgo Will always be the one we define here:

Spndo = (ra. Endo(a)?;a)*.

That is, the agent repeatedly selects an arbitrary endogenous action and executes it.
In other words, the agent just does whatever it wants (later we’ll talk about achieving
goals). The exogenous process, on the other hand, will vary from one domain to another.

Giving the environment process higher priority should be understood as a convention
for axiomatizing domains, and does not mean that our approach is limited to modelling
real world problems in which the agent is “less important” than its environment. The
point is just to give the axiomatizer a way to specify what interleavings of endogenous
and exogenous actions are possible. An alternative convention would be to give the en-
dogenous process higher priority. In that case, to allow the environment to take turns,
the axiomatizer would have to ensure that the precondition axioms were such that in
appropriate situations there were no endogenous actions that were possible.

Note also that while the environment is described with a single program, since we
are using ConGolog, that program can contain multiple concurrent processes (e.g., corre-
sponding to different elements of the environment, such as the weather or the actions of

an animal). It will be up to the axiomatizer to specify the theory and program in such a
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way so as to restrict, as desired, how any such processes can interleave with each other.
(We do not consider “true” concurrency, where multiple actions are executed at the same
instant, in this chapter.)

Moving on, a legal or executable situation was traditionally defined as one where all
the actions that had been executed were possible (Reiter, 2001, p. 53). We will define a
more restricted set of situations — those which can be arrived at by following a particular
ConGolog program.

We will find this abbreviation useful:

Reachable(s, 9, s”) & 3y. Trans™(9,s,7,s")

That is, situation ' can be reached from s by following ¢ (not necessarily to completion).
Now, we define the Legal™ situations, relative to a given exogenous program term 6, to be
those that can be reached by following that program (and the agent’s choice of actions,

when the agent gets to act) from root(s), the initial situation preceding s.

Definition 5.2.1 (Legal™).
Legalt(5,s) & Reachable(root(s), [§ )) S 5ndo), 5)

Note that a Legal™ situation is always also legal, because a primitive action taken in
a program transition must be possible (see §2.2.2.5).
In this chapter, we're going to assume that the new form of action theories we consider

(PATSs) contain a sentence of the form
exoProgram = d g,

for some ground literal program term dg,,, to indicate how the environment will behave
(recall that a literal program term is defined in Definition 2.2.8). We will assume that d g,
is written so that the only actions that can be produced in a run of dg,, are exogenous

actions.

5.2.2 The accessibility relation for belief

We now turn to defining the accessibility relation B for belief. In previous chapters, B
was a fluent; now, we will be defining it as an abbreviation that takes into account the
exogenous program. Furthermore, we want to allow for some actions (especially exogenous

ones) to potentially not be fully observable to the agent. To do so, we will follow Kelly
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and Pearce (2015) and suppose that there is a functional fluent view(s), whose value in
a situation s describes how much the agent has observed as a result of the actions that
have occurred.?

If all actions are observable and there are no sensing actions, then we can set the view
in a situation to just be equal to the list of actions that have occurred. To do so, we can

first initialize view to be an empty list with this axiom:
Init(s) D [view(s) = ()] (5.1)
Then, we can use this SSA for view (where - is a concatenation operator):
view(do(a, s)) = a - view(s) (5.2)

(Note how this version of view is like the history fluent from the previous chapters.)
Kelly and Pearce give the SSA for view in a more general form by introducing an obs
function that describes what the agent observes, and described (in their §5) various ways
that observations can work. Most of our general results won’t depend on a particular
SSA for view. For now we’ll just point out two other possible SSAs for view that can

serve useful roles.

Sensing results The SSA for view in Equation 5.2 does not allow the agent to gain
information from sensing. However, to allow for sensing, all we have to do is record
a representation of the sensing outcome of an action along with that action, e.g.,
with this SSA:

view(do(a, s))

—Y (5.3)
[(SF(a,s) ANy = (a, 1) - view(s)) V (=SF(a, s) Ay = (a,0) - view(s))]

That is, if action a gets a positive sensing result s, (a, 1) will be recorded; if a gets

a negative sensing result, (a,0) is recorded.

Unobservable exogenous actions We might want the agent to not observe exoge-
nous actions when they occur. We can model that by having view only record the

endogenous actions, using this SSA:

view(do(a, s)) = y = [(Endo(a) Ay = a - view(s)) V (Exo(a) Ay = view(s))] (5.4)

2view(s) can be thought of as the agent’s “local state” in s, in the sense of Halpern and Fagin (1989).
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We now define the epistemic accessibility relation B — unlike in previous chapters, this
is now a three-place relation, which also considers the relevant exogenous program. Note
that in the definition we make use of a special predicate By(s) to restrict the accessibility

relation.

Definition 5.2.2 (B(9, ¢, s)).

B(5,s,s) % [view(s') = view(s)] A By(root(s')) A Legal™ (4, s')

That is, B-accessible situations must both match the agent’s view of what has hap-
pened, and be reachable — from an initial situation that By is true of — by following the
appropriate program. (It’s not relevant what non-initial situations By is true of, which
is why we don'’t give it an SSA.) Note that the B relation is very similar to the K, rela-
tion suggested in Kelly and Pearce’s (2015) future work section. It’s also worth noting
that the encodings of formulas in ConGolog programs can’t refer to program terms, and
so a program cannot refer to the accessibility relation B. So it is not circular to define
accessibility in terms of a program. Furthermore, when § = nil, and view is defined appro-
priately, the accessibility relation can behave like the one from previous chapters (under

some conditions), as will be later shown in Proposition 5.2.1.

We now define a new version of the Bel operator which specifies the program as an
argument. As with the belief operator in previous chapters, belief is still defined as what’s

true in the most plausible accessible situations:

def

Bel(d,¢,s) = Vs'. [B(d,5,5) AVs". B(d,s",s) D5 <ps"] D os].

We can abbreviate the antecedent of that conditional:

MPB(d,s',s) & B(4,5',5) AVs". B(5,s",5) D 8 <p 5"
Intuitively, MPB(J, s, s) means that s’ is one of the most plausible situations accessible

from s, for an agent that thinks the program ¢ is running.

Since the relevant program will typically be exoProgram, for brevity we make the
following definitions (which within this chapter replace the definitions from previous

chapters):
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Definition 5.2.3 (redefining B(s', s), MPB(s, s), and Bel(¢, s)).

B(s',s) % B(exoProgram, s', s)
MPB(s', s) = MPB(exoProgram, s', s)
Bel(¢, s) o Bel(exoProgram, ¢, s)

We will also find it convenient to have a “true belief” operator:

Definition 5.2.4 (TBel).

TBel(¢,s) < (Bel(¢, s) A ¢[s]).

Note that because belief is still defined in terms of truth in a set of situations, beliefs
behave in a fairly standard way, with usual properties like closure under logical conse-
quence. Furthermore, positive and negative introspection (previously discussed in §2.3)
are built-in, as we will see later.

Often, we’ll want an action theory to completely characterize the predicate By (used
in the definition of B), so as to say exactly what the agent initially considers possible
(similarly to what TAATs did with only-knowing in the previous chapters). We can do
so with a formula Init(s) D (Bo(s) = ¢[s]). Note that it doesn’t matter which non-initial
situations are included in the extension of By, since that won't affect B (which only

applies By to root situations). We will introduce this abbreviation:

Definition 5.2.5 (InitB).
itB(¢) < Vs. Init(s) D (Bo(s) = ¢[s))

Recalling how By is used in the definition of B, what InitB(¢) specifies is that the

roots of the accessible situations have ¢ true at them.

5.2.3 Programmed action theories (PATS)

Finally, we define the action theories we are considering in this chapter:

Definition 5.2.6 (PAT). A programmed action theory (PAT) is a set of axioms
Efound U Zssa U Epre U Esense U ZO U Zuna U EConGoIog U {InitB(¢>}

Most of the components are familiar from IAATs. We allow ¥ to contain, in addition to

formulas uniform in Sy, formulas of the form Vs. Init(s) D ¢(s), where ¢(s) is uniform in s.
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In particular, we require that ¥g always includes Equation 5.1 (initializing view to be an
empty list). In InitB(¢), ¢ is an expression uniform in now that describes what the agent
is initially certain of. Xconcolog cOnsists of general axioms describing ConGolog programs
(see §2.2.2.5) and ¥, includes exoProgram = §g,, for some (ground) literal program term
0 Ez0, Whose executions can only produce exogenous actions. We require that ¥, specifies
which actions are exogenous. As in an [AAT, we require that X, contains axioms for
each abnormality fluent in the form of Equation 3.1, specifying that what’s abnormal
doesn’t change. ¥y should also include an axiomatization of lists, as in an IAAT. Finally,
for later bookkeeping purposes we suppose that there is an exogenous action null with

the precondition axiom Poss(null, s) = False.

The proposition below shows how the accessibility relation we’re using can be related

to the one we considered in previous chapters, which we’'ve renamed to B,(s'; s).

Proposition 5.2.1. Suppose that ¥ is a PAT including
InitB(¢) exoProgram = nil Va. Endo(a)
and the SSA for view from Equation 5.3. Let I' be the set of sentences comprised of
Init(s) D Vs'. Bya(s', s) = (Init(s’) A ¢[s'])
and the SSA for our old accessibility relation, Equation 2.11 (renaming B to B,y). Then
YUT Vs, s’ B(s,s) =Byu(s, s). (5.5)

Proof. We will prove this using the induction axiom (Equation 2.6). First, we want to

establish that the accessibility relations are equivalent initially, i.e., that
Y UT Vs, Init(s) D Vs'. B(s',s) = Bya(s', s). (5.6)

That holds because using either accessibility relation, the situations accessible from an
initial situation are exactly the initial situations where ¢ is true (for B, note that only
initial situations have the value of view as an empty list).

Next, we will show that if the accessibility relations are equivalent in one situation,

then they remain equivalent after performing any action, i.e., that

YUT EVa,s. [Vs'. B(s',s) = Byu(s',s)] D Vs". B(s”,do(a, s)) = Buu(s”,do(a, s)).
(5.7)
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To get started, by the definition of B(s, s) we have that

Y EVs,a,s". B(s",do(a, s)) = [view(s") = view(do(a, s))] A
Bo(root(s”)) A Legal™ (exoProgram, s”).

Using the SSA for view, it can be shown that

Y E Vs, a,s". view(s") = view(do(a, s)) =
3s’. (8" = do(a, s")) A (view(s") = view(s)) A (SF(a,s") = SF(a, s)).

Furthermore, because exoProgram = nil and all actions are endogenous, it can be seen
that

Y |= Va, s'. Legal* (exoProgram, do(a, s')) = (Legal™ (exoProgram, s') A Poss(a, s')).

Putting all that together (along with the fact that ¥ = Va, . root(do(a, s’)) = root(s’)),

we have that

Y EVs,a,s". B(s",do(a, s)) =
3s’. (8" = do(a, s') A (view(s") = view(s)) A (SF(a, s') = SF(a, s)) A
Bo(root(s’)) A (Legal™* (exoProgram, s’) A Poss(a, s'))

Rearranging that expression and applying the definition of B gives us

Y Vs, a,s". B(s",do(a, s)) =
3s’. B(s',s) A (8" = do(a, s")) A Poss(a, s') A (SF(a, s") = SF(a, s)).

So we have related what’s B-accessible from the situation denoted by do(a, s) to what’s B-
accessible from the situation denoted by s —in a way that exactly parallels the SSA for B,y
(Equation 2.11). Therefore, if B and B,y agree on what’s accessible from the situation
denoted by s, they will also agree on what’s accessible from the situation denoted by

do(a, s), and so we get Equation 5.7.

In conclusion, to get the final result (Equation 5.5), consider any model J of X U T

and variable assignment p mapping the second-order predicate variable P such that

J,uEVs. P(s) = [Vs'. B(s',s) =Byu(s', s)].
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Because X includes the induction axiom (Equation 2.6) as a foundational axiom, we get
that

I, = ([Vs. Init(s) D P(s)] A [Va, s. P(s) D P(do(a, s))]) D Vs. P(s)

It can be seen from Equation 5.6 and Equation 5.7 that the antecedent of that conditional
is satisfied, and therefore so is the consequent, from which we can conclude Equation 5.5.
O

Of course, the more interesting cases, which we’ll spend most of this chapter consider-
ing, are ones where exoProgram is not equal to nil. We next establish that there is positive
and negative introspection of beliefs (recall introspection was discussed in §2.3.1), by first
showing that the B relation is transitive and Euclidean, and then that the MPB relation

is also.

Lemma 5.2.1. Let § be any ground program term. For any PAT ¥, and any model J

of ¥ and variable assignment p,
J,u =B, s, s) DVs". B(d,s",s) =B(4,s",s)

Proof. We'll show that J, u = B(0, s, s) D Vs". B(,s”,s) D B(d,5”,s). The other direc-
tion, that J, u = B(0, ', s) D Vs". B(4,5",s") D B(4, ", s), is symmetric.

Suppose that J, u = B(0, 5, s). Therefore, J, u |= view(s") = view(s). Now suppose

I E

B(d,s”,s). Then J, 1 |= view(s”) = view(s), and so J, ' = view(s”) = view(s"). Also,

it must be the case that J, 1’ = By(root(s”)) and J, 4/ = Legal™(d,s"). Then 7,4 =

B(0,s”,s") by definition. Therefore, J, u = Vs". B(6,s”,s) D B(d,s”, s). O

that u' is a variable assignment that differs from p at most on s”, and that

Lemma 5.2.2. Let § be any ground program term. For any PAT X, and any model J

of ¥ and variable assignment y,
T, = MPB(4, s, 5) D Vs". MPB(4,s”, s) = MPB(4, 5", s')

Proof. Suppose that 3,4 = MPB(0,s',s). By Lemma 5.2.1, 3,4 = Vs". B(,s",s) =
B(0,s”,s"). Therefore, the set of situation objects in the domain of J that are accessible
from pls| is the same set that is accessible from pu[s']. It follows that the most plausi-
ble situation objects in each of those sets are the same, from which the result can be
concluded. O
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Proposition 5.2.2 (positive and negative introspection). For any PAT ¥, ¥ entails

each of the following:

Vs. Bel(¢, s) D Bel(Bel(¢, now), s)
Vs. —Bel(¢, s) O Bel(—Bel(¢, now), )

Proof. This follows from the MPB relation being transitive and Euclidean, as shown in
Lemma 5.2.2. ]

We will make use of introspection later, when knowing-how is defined in terms of

nested beliefs.

5.2.4 Beliefs about the running program

The accessible situations are constrained to be reachable by following exoProgram )) 0 g,40
in our model of belief, so the agent is certain that exoProgram is what the environment
is following. However, the agent may believe that other exogenous programs would de-
termine the same set of Legal™ situations. To talk about this, we introduce the following

abbreviation:
ExoRunning(9, s) v Os. Legal* (exoProgram, s') = Legal™ (, s')

That is, ExoRunning(d, s) holds if the situations in s’s future reachable when the en-
vironment follows J (starting from the root of s) are exactly those that are reachable
when the environment follows exoProgram. So there is a sense in which 9 is equivalent to
exoProgram, and can be said to be (also) running.

To illustrate, if a PAT ¥ includes

exoProgram = if P then ¢, else J, endlIf;
for some ground ConGolog program terms d; and dy, and ¥ = P(Sy) then
Y = ExoRunning(d1, So).

Furthermore, if the agent initially believes that P(now) is true, i.e. ¥ = Bel(P(now), So),
then

¥ = Bel(ExoRunning(d, now), Sy),



CHAPTER 5. ENVIRONMENT PROCESSES AND KNOWING HOW 123

that is, the agent believes 4, is running.

Example 5.2.1 (Plan recognition).

It’s worth noting that we can use ExoRunning to describe a simple form of plan recognition,
i.e., recognizing a particular action sequence that is being followed based on observations
(see e.g. Goultiaeva and Lespérance, 2007). Consider the following proposition, where the
agent uses its observation of the first action to distinguish between two possible cooking

plans that might be being followed in a kitchen.

Proposition 5.2.3. Let ¥ be a PAT including

exoProgram = ((boilWater; addPasta) | (breakEggs; fry))

- i

vV Vv
plan 1 plan 2

where boilWater, addPasta, breakEggs, and fry are exogenous actions. Finally, suppose that
¥ includes the SSA in Equation 5.2 for view (so that actions are observable). Then ¥

entails each of the following:

Bel(ExoRunning(boilWater; addPasta, now),do(boilWater, Sy))
Bel(ExoRunning(breakEggs; fry, now),do(breakEggs, Sp))

Proof. The two cases are symmetric; consider the first one. From do(boilWater,Sy) any
accessible situation s is such that boilWater (and no other action) has occurred. Any

s’ J s that is Legal™ is a situation reachable from root(s) by following
((boilWater; addPasta) | (breakEggs; fry)) )) dgnao

and in which the action boilWater is the first action to have occurred. Such situations are

exactly those successors of s that can be reached from root(s) by following the program
(boilWater; addPasta) )) 0 gndo- O

That example did not involve any abnormalities, but for much of this chapter we’ll be
looking at programs that refer to abnormalities. That will give a natural way of specifying

that some program executions are more plausible than others.

5.2.5 Normalized programs

In the previous section, we saw how the agent could believe that various programs were

running, even though it’s certain that exoProgram is running. This is analogous to how in
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Chapter 4 the agent could believe other dynamics axioms than those written in the theory.
In Chapter 4 we also saw that the agent would sometimes believe normalized axioms
that did not refer to abnormalities, and we can do something similar with programs. For
example, if exoProgram is if Ab then sun else rain (where sun and rain are exogenous
actions), then the agent may believe that the environment is running a program just
saying that there will be rain (we will formalize this in Example 5.2.2).

Now, we can expand the definition of normalization (Definition 4.2.4) with respect

to an Ab account (Definition 4.2.2) to include ConGolog programs.

Definition 5.2.7 (normalization of a program). Given a literal program term ¢ and
an Ab account § = A\, cp V7. Ab;(Z, now) = &(), the normalization of § with respect
to £ is a program ¢’ which is like 0 but, for each Ab; € R (the range of the Ab account),
replaces any reference to Ab;(7,0) with &(7,0). (Programs are typically written in a
situation-suppressed way, in which case that transformation amounts to replacing Ab;(7)
with &(7).)

To illustrate, again consider the program

if Ab then sun else rain.

If £ is the Ab account Ab(now) = False, then the normalization of that program with

respect to & is
if False then sun else rain.

We next get the following result about a general case in which the agent will believe

that a normalization of exoProgram is running.

Proposition 5.2.4. Let > be a PAT including exoProgram = dg,,, where dg,, can be
written in a situation-suppressed way (i.e., the only situation term it refers to is now).

Given a ground situation term o, if there is an Ab account £ such that
Y | Bel(&, 0)
and ¢ is the normalization of dg,, w.r.t &, then
Y. = Bel(ExoRunning(6, now), o)

Proof. We prove this by showing a stronger result, that under the conditions described
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above ¥ = Bel(ExoRunning®(§, now), o), where we use ExoRunning®(d, s) to abbreviate
Vs' O root(s). Legal™ (exoProgram, s’) = Legal ™ (4, s').

Note that the difference between ExoRunning® and ExoRunning is that in ExoRunning®, &’
is a successor of root(s) instead of s.

As was shown for IAATSs in Lemma 4.2.1, if the agent believes an Ab account &, the
agent believes that £ was always and will always be true. Therefore, if ¥ = Bel(¢, o),
then the agent in o believes that whenever exoProgram makes a choice depending on
whether an abnormal atom Ab;(7T) is true, 0 makes a choice depending on whether &;(7)
is true, and that those conditions are equivalent. More formally, the result can be shown

to follow from how, for every k,

Y = Bel(Vay, . .., a;. Legal™ (exoProgram,do([ay, ..., ax], root(now))) =
Legal (6, do([ay, . . ., ax], root(now))), o),

which can be shown using induction. O

This proposition will be useful in various results in this chapter, starting with the

example below.

Example 5.2.2 (beliefs about the future).
The following proposition gives an example where the agent believes that the more plau-
sible branch of the environment’s program will run (in this case, rain is more plausible

than sun).
Proposition 5.2.5. Let X be a PAT including

exoProgram = if Ab then sun else rain endIf

InitB(True)

where Ab(s) is an abnormality fluent and sun and rain are always-possible exogenous
actions. Then 3 = Bel(ExoRunning(rain, now), So).

Proof. In the most plausible accessible situations from Sy, Ab is false. As previously
pointed out, the normalization of (the value of) exoProgram in Sy with respect to the Ab

account Ab(now) = False is

if False then sun else rain endIf
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By Proposition 5.2.4, ¥ = Bel(ExoRunning(é, now),Sy) where 4 is that normalized pro-
gram. The overall result follows from noting that that program can be simplified to

rain. O

In general, writing abnormalities within a program gives a convenient way to specify

what executions the agent will expect.

5.2.6 A note on changing abnormalities

In PATSs, what’s abnormal cannot change. We previously, in §3.5.1, considered exogenous
actions in action theories in which abnormalities could change over time. It turns out
we can still model the sorts of examples we considered back in §3.5.1, without needing
changing abnormalities, as we describe in this section.

One example (Example 3.5.1) was just about how to specify, as in (Shapiro and
Pagnucco, 2004), that for fewer exogenous actions to occur is more plausible than for
more exogenous actions to occur. To model this with a PAT, suppose we have a history(s)
fluent recording all the actions that have occurred (like we used in TAATS in previous

chapters), and that we use the axiom
exoProgram = (Ab(history)?; ma. Exo(a)?;a)*

which specifies that the environment program is blocked except in situations whose his-
tory is abnormal. So the fewer action sequences are abnormal (i.e., the more plausible
the situation is), the fewer times the environment will get to act.

Another example was about saying how one exogenous action will more plausibly
occur than another (Example 3.5.2); we have already seen things similar to that in this
chapter (Example 5.2.2). The last and perhaps most interesting example we considered
was the one about the agent believing that money left on the street has been stolen

(Example 3.5.3), which we revisit in detail below.

The fate of abandoned money, revisited

Recall that Example 3.5.3 involves the agent not knowing how many actions have oc-
curred, and comparing the plausibility of an initial situation and the situation resulting
from doing the steal action. For the steal action to have occurred is considered more
plausible because it switches an abnormality from true to false.

Note that using PATSs it’s straight-forward to have (without using mutable abnormal-

ities) the agent believe that money will be stolen (by having the environment program
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include the steal action), and that the money possibly already has been stolen (since we
can make exogenous actions invisible to the agent). However, that doesn’t quite capture
the original example, where the agent initially thinks that the money has already been
stolen, i.e., it’s more plausible that it’s a later time rather an earlier time. If abnormali-
ties don’t change, if there is any initial situation s such that both s and do(steal, s) are
accessible, they will be equally plausible, which makes it tricky to have the agent believe

that the steal action has already happened.

To circumvent this problem, we relax the requirement from PATSs that view be ini-
tialized to an empty list. Below we describe an action theory that is like a PAT but sets
up view(s) so that in any situation s, view(s) will be a pair, where the second element
is the list of endogenous actions that have occurred (exogenous ones are invisible to the
agent) and the first element of the pair is a value that intuitively says what time the
agent thinks it is (i.e., how many actions have occurred).

The view fluent is described by these axioms (note the reference to a numeric-valued

functional fluent clock):

Init(s) D [view(s) = (clock(s), ())]
view(do(a, 5)) =y = Jy1, Y2, ys. [view(s) = (y1,52) Ay = (y1 + L ys)] A
[(Endo(a) Ays = a-y2) V (Exo(a) A ys = y)]

So in any initial situation, view stores the value of clock in that situation, which intuitively
represents the time in that situation. Furthermore, after any action (even an exogenous
one), the stored time value gets incremented. (Also, endogenous actions are recorded in
the list.)

For clock we have these axioms:

clock(do(a, s)) = clock(s) + 1
clock(Sg) =1

So the clock fluent’s value is increased by one by any action. Note that (because of the
foundational axioms) there are initial situations (other than Sy) where the clock fluent
takes any numeric value.

We specify that the agent believes that most plausibly the clock starts at 0 (recall
that in Sy the clock actually starts at 1).

InitB([clock(now) = 0] V Ab(now))
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Finally, the exogenous program just says that the steal action will be performed:
exoProgram = steal

The proposition below shows that this all results in the agent believing in Sy that the

steal action has already occurred.

Proposition 5.2.6. Let Y be the action theory described above. Then
Y |= Bel(3s. do(steal, s) = now, Sy).

Proof. Suppose that J is a model of ¥ and p a variable assignment such that J, u =
B(S, So), i.e.,

J, 1 = [view(s) = view(Sg)] A Bo(root(s)) A Legal ™ (exoProgram, s)

Suppose further that J, u = MPB(s,Sg), which can be seen to require that J, i = —Ab(s).

Then we can conclude that
J, i = clock(root(s)) = 0.
Therefore,

J, 1 = view(root(s)) = (0, ().

However,

J, = view(Sg) = (1, ().

Therefore, J, u = —B(root(s),Sp), and so, since J, u = B(s,Sy), we have

J, 1 |= s # root(s),

(so p[s] is not an initial situation). It can be seen that no endogenous actions can have
occurred in pu[s], because those would be recorded by view and so make p[s] inaccessible
from the situation denoted by Sy. Therefore, the actions that have occurred in p[s] must
be exogenous. Since J, i = Legal™ (exoProgram, s), we can conclude that the exogenous

action was the one denoted by steal. O

So we see that we don’t need mutable abnormalities to model the phenomena that
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we considered in §3.5.1.

5.3 Knowing how

Intuitively, an agent knows how to accomplish a goal if it can choose actions so as to
bring the goal about. One definition of knowing-how from the literature, which we’ll take
as our starting point, is the one by Lespérance et al. (2000), which defines knowing-
how in terms of knowledge. Unlike in previous parts of this thesis, we will now have a
reason to distinguish between beliefs (which can be false) and knowledge which has to
be true. We will first consider the difference between defining knowing-how in terms of
beliefs instead of knowledge, and then introduce another definition that also deals with

exogenous actions.

5.3.1 Knowing-how in terms of belief

We want to define knowing-how in terms of belief. To get started, we’ll look at how
Lespérance et al. (2000) did so in terms of knowledge. They used a knowledge operator
with positive and negative introspection. We’ll call this knowledge operator Knowy, (¢, s),
and in general we’ll use an L subscript on the operators they defined. Note that Know/, (¢,
s) is an abbreviation for the formula Vs'. Ky (s',s) D ¢[s'], where K, is the accessibility
relation.

Lespérance et al. did not seem to explicitly say whether knowledge had to be true
(they mentioned the accessibility relation K being transitive and euclidean, but didn’t
say whether it had to be reflexive). However, if knowledge could be untrue, then their
account would allow for knowing how to do impossible things. Therefore, we will assume
that the Knowj, operator describes true knowledge.

To say that the agent knew how to make ¢ true in situation s, they introduced a
Cany(¢, s) operator. It was defined using the sequence of definitions below, where 7 is a
second-order variable for a function mapping situations to actions — what they called an
“action selection function”. We will call such functions policies, following similar use in
the planning literature (e.g., Ghallab et al., 2004). The first definition needed is OnPathy,,
which is used in defining CanGety, which shortly will be used in defining Cany.

OnPathy(m,s,s") & s < AVa,s" (s < do(a,s*) < ) D (n(s*) = a)

CanGety (¢, m,s) & 3. [OnPathy(r, s, s') A Know (6, s') A

Vs*. (s < s* < §') D Ja. Knowy(m(now) = a, s)]
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Informally, OnPathy, (7, s, s’) means that situation s’ can be reached from s by following
the policy 7, and CanGety (¢, 7, s) means that the agent can make ¢ true by following 7

from s.

Definition 5.3.1 (Can; (Lespérance et al., 2000, p. 170)).
Cany (¢, s) ©f 3, Know, (CanGety (¢, 7, now), s)

Intuitively, Cany (¢, s) means that the agent knows a policy by which it can make
¢ true from s. Note that CanGety (¢, m,s) requires the agent to know when the goal
¢ is achieved, and also to always know what action the policy 7 selects until then.
Cany (¢, s) defines knowing-how in terms of knowing of a particular policy 7 such that
CanGety (¢, 7, now) holds.

Remark 5.3.1. This definition of knowing-how requires that the agent knows that even-
tually they’ll know that the goal has been achieved, i.e., that they’re done. An alternative
would just have the agent know that the goal will be achieved eventually (without requir-
ing them to recognize the point when it happens). More generally, one could consider,
instead of goals that will be completed, properties that hold with respect to the entire
infinite run that results from following the policy forever. For this chapter, however, those

are not the sort of generalizations that we will be exploring.

We now would like to instead define knowing-how in terms of the belief operator, Bel.
For now, let’s suppose that no exogenous actions can occur (we will consider those in
the next section). If we just substituted Bel for Know, in Lespérance et al.’s definitions,
the result would not ensure that the agent would actually be able to do what it “knew
how” to do, since beliefs can be false. Even substituting TBel for Knowy, in Lespérance
et al.’s definitions wouldn’t give the result we want, because even if the agent correctly
believes that a particular policy 7 will let it achieve the goal, it may also incorrectly
believe that another policy 7’ would also work (and so in practice the agent might fail to
act effectively). Therefore, we instead define a new version of knowing-how that requires

every policy the agent believes in must actually work:

Definition 5.3.2 (KHow). Let CanGet]®® be the abbreviation that is defined like
CanGet;, but substitutes TBel for Know;. Then we define

KHow,(¢,s) < 3r Bel(CanGet]® (¢, 1, now), s) A
V. Bel(CanGet] 2 (¢, m, now), s) D CanGet] (¢, 7, 5)
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The subscript 0 is just to distinguish this operator from another operator we will

introduce, that takes into account exogenous actions.

5.3.2 Taking exogenous actions into account

Recall that we give higher priority to the environment’s process. So, if there is an exoge-
nous action a that could be executed in situation s (leading to a Legal® situation), then
it’s the environment’s “turn” to act in s. Otherwise, it’s the agent’s turn in s. Hence we

define the following:

Definition 5.3.3 (ExoTurn).

ExoTurn(6,s) &' Ja. Exo(a) A Legal* (5, do(a, 5))

While the environment is constrained to follow its program, we can use a policy to de-
scribe how the environment chooses to act (as for the agent). We define ExoOption(d, p, s)
to mean that starting in situation s, the environment could use the policy p to select

actions that would follow ¢:

Definition 5.3.4 (ExoOption).

ExoOption(d, p, s) O ve Ts. [ExoTurn(é,s") D (Exo(p(s')) A Legal™ (6, do(p(s'), s")))] A
[—ExoTurn(4,s") D (p(s") = null)]

That is, ExoOption(d, p, s) means that starting in s, the action selected by p on the
environment’s turn will always be an exogenous one that would produce a Legal™ situ-
ation. When it’s not the environment’s turn, we adopt the convention that p must pick

the special non-executable null action.

We will now define variants of Lespérance et al.’s OnPath;, and CanGet;, that take an

additional argument — the environment’s policy.

We use OnPath(7, p, s,s') to mean that s’ is a situation that will be reached from s
by following the two policies m and p (intuitively, 7 represents the agent’s choices, and p
the environment’s). The way the two policies get combined is that p picks the action to

be executed, except that if p picks the special null action, then 7 gets to pick the action
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to execute.

OnPath(w, p, s, §') aof

s <8 AVa,s*. (s <do(a,s*) <) D
[(p(s*) # null A p(s*) = a A Exo(a)) V
(p(s*) = null A 7(s*) = a A Endo(a))

As the following observation formalizes, if p selects actions that follow ¢, and OnPath(m, p,

s,s') holds, and s is Legal™, then s’ must also be Legal™.

Observation 5.3.1. For any PAT ¥ and ground program term 4,
Y | Vs, p,m, 8. [ExoOption(d, p, s) A OnPath(m, p, s, s") A Legal™ (8, s)] D Legal™ (4, s).

Next, we can define CanGet(¢, 7, p,s) to mean that the agent can make ¢ true by

following the policy 7 from s while the environment acts according to the policy p.

CanGet(o, m, p, s) o

3s’. OnPath(m, p, s, s") A TBel(¢, s') A
Vs*. (s < s* < §') D Ja. TBel(m(now) = a, s*)

We then define CanAlwaysGet(d, ¢, 7, s) to mean that the agent can achieve ¢ by
following 7 from s regardless of what the environment chooses to do (so long as the

environment follows 4):
CanAlwaysGet(6, ¢, 7, s) def Vp. ExoOption(d, p, s) D CanGet(¢p, , p, s)

(We've made ¢ a parameter, rather than just fixing it at exoProgram, for use in some
propositions later.)

For brevity, we can define this operator:

Definition 5.3.5 (BHow).
BHow(¢, 7, s) def Bel(CanAlwaysGet(exoProgram, ¢, 7, now), s)
We can read BHow (¢, 7, s) as saying that the agent believes it can (or “believes how

to”) accomplish ¢ with policy .

Lastly, we can define knowing-how analogously to how we did before (with KHowy),
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except now considering everything the environment can do (constrained by following its

program):
Definition 5.3.6 (KHow).

KHow(¢, s) o

I BHow(¢, 7, s) A Vr. BHow(¢, m, s) D CanAlwaysGet(exoProgram, ¢, 7, )

So there has to be a particular policy that the agent believes works, and any policy that
the agent believes works should work. The latter part is what makes this an “objective”

definition of knowing-how.

Remark 5.3.2. If we wanted a subjective “believing how” version of KHow, we could
define

def

BHow'(¢,s) = dJm. BHow(¢, T, s)

However, that’s not really necessary, since as we’ll later see (Proposition 5.3.5), BHow'(¢,
s) would be equivalent to Bel(KHow (¢, now), s). So determining beliefs about know-how

is simpler than determining what the agent actually knows how to do.

In general some combination of exogenous and endogenous actions will be needed to
bring about a goal. As the agent’s beliefs about what the environment will do evolve, so
too will the agent’s beliefs about what it knows how to do. To illustrate, let’s consider
a (highly abstracted) restaurant scenario. The agent (a customer at a restaurant) is
concerned with whether it knows how to get served lasagna. The only endogenous actions
is order(z) — the customer orders x. This does not directly cause the agent to have been
served. Instead, the customer has to rely on exogenous actions (by the waiter). The
exogenous actions are as follows: greet — the waiter greets the agent; greet’ — the waiter
greets the agent, but in a way that somehow causes the agent to question the waiter’s
competence; and serve(z) — the waiter serves x to the customer.

We will not present the entire PAT for the restaurant scenario, but suppose the

exogenous program exoProgram is set to
[ﬂAb?; greet; mx. Ordered(z)?; serve(x)} | [Ab?; greet’; (3 Ordered(x))?; my. serve(y)]

where Ordered(z,s) is a fluent that becomes true when the agent performs order(x).
What the program says is that there are two courses of action that are possible. The

more plausible course of action (under some assumptions about what else the theory
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contains) is described by the part of the program on the left side of the | operator, and
involves the waiter greeting the customer in the normal way, and the customer getting
the dish z that was ordered. The less plausible course of action (which only occurs if Ab
is true) involves the customer being served a random dish y that may not be what was
ordered. Note that the way the program works is that the environment acts first, the
agent performs one action (when the environment program blocks waiting for an order),
and then the environment performs one action (after which the agent could perform more

actions, though those won’t help it get served anything).

This could be fleshed out to get an PAT entailing each of the following (where

Served(z, s) is a fluent that serve(x) makes true):

Bel(KHow(Served(lasagna), now), Sp)
Bel(KHow(Served(lasagna), now), do(greet, Sp))
Bel(—~KHow(Served(lasagna), now), do(greet’, Sp))

That is, the agent initially believes it knows how to get served lasagna, and still does after
being greeted by the waiter in the normal way. However, if the greet’ action is performed,
then the agent comes to question the waiter’s competence and no longer believes it knows

how to get served lasagna.

The way this works is that initially the agent assumes that Ab is false, and so believes
that the first branch of the exogenous program gets executed, in which the agent will get
served whatever it orders (e.g., lasagna). So it could be shown that the agent believes it

can bring about its goal with, e.g., a policy that just always orders lasagna:
7(s) = order(lasagna).

In do(greet, Sq) the agent gets confirmation that that expected branch of the program is
being followed, and so would still believe that it knows how to achieve its goal. On the
other hand, in do(greet’, Sg) the agent concludes that Ab must be true, and so expects that
what it will be served will be random. Therefore, the agent believes it can’t guarantee

that it will get lasagna.

Note that while in this example it was easy to describe a policy by which the agent
could achieve its goal (in the cases where it could), in general policies may have to be much
more complicated and may be awkward to describe. In the next section, we will consider

a somewhat more concrete specification of agent behavior than policies: sequential plans.
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5.3.3 Achieving goals by sequential plans

We will sometimes be interested in saying not just that the agent knows how to accomplish
a goal ¢, but that they know that they can do so by following some plan — a sequence of
actions. To describe achieving things with sequential plans, we will need another set of
definitions, analogous to the ones for policies.

First, we define AfterSeq([av, ..., axl, p, s, §') to mean, intuitively, that s’ is a situation
resulting from the interleaving of the environment’s actions (determined by the policy p)
and the agent’s actions (which are the sequence ay, ..., ay), starting from s:

AfterSeq([avy, . . ., ag], p, s, 8") <

381, ..., S [(3 < dofay, s1) < -+ < do(au, 51) < ) A AL, p(si) = null A Endo(ai)] A

Va, s*. [(s < do(a,s*) < &) AN, s* # si] D [,o(s*) Znull A p(s*) =a A Exo(a)]

That is, between s and s all of ay, ..., a; must occur in order (each when p selects the
null action), and except in the situations sy, ..., s, where those actions are executed, the
action executed is the exogenous one selected by p. This operator looks a bit different
from OnPath but will play a similar role.

We previously defined CanGet(¢, 7, p, s) to say that the agent can make ¢ true by
following the policy 7 from s while the environment acts according to the policy p. We
now define CanSeq(¢, [, ..., ax], p, 8), where oy, . . ., oy are actions, to say that the agent
can make ¢ true by following the sequence oy, ..., ay from s while the environment acts

according to p.

def

CanSeq(o, [a1, ..., ax],p,s) = 3s'. AfterSeq([aq, ..., ], p,s,s") A TBel(¢,s')

That is, there must be a situation s’ reached by the interleaving of (all) the actions from
[, ..., ag] and p such that in it the agent truly believes that ¢ is true. (This definition
assumes that the agent remembers which of a4, ..., a; it has already executed, and so
will know which action to take on its turn.)

We can then define CanAlwaysSeq(d, ¢, [, . .., o], s) in terms of CanSeq analogously

to how we defined CanAlwaysGet in terms of CanGet:

CanAlwaysSeq(d, ¢, [aq, ..., ], 8) =

Vp. ExoOption(d, p, s) D CanSeq(o, [a1, ..., ax], p, s)

Finally, analogously to BHow(¢, 7, s) where 7 is a policy, we can define the following:
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Definition 5.3.7 (BHowSeq).

BHowSeq(¢, [a1, . . ., agl, s) o Bel(CanAlwaysSeq(exoProgram, ¢, [aq, . . ., ag], now), s).
That is, BHowSeq(¢, [, ..., ax], s) means that the agent believes in s that it can
bring about ¢ by performing «,...,a in order (while the environment acts according

to its program).

Remark 5.3.3. We could go one step further and define an operator analogous to KHow,
that specifies that there is a sequential plan that the agent believes achieves the goal,
and any sequential plan that the agent believes achieves the goal does so. It’s not clear
that this would be very useful, however, as the point of KHow was to guarantee that the

agent would act correctly, and the agent isn’t limited to acting in a sequential way.

5.3.4 Properties

In this section we prove some properties of our operators relating to knowing-how. In
particular, we relate KHow and KHow, to Lespérance et al.’s (2000) Canj operator
and each other, prove various properties relating to introspection, relate BHow and
BHowSeq to KHow, and consider how beliefs about the attainment of goals by policies
and sequential plans relate to beliefs about what exogenous programs are running.

Our first result (Proposition 5.3.1) will be that for domains with no exogenous actions,
under some conditions on the accessibility relation, our KHow, operator is equivalent
to Lespérance et al.’s (2000) Cany, operator. Afterwards, we will show that when there
are no exogenous actions, KHowy is equivalent to KHow (Proposition 5.3.2), and so by
transitivity, we will have related KHow to Cany.

In preparation for that, we introduce the notion of an endogenous-only PAT, which

intuitively involves no exogenous actions.
Definition 5.3.8 (endogenous-only). A PAT X is endogenous-only if

¥ |= exoProgram = nil A Va. Endo(a).

Observe that for an endogenous-only PAT 3, we have Y |= Vs. Legal* (exoProgram, s) =
Legal(s).

Proposition 5.3.1. Suppose X is an endogenous-only PAT for a language without ab-
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normality fluents (so the MPB and B relations are equivalent), such that
Y EVs > S B(s,s) AVs'. B(s',s) DVs" > s B(s", "),

i.e., B is reflexive at legal successors of Sy, and at legal successors of situations that are
accessible from legal successors of Sy. Suppose further I' is a set of axioms describing the

accessibility relation K (s, s) (used in defining Knowy ) so that ¥ U T entails

\V/Sl Z S(). VSQ. [B(SQ, 81> = KL(SQ, 81)] A
[KL(SQ, 81) D) VSg > 89. Vs4. [8(84, 83) = KL(S4, 83)]],

i.e., that the K;, and B relations agree on what’s accessible from legal successors of Sq, and

also on what’s accessible from legal successors of what’s accessible from legal successors
of Sg. Then

YUT EVs > Sy [Cang(¢,s) = KHowg (o, s)].

Proof. The first thing to note is that
YSUT Vs >Sg,m, s Kp(s',s) D [CanGetr (¢, T, s') = CanGet; 2 (¢, 7, 5')]

since CanGety (¢, m,s') and CanGet]®¥ (¢, 7, s') only differ in whether they use Knowy,
or TBel, and only apply those operators to situations that are legal successors of s" —
where by assumption the K; and B relations agree, and where B is reflexive (so Knowy,
is equivalent to Bel which is equivalent to TBel). Since the K, and B relations also agree

at legal successors of Sy, we then get

Y UL E Vs > So. [3m Know,(CanGety (¢, 7, now),s) =
I Bel(CanGet; ° (¢, 7, now), s)].

This is almost the result we wanted to show, except that it remains to show that
¥ = Vs > Sy. V. Bel(CanGet] °® (¢, 7, now), s) O CanGet] 2% (¢, 7, 5),

i.e., that any policy the agent believes works, actually does. That follows from the as-
sumption that ¥ = Vs > Sg. B(s, s), which means that the agent’s beliefs are correct in

legal successors of Sg. O
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This result shows that KHow, can be used as a replacement for Cany. So, for in-
stance, we can also model the unbounded tree-chopping scenario from Lespérance et al.
(2000, Examples 3-4), in which an agent is said to know how to cut down a tree even
if it doesn’t know in advance how many chops are needed, provided that it can sense
whether the tree is down. Lespérance et al.’s point was that the Can;, operator handles
unbounded iteration. KHow, would handle the example the same. We consider a slightly
more complicated variant of that problem in §5.5.

Our next proposition says that for endogenous-only PATs, KHow and KHow, behave

the same.

Proposition 5.3.2. Let 3 be an endogenous-only PAT. Then ¥ | Vs. KHow(¢, s) =
KHowy (¢, s).

Proof. Since the environment program is nil, it is never the environment’s turn to act. It

can be seen that X entails each of

v, p, s,s. ExoOption(nil, p, s) D [OnPath(, p, s,s’) = OnPathy (7, s, s)]
Vr, p, s, 5. ExoOption(nil, p, s) D [CanGet(¢, 7, p, s) = CanGet] 2% (¢, T, 5)]
Vr,s,s'. CanAlwaysGet(nil, ¢, 7, s) = CanGet; > (¢, 7, 5)

from which the result follows. OJ

It follows that KHow can also be used as a replacement for Cany,. Of course, for PATs
which are not endogenous-only, KHow would take the exogenous actions into account
whereas Can; would not.

The next two lemmas establish some properties relating to introspection that we will

be using.

Lemma 5.3.1 (the agent believes its own beliefs are true). For any PAT ¥ and
formula ¢ (possibly with free variables, even second-order ones, though not the situation

variable s),
Y = Vs. Bel(V(Bel(¢, now) D ¢), s).

Proof. Let J be a model of ¥ and p a variable assignment. Suppose for contradiction

that, for the situation variable s,

J, u = —Bel(V(Bel(¢, now) D ¢), s).
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Then there is a variable assignment p/, differing from g at most on s’ (WLOG assume
that s does not appear free in ¢), such that J, u = MPB(s’, s) and

3,00 = ~V(Bel(@, ') S ls').

It follows that there is some variable assignment p” differing from g at most on the free

variables in ¢ (if any), such that

3,1 = Bel(¢, ') A =gls'].

By Lemma 5.2.2 we have that J, " = MPB(s', ). So from J, 1" |= Bel(¢, s') we would
be forced to conclude J, i’ |= ¢[s'], which is a contradiction. O

Lemma 5.3.2 (another introspective property). Suppose that 7 is a (possibly
second-order) variable of any sort, and ¢(m) is a formula with 7 as its only free vari-
able. For any PAT ¥,

Y = Vs. Bel(3n. Bel(¢(7), now),s) = 3r. Bel(p(r), s)
Proof. We prove each direction of the equivalence.

1: ¥ = Vs. Bel(3n. Bel(¢(7), now), s) D 3. Bel(¢(), s)

Suppose that J is a model of ¥ and p a variable assignment so that, for the situation

variable s,
J,u = Bel(3r. Bel(o(m), now), s)

We want to show that J, u = 37. Bel(¢(7), s).

Suppose p’ is a variable assignment differing from g at most on &', and such that
3,1 = MPB(s', s). We then get that

3,1 = 3. Bel(p(n), ).

Therefore, there is some variable assignment ", agreeing with p’ except possibly

on 7, such that

J,u" = Bel(¢(7), ).
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By Lemma 5.2.2 we have that J, p” = Vs". MPB(s", s') = MPB(s”, s). Therefore,
J3,u" = Bel(g(), 5).
We can conclude that J, 4/ = 3. Bel(¢(7), s), and so also J, u |= Im. Bel(¢(n), s).

2: ¥ = Vs. (3 Bel(¢(n),s)) D Bel(3r. Bel(¢(7), now), s)

Suppose that J is a model of ¥ and p a variable assignment so that, for the situation

variable s,

J,pu = 3. Bel(¢p(), s).

We want to show that J, = Bel(37. Bel(¢(7), now), s).

By definition (the definition of the semantics of existential quantifiers) we have that

there must be some variable assignment 4/, differing from p at most on 7, such that

3,1 |= Bel(¢(n), 5).

Consider any variable assignment u” differing from g/ at most on s’, for which
J, 1" = MPB(s,s). By Lemma 5.2.2, we have that J, 4" = Vs". MPB(s",s') =
MPB(s”, s). Therefore,

3,1" | Bel(o(m), s'),
and we can weaken that statement to get
3, 4" | Ir. Bel(¢(r), s').

Since p” assigned s’ to an arbitrary situation object, subject to the restriction that
3, 1" = MPB(s, s), we can conclude that

3,1 = Bel(3r. Bel(¢(7), now), s).

Since p and p’ differ at most on w, which does not appear free on the RHS of the

= operator above, we can conclude

J, 1 = Bel(3m. Bel(¢(n), now), s)
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and are done. O

Those last two lemmas are used in a further lemma below, which will then be used
to show that the agent always will believe that it has the know-how it does have (Propo-
sition 5.3.3).

Lemma 5.3.3 (a sufficient condition for believing in know-how). For any PAT
)

Y

Y = Vs. [37 BHow(¢, 7, s)] D Bel(KHow(¢, now), s).
Proof. Fix some model J of ¥, and a variable assignment p such that
J,u = 37 BHow(¢, m, s).

We want to show that in the situation denoted by s it is believed that KHow(¢, now),

i.e., the conjunction
[3m BHow(¢, 7, now)] A [Vr. BHow(¢, m, now) D CanAlwaysGet(exoProgram, ¢, , now)].
To establish that the first conjunct is believed, by Lemma 5.3.2 we get that

J,p = (37 BHow(¢, 7, s)) D Bel(37. BHow (¢, 7, now), s).

Furthermore, believing the second conjunct amounts to a special case of the agent be-

lieving that its own beliefs are true (Lemma 5.3.1). O

Proposition 5.3.3 (positive introspection for knowing-how). For any PAT ¥,
Y = Vs. KHow(¢, s) D Bel(KHow(¢, now), s).

Proof. This follows from Lemma 5.3.3, since it’s part of the definition of KHow that if
KHow(¢, s) holds, then 37 BHow(¢, 7, s). O

However, the agent may think that it knows how to do more than it really can, as

the next proposition shows.

Proposition 5.3.4 (failure of negative introspection for knowing-how). There
exists a PAT ¥ for which

Y £ Vs. “KHow(¢, s) D Bel(-KHow(¢, now), s).
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Proof. Consider a PAT ¥ including InitB(P), —P(Sy), and the SSA P(do(a,s)) = P(s).
Then ¥ = -KHow(P, Sy) since there is no way to make P true starting in So. However,

in Sy the agent believes that P is already true, and so believes KHow(P, now). O

The following proposition shows that the task of proving that the agent believes that
it knows how to do something can be simplified to showing that the agent believes that

some policy m works.

Proposition 5.3.5. For any PAT ¥,
Y = Vs. Bel(KHow(¢, now), s) = 3n. BHow(¢, 7, s)

Proof. One direction of the equivalence was shown by Lemma 5.3.3. What remains to be

shown is that
Y = Vs. Bel(KHow(¢, now), s) D 3r. BHow(¢, 7, s).
From the definition of KHow we can conclude that
Y = Vs. Bel(KHow(¢, now), s) D Bel(3w. BHow(¢, 7, now), s).

Recall that BHow(¢, 7, now) expands to an expression of the form Bel(y(7), now).
Hence, we get the desired result from the introspective properties of belief (Lemma 5.3.2).
]

We now turn to considering how the ExoRunning operator relates to knowing-how. The
following lemma says that if ExoRunning(d, s) holds, we can use § instead of exoProgram
when determining whether a policy p is an option that the environment could follow

(starting from s).

Lemma 5.3.4. Let X be a PAT. Then for any ground program term 9,
Y. = Vs. ExoRunning(d, s) D [ExoOption(exoProgram, p, s) = ExoOption(d, p, s)]

Proof. The only way ExoOption depends on its first argument is in determining what
future situations are Legal™*. If ExoRunning(d, s) holds, then for any situation s’ following
s, we have that Legal™ (exoProgram, s') holds iff Legal™ (, s") holds. O

We can use that result to get that if the agent believes ExoRunning(d, now), then the
agent will believe that whether it can achieve a goal ¢ by executing a policy m would be

the same whether the environment acted according to exoProgram or .
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Proposition 5.3.6. Let X be a PAT. Then for any ground program term 9,

Y. = Vs. Bel(ExoRunning(d, now), s) D
Bel(Vr. CanAlwaysGet(exoProgram, ¢, m, now) = CanAlwaysGet(d, ¢, 7, now), s)

Proof. The only way CanAlwaysGet depends on its first argument is through ExoOption.
The result follows from Lemma 5.3.4. [

We now return to considering normalizations:

Proposition 5.3.7. Let ¥ be a PAT including exoProgram = dg,,, where dg,, can be
written in a situation-suppressed way (i.e., the only situation term it refers to is now).

Given a ground situation term o, if there is an Ab account ¢ such that
Y = Bel(¢, 0)
and 0 is the normalization of dg,, w.r.t £, then
Y. |= Bel(Vr. CanAlwaysGet(exoProgram, ¢, m, now) = CanAlwaysGet(d, ¢, 7, now), o)

Proof. This follows from Proposition 5.2.4 and Proposition 5.3.6. O

Because the normalized program J may be much simpler than exoProgram, this result
can give an easier way of determining what the agent believes it knows how to do.
Sequential plans

We now consider properties relating to sequential plans. First, we want to relate being

able to make ¢ true with a sequential plan to being able to make it true with a policy.

Proposition 5.3.8. Let ¥ be a PAT where the SSA for view is any one of Equations
5.2, 5.3, or 5.4. Then for any k,

Y EVs,aq,...,a;, p Ir. Bel(CanSeq(o, [a1, . . ., ax], p, now) D
CanGet(¢, m, p, now), s)

Proof. Suppose that J is a model of ¥ and p an arbitrary variable assignment. We want
to show that

J,u | 3. Bel(CanSeq(¢, [aq, - . ., ax], p, now) D CanGet(¢, 7, p, now), s)
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Let’s say that the subsequence of endogenous actions in the history of the situation
pls] is by, ..., by (note that the b; are action objects in the domain, not terms). Now
consider a variable assignment y/, differing from g at most on the second-order variable
7. Specifically, let’s say that p/[r] = 7, the function from situation objects to action
objects that is defined below (note that § ranges over situation objects and is not related

to the variable s):

wa] if the endogenous actions in §’s history are by, . . ., bn,
' as] if the endogenous actions in §’s history are by, ..., by, j¢'[a1]
7(8) = . .
p'[ax—1] if the endogenous actions in §’s history are by, ..., by, '[aq], ...,
1 [ak—s]
\ W [a] otherwise

Now consider a variable assignment p” differing from p’ at most on s’, and suppose that
3, 1" = MPB(s, s).
Furthermore, suppose that
J, 1" = CanSeq(o, [ay, . .., ax], p, s').
We will show that

J, 1" | CanGet(o, 7, p, s'),

which will establish the overall result that we want.

Observe that the endogenous actions in the history of 1”[s'] must be the same as in
the history of p”[s] (because any of the possible SSAs for view listed in the statement of
this proposition will result in the agent always knowing what endogenous actions have

been performed). We can get the desired result by noting that
¥, u" E Vs AfterSeq([au, .. ., ax], p, 8", ") D OnPath(mr, p, §', s")

and that starting in p”[s'] the agent will always know what action 7 recommends. [

We may note that the result of Proposition 5.3.8 would also apply to PATs with other
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SSAs for view, so long as the agent always knows which endogenous actions have been

performed. Furthermore, we also get this easy corollary:

Corollary 5.3.1. Under the conditions of Proposition 5.3.8, for any k,
Y EVs,aq,...,a;. BHowSeq(o, [aq, ..., ax],s) D Bel(KHow(¢, now), s)

Finally, the last results of this section are the analogue of Proposition 5.3.6 and

Proposition 5.3.7 for sequential plans.

Proposition 5.3.9. Let X be a PAT. Then for any ground program term ¢ and number
k,

Y = Vs. Bel(ExoRunning(d, now), s) D
Vay,...,a;. Bel(CanAlwaysSeq(exoProgram, ¢, [ay, ..., ax|, now) =

CanAlwaysSeq(90, ¢, a1, . . ., ax], now), s).

Proof. Similarly to what we had with CanAlwaysGet in Proposition 5.3.6, the only way
CanAlwaysSeq depends on its first argument is through ExoOption. The result follows
from Lemma 5.3.4. ]

Proposition 5.3.10. Let X be a PAT including exoProgram = §g,,, where dg,, can be
written in a situation-suppressed way (i.e., the only situation term it refers to is now).

Given a ground situation term o, if there is an Ab account £ such that
2 |- Bel(¢.0)
and 0 is the normalization of dg,, w.r.t £, then, for any number k,

Y | Vay,...,a;. Bel(CanAlwaysSeq(exoProgram, ¢, [aq, . .., ax], now) =
CanAlwaysSeq(9, ¢, [aq, . . . , ax], now), o)

Proof. This follows from Proposition 5.2.4 and Proposition 5.3.9. O

Having established all these properties, we now are ready to apply some of them to

examples.
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5.4 An extended example

To illustrate how our framework allows for describing beliefs about knowing how and the
change of those beliefs, we consider a version of the well-known fox-chicken-grain problem
(Ascher, 1990) that we mentioned in the introduction, where a farmer is trying to carry
a fox, a chicken, and some grain north across a river, but can only carry them one at a
time in his boat. The fox will eat the chicken if the farmer isn’t on the same river bank
as them, and similarly the chicken will eat the grain if the farmer isn’t with them.

In the classic version of the problem, it’s well-known that the goal can be accomplished

if the farmer does the following:

1. carry the chicken across,

2. come back,

3. carry the fox across,

4. come back with the chicken,
5. carry the grain across,

6. come back,

7. and carry the chicken across.

With this sequence of actions, there is no point at which the chicken and grain, or the
fox and the chicken, are left together unattended by the farmer.

In our version, exogenous actions (like eating) are explicitly represented, and also
some (implausible) things can happen that may affect the farmer’s ability to achieve
his goal. The chicken can fly across the river (which may help or hinder the farmer,
depending on the circumstances), though this is an implausible event that the farmer
assumes won’t happen. The fox might be sleepy, in which case it won’t eat the chicken
but may spend some time sleeping. The weather may act as well — a storm may damage
the boat, causing a leak. A leaky boat can only be used for two more crossings before it
fills with water. Below we construct a PAT for this problem, before describing what the
agent (the farmer) believes he knows how to do in various situations.

The endogenous actions are T(x) (the farmer crosses to the north side of the river,
taking = with him) and |(z) (the farmer crosses to the south side of the river, taking
x with him). The exogenous actions are # (the chicken flies to the opposite side of the
river), eat(z,y) (z eats y), zzz (the fox sleeps), and ... (a storm damages the boat, causing
it to leak).
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The fluents are Eaten(z, s) (x has been eaten), FarmerMoved(s) (the farmer just per-
formed an action), Damaged(s) (the boat has a leak), North(x, s) (x is on the north side
of the river), and level(s) (a numeric value indicating how much water is in the boat).
We will also make use of three abnormality fluents, Aby(z, s), Abs(z, s), and Abs(s). We
consider any object not on the north side of the river to be on the south side (we do not

model the river itself as a location) and so we use
SameSide(z, y, s) o (North(x, s) = North(y, s))

to indicate that x and y are on the same side of the river.

We have the constant symbols ¢& % & ¢ for the farmer, fox, chicken, and grain,
respectively. We use another constant, “_”, as an argument to 1 and | when the farmer

crosses empty-handed. The theory specifies that all these symbols denote distinct objects.
The PAT is described in Figure 5.2. We use the SSA from Equation 5.2 for view,
so that the agent always knows what actions have occurred. The precondition axioms
make it so that all (non-null) actions are always possible, except for 1(x) and | (z), which
require the objects crossing the river to start on the appropriate side, and that the water
level in the boat not be too high.
Observe that in Xy, the following formula ¢[Sy| describes Sy:

V. =North(z,Sy) A —~Eaten(x,Sp) A
—Damaged(Sy) A level(Sp) = 0 A =FarmerMoved(Sy)

That is, the objects start on the south side of the river and are not eaten, the boat is not
leaking, and the agent has not yet moved. Furthermore, the agent knows these things;
we have InitB(¢[now)).

The environmental program exoProgram specifies that the weather, fox and chicken
take turns acting according to their programs; that is, the theory includes exoProgram =

0gzo Where 0gy, 18
(WeatherProg; chickenProg; foxProg; FarmerMoved?)*

where each of the procedures (weatherProg, chickenProg, and foxProg) is described in Fig-
ure 5.3. (For simplicity we have the programs run in sequence rather than concurrently.)
Note that the environment program blocks after giving the weather, chicken, and fox a
turn so as to give the farmer a turn.

The weather program says that implausibly a storm may occur. Note that the purpose
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Ysa = {FarmerMoved(do(a, 3)) = Endo(a),
Eaten(z,do(a, s)) = = eat(y, x) V Eaten(z, s),
Damaged(do(a, s)) = a = ... V Damaged(s),
North(z,do(a,s)) =
([a=1() V(e = & A3y a = 1(u)] v
[=North(z s)/\a:— T Na=#&|V
[North(z, s) A ([ =& A =Fy. a = L(y)] v
o £ B Aa# L) A~ =1 Aa=H))]).
level(do(a, s)) =y =
([(y = level(s) + 1) A Damaged(s) A 3z (a = 1(z) Va = L(z))] v
[(y = level(s)) A —[Damaged(s) A 3z (a = t(z) Va = L(2))]),
view(do(a, s)) = a - view(s),

} U {Ab;(Z,do(a,s)) = Ab;(Z,s) | Ab;is an abnormality fluent}.

Ypre = {Poss(1(x), s) —=North(y£, s) A (=North(z, s) Vo = _) A (level(s) < 2),
Poss({(z),s) = North(y,s) A (North(z,s) Vo = _) A (level(s) < 2),
Poss(null, s) = False

}U{Poss(a(Z),s) = True | «isnot T, |, or null}.

Yisense = {SF(a(Z),s) = True | «is an action function symbol}.

Yo = {—-North(z,Sy) A —Eaten(z,Sg) A
—Damaged(Sp) A level(Sy) = 0 A =FarmerMoved(Sy),

exoProgram = (weatherProg; chickenProg; foxProg; FarmerMoved?)*,

Endo(1(x)) A Endo({()),
Exo(#') A Exo(eat(z,y)) A Exo(zzz) A Exo(....) A Exo(null),
Init(s) D view(s) = ()
Yo{n #n | n,m e {& %, 5, _}} U{the axioms describing lists}.

InitB(Vz. —North(z) A ~Eaten(x) A ~Damaged A level = 0 A =FarmerMoved).

Figure 5.2: Axioms in the PAT for the fox-chicken-grain problem. The procedures referred
to in the exogenous program are given in Figure 5.3.
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proc weatherProg if Ab;(view) then ... endIf; endProc;

proc chickenProg
if Aby(view) then % endlIf;
if SameSide(¥ , %) A =SameSide(jZ, /) then eat(% , 7 );
endlIf;

endProc;

proc foxProg
if —=Ab; then
if SameSide("*, ¥ ) A =SameSide(JZ, ¥ ) then eat(, 7 );
endlIf;
else (nil | zzz); endlIf;

endProc;

Figure 5.3: The procedures used by the exogenous program.
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of making view the argument to Ab; is that view, as a list of the actions that have been

executed, takes different values over time, and so a new abnormal atom is required to be

true for each storm that happens (so after one storm, another storm is still implausible).

Meanwhile, the chicken’s program says it may implausibly fly across the river (and as

with storms, each flight requires a separate abnormality to occur), and will eat grain if on

the same bank as it when the farmer isn’t there. Finally, according to the fox’s program,

the fox will eat the chicken if it can, unless it’s sleepy (corresponding to Abs being true)

in which case the fox non-deterministically does nothing or sleeps. Note that whether the

fox is sleepy doesn’t change over time.

The farmer’s goal can be given by this formula:

Goal(s) &f North(*, s) A North(4 ,s) A North(*, s) A —Eaten(% ,s) A —Eaten({, s)

We now turn to considering whether the farmer believes he can accomplish his goal,

and how. For brevity in talking about beliefs about knowing how, let’s introduce some

3In Chapter 4, we used the value of the history fluent as an argument to abnormalities for similar

purposes.
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notation (where @ and [ are sequences of actions):

a— o def Bel(KHow (¢, now), do(&, Sp))

d ¢ ¥ Bel(~KHow(¢, now),do(d,Sy))
d—¢: 6 Y BHowSeq(¢, 5, do(a,So))
abo: def —~BHowSeq(¢, £, do(d, Sp))

So, for example, @ — ¢ : 5 is a formula that says that after the actions @ have occurred,
the agent believes that it can bring about ¢ by performing 5 (possibly interleaved with

exogenous actions).

Proposition 5.4.1. The action theory described above has the following belief formulas

as logical consequences:

L= Goal : [1(%), (), 1(%), L(4

“*
N~——
—
—~
S~—
<+
—~
»
—
—~
-
=

2. & + Goal : [M(5),4(0), 1), L(T ), 1(¥), L(), 1(5)]
3. # —» Goal : [1(%"), L(F ), 1(V), 4(1), 1(F )]

4. 1), 10, 1), #] ~ Goal

5. .. —{Goal

6. zzz — Goal : [1(% ), }(-), 1(%"), L (1), 1(¥)]

7 [0 ), 410), 1), zz2] — Goal : [L(1), 1(V)]

8. [M(F ), 40, 1), ..., zzz] — Goal = [L(L), 1(¥)]

9. [1(F ), 4(), 2%, L(F ), #] ~ Goal

10. [1(%),zzz, L(0), 10, L(F ), #] — Goal : ()

Below, we informally describe the points in this proposition and why they are true.

Somewhat more detailed proof sketches follow.

1. The farmer initially assumes all abnormalities are false and so believes he can
achieve his goal by the usual sequence of crossings (the same as in the classic

problem).
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10.

. If the first thing that happens is that the chicken flies across the river (%), the

farmer no longer believes the original plan will work (he can’t take the chicken that

is already on the other side).

However, if the first thing that happens is that the chicken flies across the river,

the farmer believes a simpler plan will work.

In the situation considered here, the chicken flies back to the original bank after the
farmer arrives with the fox, and will be able to eat the grain before the farmer gets
another turn. Therefore, the farmer now believes he does not know how to achieve

his goal.

If a storm is the first thing to happen, the farmer knows he doesn’t have enough

crossings left to finish.

. After learning (from the zzz action) that the fox is sleepy and won’t eat the chicken,

the farmer knows that it’s safe for the fox and chicken to be alone together, and

can follow a simpler plan.

This is like the previous point except that the farmer only comes to know that the

fox is sleepy at a later point.

Because of the storm, the farmer knows he only has two crossings left, but because

the fox is sleepy, the farmer knows that suffices.

In this situation, the chicken has flown to be alone with the fox on the north bank,
and so will be eaten before the farmer gets to do anything. Hence the farmer believes

his goal cannot be achieved.

This resembles (9) above, but this time the farmer still believes he knows how to
achieve his goal, because the fox has been observed to sleep (zzz), showing that it

is sleepy and won’t eat the chicken.

Proof. We consider each of the points.

1.

In Sy the agent believes the Ab account according to which all abnormalities are
false. The normalization of dg,, with respect to that Ab account has the following

definitions for the procedures:

proc weatherProg if False then ... endIf, endProc;
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proc chickenProg
if False then % endlf;
if SameSide(¥ , %) A —=SameSide(JZ, /) then eat(¥ , 7 );
endlIf;
endProc;
proc foxProg
if —False then
if SameSide(™', £ ) A =SameSide(y#, ¥ ) then eat(", 7 );
endlIf;
else (nil | zzz); endlIf;

endProc;

Simplifying that program further by removing branches that can never be taken,

we get the following:

proc weatherProg nil; endProc;

proc chickenProg
if SameSide(% , ¥ ) A =SameSide(y£, ¥ ) then eat($ , *);
endlIf;

endProc;

proc foxProg
if SameSide(™*, ¥ ) A =SameSide(/£, ¥ ) then eat(™", 7 );
endlIf;

endProc;

That is, the weather does nothing, the only thing the chicken does is eat the grain

when it can, and only thing the fox does is eat the chicken when it can.

Let 0 be the simplified program with those procedures. By Proposition 5.2.4, we

have

¥ |= Bel(ExoRunning(d, now), So).
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We want to show that

Y = BHowSeq(Goal, [T(4 ), J(0), T(%%), L(5 ), 1(¥ ), 4(2), 1(5 )], So)-

By Proposition 5.3.9 it will suffice to show

¥ = Bel(CanAlwaysSeq( (5.8)
8, Goal, [1(£ ), L(), 1), 4(£ ), (), L), 1(5)], now), S).

To show that, let J be any model of ¥, and p a variable assignment such that
3,1 = MPB(s,Sp).
We have to show that

J, u = CanAlwaysSeq(d, Goal, [1(£ ), 1(0), 1), L(%

%
N—
—
—~
:_/
%
—
N
—
—~

bl |
=

w
:_/

i.e., that J, u satisfy

Vp. ExoOption(d, p, s) D
CanSeq(Goal, [1(%" ), L(-), (%), L(5 ), 1(¥), 4(), 1(F )], p, 5).

Therefore, let 1/ be any variable assignment agreeing with u except possibly on p,
and such that

J, 1 = ExoOption(d, p, s).

From the definition of ExoOption and what ¢ is, it’s easy to see that (starting from
the situation denoted by s) the policy denoted by p must always select the action
denoted by null when neither the chicken and grain nor the fox and chicken are left

together unattended. That is, if we let

Safe(t) & —([SameSide (%, %, t) A =SameSide (&, )] v

[SameSide(", 4, t) A —SameSide(/Z, 4, 1)])
then we have

3,1 = Vs 3 s. Safe(s") D (p(s') = null).
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It’s also straight-forward to verify that

3,1 Vs s T do([H(F ), (), 1O, L(F ), 15 ), L) 15 )], ) O Safe(s').

That is, starting in the situation denoted by s, if the farmer was able to follow his
plan without interruption by exogenous actions, at every situation along the way,
that situation would be “safe”. This means that the policy denoted by p must select
the action denoted by null, and so the farmer does in fact get to follow his plan
without interruption (note that the precondition of each action will be satisfied

when it’s executed). That means that we have

3,1 = AfterSeq([T(£ ), L), (%), L(5 ), 1(V), L), (5 )], o s,
do([1(4 ), + (), 1), L7 ), 1(¥ ), L), T(5 )], ).

It’s also straight-forward to verify that

3,4 = TBel(Goal, do([ (%), L(-), 1(*), L(

)
~—
—
—~
~
F
—~
L
—
—~

-
=
\‘CIJ
~—
~—

Therefore, we can conclude that

3,4 = CanSeq(Goal, [1(), L(2), 1), L(F ), 1(¥), L), 2(F )], s 5)

and so we can get Equation 5.8 and are done.

2. Consider the situation do(#,Sp). Note that in all accessible situations from there,
the % action has been performed (and no others), because all accessible situations
have the same value for the view fluent, which records the actions that have oc-
curred. Therefore, the farmer believes that the chicken is on the North side, i.e., we

have
Y. = Bel(North(% ), do(#,So)).

Therefore, the farmer believes that the first action of his original plan, (4 ), is not

currently executable:
¥ |= Bel(=Poss(1(4 ), now), do(#,Sp)).

Finally, it can be shown that the farmer believes the next action to be executed
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will be his own:
Y. = Bel(Vp. ExoOption(exoProgram, p, now) D [p(now) = null], do(#,So)).
From these we can conclude that X entails

Bel(Vp. ExoOption(exoProgram, p, now) O
—3s. AfterSeq([T( ), L(0), (%), L(5 ), 1(¥), L (), 1(F )], p, now, s), do(#, So))

and so the result follows.

3. In do(#,So), it can be shown that the farmer believes the Ab account specifying
that Aby((), now) is true and every other abnormality is false (note that if that one
abnormality had not been true, then % would not have been possible). Therefore,
the farmer believes that a simplified program is running as was shown in (1) above,

except that chickenProg is slightly more complicated:

proc chickenProg
if view = () then % endIf;
if SameSide(¥ , ) A =SameSide(y£, ¥ ) then eat(¥ , );
endlIf;

endProc;

However, the value of view will not be equal to () in future situations, so this says
that the chicken won’t fly again. Hence, trying to achieve Goal from do(#,So) is
like the classical problem but with a starting position where the chicken is already

across. The result can be shown similarly to in (1) above.

4. Consider the situation o = do([1(% ), (), T(%), #],So). It’s straight-forward to
verify that the farmer believes that the chicken and grain are now on the same side

(opposite the farmer):
¥ = Bel(SameSide(# , ¥+, now) A =SameSide(y£, V*, now), o)
Therefore, it can be seen that

¥ = Bel(Vp. ExoOption(exoProgram, p, now) D [p(now) = eat(% , V)], 0)
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So the next action to occur will be the chicken eating the grain, which will result

in a situation from which the goal is not achievable.

5. It can be seen that
Y. = Bel(Damaged(now) A level(now) = 0,do(..., So)).

As a result of this, the farmer believes that in any legal future situation in which
he’s already performed two-river crossing actions, he won’t be able to cross a third

time. That is, it can be shown that

Y = Bel(Vsy, aq, s2, as, S3. [(now < do(ay, s1) < do(az, s2) < s3) A
Jx1, 2. (a1 = N21) Va1 = L(z1)) A (as = TN(x2) V az = L(22))] D
V. —[Poss(1(z3), s3) V Poss(|.(x3), s3)]-

It can be verified (without even considering the program) that no sequence of
endogenous and exogenous actions in which the farmer crosses the river at most
twice will result in all three of the fox, chicken, and grain being taken across the

river.

6. In do(zzz,Sy) it can be shown the farmer believes the Ab account according to
which Abs(now) is true and every other abnormality is false. The normalization of
0z With respect to that Ab account has the same definitions for the procedures

that we saw in (1) above, except that the fox’s normalized procedure is this:

proc foxProg
if =True then
if SameSide(*", ¥ ) A =SameSide(y£, % ) then eat(™, ¥ );
endlIf;
else (nil | zzz); endlIf;

endProc

Simplifying that program further by removing branches that can never be taken,

we get the following:

proc foxProg (nil | zzz); endProc
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10.

So the fox can only do nothing or sleep. As in (1), the weather does nothing and
all the chicken can do is eat the grain if on the same side of the river as it while

the farmer is on the other side.

The proof proceeds similarly to in (1), but considering the simpler plan [T(4 ), 1(_),
(%), 1(), T(¥%)]. Note that unlike in (1), during the plan the farmer may be inter-
rupted by an exogenous action, but that can only be the fox performing zzz again,

which doesn’t change anything.

This is similar to (6). In the situation considered here the farmer has seen the fox
sleep, and believes the same Ab account, the one according to which the only true
abnormality is Abz(now). So the farmer believes the same simplified programs are

running that we considered in (6).

This is similar to (7). The only difference is that there’s been a storm, so the boat
is damaged and the farmer only has two crossings left. However, the plan to achieve
the goal from this point (which is the same as in (7)) only requires two crossings,

so is unaffected.

It can be shown that in do([T(4 ),l(2), T(%), (% ), #],So) the farmer does not
believe Abz(now). Therefore, the farmer believes the next action to occur will be the

fox eating the chicken, after which the goal is not achieved in any future situation.

It can be shown that in do([1(% ), zzz, }(-), T(*%), (4 ), #],So) the farmer believes
the Ab account according to which Abo((1(% ), zzz, L(_), T(*%")), now) and Abz(now)
are true, and all other abnormalities are false. The important thing to note is
that because Abgz(now) is believed, the farmer believes the fox is running a pro-
gram which says it won’t eat the chicken (the program we previously saw in (6)).
Therefore, given the current situation (in which the fox and chicken are already
on the north side), the farmer believes he can achieve his goal by taking the grain

aCross. ]

This example has illustrated how the agent’s beliefs about what it can achieve, and

how it can achieve it, can change over time. The same principles would apply to more

complicated problems; e.g., one could consider a variant where the animals can move

around on the banks of the river and have to be caught.
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5.5 Knowing-how in the unbounded case

In the examples we’ve considered so far, the agent has had simple (sequential) ways of
bringing about its goal (or no way). However, our definition of knowing-how is in terms of
policies, and so can be applied to a much broader range of problems. For example, it could
be applied to problems which require policies that behave like conditional plans, which
branch on sensing results. (Note that Lespérance et al. (2008) had already formalized
conditional planning in the presence of exogenous actions, though without plausibility.)

More interestingly, our approach also is designed to handle problems which require
policies with iterative behavior — unlike the approach in (Lespérance et al., 2008), but
like the earlier (Lespérance et al., 2000). Lespérance et al. (2000) demonstrated that
their approach to modelling knowing-how, which ours is based on, could handle loops by
considering a problem where the agent is trying to chop down a tree but doesn’t know
how many chops it will take. If the agent can sense whether the tree is down, then it
will be said to know how to bring it down on their account (using Cany, ), because it can
continue chopping and sensing until it knows that it’s done.

We now consider an analogous problem — trying to rake away all the leaves under a
tree without knowing how many leaves there are — but with the extra complication that
more leaves can exogenously fall while the agent acts. Note that this example does not
involve any abnormalities, and is just meant to showcase the combination of iterative
planning and exogenous actions.

We construct a PAT to model the scenario. There’s a fluent AgentTurn(s) to indicate
when the agent gets to act, and numeric-valued functional fluents leavesOnGround(s) and
leavesOnTree(s) to model how many leaves are on the ground and the tree, respectively.

Furthermore, there are these actions:

e rake — an endogenous action that reduces by one the number of leaves under the

tree

e sense — an endogenous sensing action that checks if there are still leaves under the

tree
e drop — an exogenous action that moves one leaf from the tree to the ground
e pass — an exogenous action that passes the turn to the agent

The PAT is shown in Figure 5.4. Note how the actions are always possible to execute,

except that leaves can only be raked if there are some on the ground, and can only fall
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if there are still some on the tree. Furthermore, the only action that senses anything is

sense, and it’s described by this sensing axiom:
SF(sense,s) = leavesOnGround(s) > 0.

We use the SSA for view from Equation 5.3 so that the agent observes all actions and
also gets sensing results.
The exogenous program specifies that whenever it’s the environment’s turn, either a

leaf can fall or the turn can be passed to the agent:
exoProgram = (—AgentTurn?; (drop | pass))*

Initially, the agent doesn’t know anything. In particular, the agent doesn’t know how

many leaves are on the ground or in the tree.

Proposition 5.5.1. Let X be the PAT described in Figure 5.4. Then
¥ = KHow(leavesOnGround(now) = 0,Sy)

Proof. Consider any model J = (D, Z) of ¥. Let u be an arbitrary variable assignment

such the second-order variable 7 is mapped to this function from situations to actions:

Z[rake] if the last endogenous action in § was Z[sense|, with a positive
7(s) = sensing result

Z[sense| otherwise

We will show that
J, 1 = BHow(leavesOnGround(now) = 0,7, Sy).

To further show that every policy the action believes will bring about the goal actually
does, note that J, u = B(Sp,Sp), and so (since there are no abnormality fluents) also
J, 1 = MPB(Sp,So). So the agent has no false beliefs initially, and in particular, any
policy that the agent believes works must actually work starting in the situation denoted
by So.

Suppose that

ja H }: B(‘Sv SO)
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Ysa = {AgentTurn(do(a, s)) = a = pass,
leavesOnGround(do(a, s)) =

n
[[a = rake A (n + 1 = leavesOnGround(s))] V

[a = drop A (n = leavesOnGround(s) + 1)] V

[(a # rake A a # drop) A n = leavesOnGround(s)]],
leavesOnTree(do(a,s)) =n = [a =drop A (n+ 1 = leavesOnTree(s))| V

[a # drop A n = leavesOnTree(s)],
view(do(a, s)) =y = [(SF(a,s) Ay = (a,1) - view(s)) V
(=SF(a, s) Ay = (a,0) - view(s))]

Ypre = {Poss(rake, s) = leavesOnGround(s) > 0,
Poss(sense, s) = True,
Poss(drop, s) = leavesOnTree(s) > 0,
Poss(pass, s) = True,
Poss(null, s) = False}.

Ysense = {SF(sense, s) = leavesOnGround(s) > 0

}U{SF(a,s) = True | «is an action function symbol other than sense}.
Yo = {exoProgram = (—AgentTurn?; (drop | pass))”,
Endo(rake) A Endo(sense) A Exo(drop) A Exo(pass) A Exo(null),
Init(s) D view(s) = ()

} U {the axioms describing lists}.

InitB(True).

Figure 5.4: Axioms for the leaf-raking domain.
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(Note that s must denote an initial situation.) We want to show that
J, u = CanAlwaysGet(exoProgram, leavesOnGround(now) = 0, m, s).

First, it’s easy to see that 7 will always recommend possible actions — the environment
can’t take leaves off the ground, so if the last sensing action showed leaves were on the
ground, then leaves are still on the ground, and the action denoted by rake is possible.
Furthermore, since the agent remembers its own actions and sensing results it will always

know what 7 recommends.

Next, note that there are some natural numbers n and m such that
J, 1 = leavesOnGround(s) = n A leavesOnTree(s) = m.

It can be shown that, starting from s, it will always eventually be the agent’s turn. In
fact, it will always be the agent’s turn in at most m + 1 steps, because the environment
can only avoid passing the turn to the agent while there are still leaves on the tree. That

is, we can get the following:

J, = Vp, s'. [ExoOption(exoProgram, p, s) A OnPath(m, p, s,s")] D

741 3ay, ..., ax. OnPath(m, p, s,do([ay, . . ., ax),s')) A

AgentTurn(do([ay, . .., ax],s"))

Therefore, the agent will eventually have performed 2 x (n+m+ 1) actions. If the results
of all sensing during those 2 X (n + m + 1) actions was always positive, then the agent
would have performed the action denoted by rake n +m + 1 times, which is not possible,
since there were at most n + m leaves that could potentially be raked. Therefore, the
agent must have got a negative sensing result at some point, at which point it would

correctly believe that the goal of leavesOnGround(now) = 0 was satisfied. O]

Note that in this example the agent does not believe that any sequential plan will
achieve the goal, since any finite sequence of actions may be too short to rake away all
the leaves. Though we do not consider it here, the policy described in the proof could be
represented syntactically with something like an FSA plan (Hu and Levesque, 2010; Hu,
2012). We leave that to future work. Also note that a similar result can be shown with
a modified domain with infinitely many leaves on the tree, so long as the environment

program has them fall at a slower rate than the agent can rake them away and sense.



CHAPTER 5. ENVIRONMENT PROCESSES AND KNOWING HOW 162

5.6 Discussion and related work

As has been mentioned, Kelly and Pearce (2015) had suggested a notion of belief like
ours (though without plausibility) in their section on future work. That follows a line of
work (outside the situation calculus) in distributed systems and multi-agent epistemic
logics, where what occurs is constrained by a protocol that agents may know (see e.g.
Halpern and Fagin, 1989; Fagin et al., 1995; Pacuit and Simon, 2011; van Lee et al., 2019).
Protocols and plausibility have been combined in a few frameworks, though apparently
not with the same purpose as ours. For example, van Benthem and Dégremont (2010)
treated protocols only as semantic objects (sets of histories) and did not discuss how to
formally specify them. Halpern and Moses (2004) introduced belief and plausibility only

for the purpose of reasoning about counterfactuals.

A general approach in Al for representing exogenous activity is to embed the re-
sults of possible (implicit) exogenous actions within the outcomes of non-deterministic
endogenous actions (e.g., Kuter and Nau, 2004). We argue that explicitly representing
exogenous actions and the program controlling them can allow for some domains to be
more naturally described. Reactive synthesis does involve explicitly modeling the activity
of the environment (Pnueli and Rosner, 1989), sometimes with constraints on what the
environment can do expressed using a temporal logic (see, e.g., Chatterjee et al., 2008;
Bloem et al., 2014; Camacho et al., 2018; Aminof et al., 2018), but this line of work has

not featured plausible beliefs.

Our notion of Legal™ situations makes use of a ConGolog program to specify a subset
of a situation tree (the situations that can be reached from the root by following the
program). Another way to describe a subtree of situations was given by Pinto (1998),
who suggested a collection of predicates for describing constraints on the occurrences of
events in “legal” situations. Yet another option is to use the non-Markovian precondition
axioms of Gabaldon (2011), which allow for the possibility of executing an action to

depend on more than just the current state.

Knowing how has been studied in both philosophy and artificial intelligence. There
are surveys by Gochet (2013) and Agotnes et al. (2015). We now turn to considering how

our work fits in this area. A common distinction is how we’ve incorporated plausibility.

A closely related work that we’ve already mentioned is (Lespérance et al., 2008), from
which we take how we model the interaction between the exogenous and endogenous
process using prioritized concurrency. They used “knowledge” in a metalogical sense
(i.e., what is known to the agent is what the action theory entails), and did not consider

plausibility or belief revision. Furthermore, as they note their approach to knowing-how
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does not support iterative plans, unlike the earlier work (Lespérance et al., 2000) which
our approach generalizes.

The joint ability of a group of agents has also been considered in the situation calculus,
including in work by Ghaderi and collaborators (Ghaderi et al., 2007; Ghaderi, 2011).
Note that their definition of a joint ability operator JCan involves (potentially false)
beliefs, like our definitions of KHow and KHow,, and also universal quantification over
policies. They do not specifically discuss how joint ability behaves when the group has
only one agent. We leave it to future work to investigate the exact relation between their
joint ability operator and our knowing-how operators.

Another related approach is De Giacomo et al.’s (2010) “GameGolog” language, which
allows for describing which agent has control over which aspects of non-determinism in
a program. De Giacomo et al. describe properties (e.g. that a group has a strategy to
achieve a goal) using a language based on the p-calculus. However, they did not deal with
plausibility or revising beliefs, and as they note, actions are fully observable and there

aren’t sensing actions.

Also working in the situation calculus, Xiong and Liu (2016) considered strategies
in a multiagent setting with partial observability of actions (though agents know how
many actions occurred). In spite of introducing a “true belief” operator they made very
little use of it, and none of their four alternative definitions of individual ability (p. 1325)
requires that the goal can actually be made true (but just that the agent believes it).
They also did not consider plausibility or revising beliefs.

Alur et al. (1997, 2002) proposed alternating time temporal logic (ATL), which ex-
tends the branching-time temporal logic CTL with a parameterized operator ((A)), where
Ais a set of agents. The formula ((A))¢ means that the group A has a collective strategy
that ensures ¢ is satisfied (note that ¢ is not a final goal, but a formula that can describe
temporally extended properties). ATL does not include operators for knowledge or be-
lief, but alternating-time temporal epistemic logic (ATEL) extends ATL with knowledge
operators (van der Hoek and Wooldridge, 2003). Many other variants of ATL have been
studied in the literature. There is a logic called “ATL with plausibility” (Bulling et al.,
2008), but the purpose of plausibility there seems rather different from ours; Bulling et al.
were concerned with making such plausible assumptions as requiring “the agents to play
only Nash equilibria, Pareto-optimal profiles or undominated strategies”.

The requirement in Lespérance et al.’s (2000) CanGet; operator (and our CanGet
operator) that the agent knows what actions the policy recommends is much like how
a uniform strategy in a game with partial information must select the same move at all

nodes in the player’s information set (van Benthem, 2001, p. 230). Uniform strategies
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have often been considered in the literature on knowing how (e.g., Jamroga and van der
Hoek, 2004; Fervari et al., 2017).

Our definition of knowing how to does not try to distinguish between what is caused
by the agent and environment. For example, if the agent can predict that the sun will
rise, and tell when it has risen, then we may say that the agent knows how to achieve
having the sun being up. Other approaches are possible. Consider the “see to it that”
(stit) operator of Belnap and Perloff (1988). To say that agent “saw to it that ¢” requires,
roughly speaking, that there was a choice the agent made which guaranteed ¢, and that
when that choice was made, the agent could have done something different which wouldn’t
have guaranteed ¢.

Naumov and Tao (2019) proposed a modal logic with separate modalities for knowl-
edge and knowing-how, each of which was indexed with an “uncertainty parameter”. This
parameter does not appear to be very closely related to our notion of plausibility, though,
as they considered that it “represents the precision with which the agent can determine
the position (state) of the whole system in an arbitrary metric space”. Naumov and Tao
were concerned with handling examples such as whether a self-driving truck knows how
to avoid a collision, depending on the precision of the truck’s radar in estimating the
speed of other vehicles.

The approach proposed in this chapter has defined knowing-how in a situation-
dependent way, following Lespérance et al. (2000). In contrast, Wang (2018) was con-
cerned with capturing the following intuition (p. 4422):

Knowing how to achieve a goal may not entail that you can realize the goal
now |...] a broken-arm pianist may still know how to play piano even if he
cannot play right now [...]

To deal with this, Wang proposed a modal logic with a knowing-how operator Kh(, )
that means that the agent can achieve ¢ whenever 1) is true. The truth of Kh(1), ¢) does
not depend on the state in which it is evaluated (in particular, it doesn’t matter if ¢ is cur-
rently true). If in this chapter’s framework it were desired to have a situation-independent

knowing-how operator, one could be defined with something like the following:
KHow' (¢, ) & Vs. (Legal™ (exoProgram, s) A 1[s]) D KHow(p, s).

However, that KHow’ operator does not allow for what the agent knows how to do to

change over time. A more interesting operator might be

KHow" (1), 0, s) % Vs’ O s. (Legal* (exoProgram, s') A 1[s']) O KHow(yp, s').



CHAPTER 5. ENVIRONMENT PROCESSES AND KNOWING HOW 165

which intuitively says that henceforth (starting from s) the agent can achieve ¢ from any
point where v is true.

Before concluding, it’s worth noting that a motivating example for McCarthy’s orig-
inal work on circumscription (McCarthy, 1980) was the “missionaries and cannibals”

problem, another river-crossing problem similar to the fox-chicken-grain one we discussed.

5.7 Conclusion

We have presented two main contributions in this chapter. First, we presented an ap-
proach to modeling defeasible belief in the situation calculus where the accessible situa-
tions over time are constrained to be reachable by following a ConGolog program. This
allows for representing what the agent believes the environment is doing (and that some
alternatives are more plausible than others), and for the agent to change or retract such
beliefs. Second, our new definition of knowing how to achieve goals, made in terms of
belief, takes into account both how beliefs may be false and the running of exogenous
processes. These beliefs can also be changed or retracted in response to observations.

We also considered sequential plans in some detail. As mentioned previously, future
work could relate syntactic representations for non-sequential plans — e.g., FSA plans
(Hu and Levesque, 2010; Hu, 2012) or robot programs (Lin and Levesque, 1998) — to
knowing-how in our setting.

Another future direction would be to address the computation of beliefs and plans.
Kelly and Pearce (2015) described how regression could be used with a knowledge oper-
ator defined with a view fluent in some cases. Also, in their future work section, where
they suggested using a ConGolog program to constrain the accessibility relation (as we
have done), they also suggested that a technique of Fritz et al. (2008) — which compiles
an action theory and ConGolog program into a new action theory whose legal situations
are those reachable by the program in the original theory — could be used to simplify the
problem of computing entailed beliefs. Note that the possibility of compiling away the
program does not imply that it’s not useful to use programs as a high-level specification
for exogenous behavior.

The relation between plausibility and knowing-how could be further explored. One
might want to consider a more robust version of knowing-how, where the agent does
not just think that a policy will succeed in the most plausible cases, but also in others
that aren’t too implausible (similar to “fault-tolerant planning” (Jensen et al., 2004;
Domshlak, 2013)). Similarly, for some outcomes of the policy to be certain could be

useful. For example, one might want a policy that will most plausibly cause the coffee
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cup to be clean and in the cupboard, and is certain not to break the cup.

We have only been modelling the beliefs of one agent (though other actors can be
considered to some extent by representing their behavior as ConGolog processes). Future
work could include generalizing the approach to a truly multi-agent setting. Finally, while
we have (as in the rest of this thesis) taken a qualitative approach to uncertainty where
plausibility levels give rise to categorical beliefs, the general idea of using a program to
describe the environment would also be compatible with probabilistic representations of

uncertainty.



Chapter 6

Conclusion

6.1 Summary and contributions

In this thesis, we have seen how abnormality fluents can be used in situation calculus
action theories to describe the plausibility of various aspects of dynamic environments —
states, actions, and processes. In each case, this supports belief change about that aspect,
as once the more plausible options are ruled out, the agent will believe the next most

plausible options. We now review what each of the last three chapters has accomplished.

Specifying plausibility levels We extended the framework of Shapiro et al. (2011)
by assigning plausibility levels to initial situations by counting abnormalities (also taking
into account priorities). We introduced a form of action theories, called TAATS, that
specify what the agent considers plausible by employing the counting of (unchanging)
abnormalities along with only-knowing. We saw that this approach has advantages over
alternatives like Schwering and Lakemeyer’s (2014) “only-believing” operator. We also
considered a couple variants of IAATSs. First, we considered DIAATS, which don’t require
that the agent know the true dynamics axioms, and showed that those mostly satisfied
the AGM postulates. With MAATSs we explored allowing abnormality fluents to change

over time.

Changing beliefs about domain dynamics We studied how to represent the plausi-
bility of aspects of actions — their effects, preconditions, and sensing results. We proposed
a number of patterns to follow when writing successor state axioms that refer to abnor-
malities in an TAAT, so as to control the extent to which beliefs about action effects would
change as a result of observations. We also presented results about using regression with

[AATSs, and in particular showed how believed SSAs (and not just those written in the
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action theory) could be incorporated into the regression procedure.

Environment processes and knowing-how We followed an idea from Kelly and
Pearce (2015) and considered a model of belief in which the agent knows that a ConGolog
program is running. We showed that by having the program refer to abnormalities, some
executions could be believed more plausible than others. Finally, we generalized the
definition of knowing-how from Lespérance et al. (2000) to accommodate false beliefs
and exogenous actions occurring according to a program. We also considered a version

of knowing-how that was limited to goals that could be achieved by sequential plans.

6.2 Future work

In this section we suggest a few ways the approach of this thesis could be extended or

applied.

6.2.1 Plausibility in other frameworks

We’ve been considering plausibility within the framework of the situation calculus. How-
ever, as was pointed out in Chapter 3, the approach of specifying plausibility levels by
counting abnormalities was first used in a modal temporal logic (Klassen et al., 2017).
Future work could look at applying the approach in other formalisms, like the fluent
calculus (Thielscher, 1998).

6.2.2 Belief update

We have not focused very much on belief update in this thesis. Recall that belief update
(as opposed to belief revision) involves belief change in response to changes in the world
as opposed to merely gaining information (Katsuno and Mendelzon, 1991). Shapiro et al.
(2011) did have results about belief update, but that basically just amounted to the agent
knowing what the effect of so-called “update actions” were. Delgrande and Levesque
(2012) had the following to say about belief update (in reference to their own framework,
but which could have been said of Shapiro et al.’s):

Katsuno-Mendelzon style update doesn’t make much sense from the point of

view of the agent. Recall that in update, a formula ¢ is recorded as being true

following the execution of some action, and the task is to determine what else

is true. In our framework, an agent is fully aware of the effects of the actions

it believes that it has executed; and so its beliefs are simply the image of its
previous beliefs under this intended action.
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On the other hand, another way of thinking about belief update was suggested by
Boutilier (1996). In his framework, exogenous events occur, unobserved by the agent,
and the agent then updates its beliefs after making an observation. The way the agent
updates its beliefs is by considering what events could have occurred to result in the
observation, and what other changes those events would have produced. Since we’ve also
considered exogenous events in this thesis, it seems like a natural direction for future

work to translate Boutilier’s conception of belief update into the situation calculus.

6.2.3 Elaboration tolerance and applications to fiction

FElaboration tolerance (McCarthy, 2003; Amir, 2001; Parmar, 2003) is a desirable property
of formalisms. McCarthy (2003) wrote that

A formalism is elaboration tolerant to the extent that it is convenient to
modify a set of facts expressed in the formalism to take into account new
phenomena or changed circumstances. [..| The simplest kind of elaboration is
the addition of new formulas.

An obvious way to look at elaboration tolerance in the setting of this thesis would be to
ask, for example, whether can we easily add new sentences to the agent’s knowledge base
Ykg in an TAAT to change what the agent believes in desired ways. However, we can look
deeper, and ask if by adding new sentences to kg we can get a desired modification to
the plausibility ordering (not just to what’s most plausible).

One potential application of this is for interpreting fiction. What’s plausible in fiction
is somewhat based on what’s plausible in reality, but there can be differences. Philoso-

phers have suggested that when people read fiction, they

1. “carry over” knowledge of the real world into the fiction (when the story does not
contradict it) so as to conclude, for example, that there are no purple gnomes in
the world of Sherlock Holmes (see, e.g., Lewis, 1978; Ryan, 1991; Rapaport and
Shapiro, 1995; Badura and Berto, 2018);

2. and may also bring in knowledge of what other stories are like — for example, a
fictional dragon may be presumed to breathe fire (see, e.g., Lewis, 1978; Walton,
1990; Bonomi and Zucchi, 2003; Abell, 2012).

The examples are from Lewis (1978).

So, suppose we start with a plausibility ordering on possible situations induced by
Ykg. This ordering describes what the agent thinks is plausible in reality. We might want
to modify that ordering (by modifying Ykg) to get a plausibility ordering to describe
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what’s plausible in fiction (for use in an automated story understanding system, for
example). We still want to retain much of the information from kg (so as to carry over
knowledge about the real world).

We'll discuss an example to illustrate how this might work. Let’s say the agent is
reading a (thus-far) realistic story. We may want it to assume that pigs don’t talk,
because they don’t in reality — but the agent should be able to revise its belief about pigs

in the story depending on what it reads next. If Xxg already contains a sentence like
(Pig(z, now) A =Aby(z, now)) D —Talks(z, now) (6.1)

(because the agent allows for pigs implausibly talking in reality) then perhaps that can be
used as-is for describing fictional plausibility as well.! If however Yxg contains sentences
that don’t admit exceptions (e.g., if it categorically states that pigs don’t talk), then to
get the desired plausibility ordering for fiction we may have to modify those sentences.

One approach would be to replace a sentence of the form VZ. ¢(Z, now) appearing
in kg with a “defeasible copy” VZ. =Ab;(Z, now) O ¢(Z, now). This was proposed by
Klassen et al. (2017, §4.1), and can be thought of as a first-order version of the trans-
formation suggested by Amir (2001, §4.2) from a propositional theory to the “associated
abnormality theory”. Parmar (2003, §11.4) also suggested a similar first-order version.
(Note that Amir and Parmar were not using cardinality-based minimization of abnor-
malities, though.)

To illustrate, if we started with the sentence Pig(z, now) D —Talks(x, now) we might
replace that with —Ab;(z, now) DO [Pig(xz, now) D —Talks(x, now)|] which is logically
equivalent to Equation 6.1. That is perhaps a more surgical change than just adding a
sentence to the knowledge base, but it might be automated (though there is a choice to
make regarding how many arguments the new abnormality predicate should take).

Finally, consider that in certain genres of fiction, talking pigs are not surprising. In
general, we may want to overrule axioms in Ykg. Note that if every sentence in kg is
(or is rewritten to be) of the form —Ab;(now) O ¢;(now) (where Ab; does not otherwise
appear in the knowledge base), then the effect of each can be cancelled by adding another
sentence saying Ab;(now) is true. That affords a degree of elaboration tolerance in a
simple way (Amir (2001) and Parmar (2003) made similar points). We leave further

investigation to future work.

LOne might want to change the priority of the abnormality.



Appendix A

Dual theories and the AGM

postulates

The purpose of this appendix is to prove this proposition from Chapter 3:

Proposition 3.5.4.
Let > be a DIAAT. For any model J of ¥, and any ground situation term o = do(g, So),
all the AGM postulates other than (AGM=x5) are satisfied when revision is defined.

We will prove each of the postulates separately in §A.2. First, we’ll establish some
preparatory results. The proofs in this appendix closely parallel those given by Shapiro
(2005, §3.4.6) and Shapiro et al. (2011, Appendix A), which however used slightly different
definitions and didn’t apply to DIAATS.

A.1 Preparatory results

Let’s first note that the agent will be certain that revision actions don’t change the world.

Lemma A.1.1. Let 0 = do(g, Sp) be a ground situation term, and suppose that « is a

revision action for ¢. For any ¢ € L,ow,

Y EVs. B(s,0) D (w[s] = ¢[do(a, 5)])

Proof. Recall that a revision action is defined so that in accessible situations it doesn’t
change the value of any fluent. That it doesn’t change the truth of a sentence in Lo

can be proved by induction. O

Note that this differs from the analogous result by Shapiro (2005, Lemma 3.4.12),

which was that revision actions (as defined there) actually don’t change the world.
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The next lemma (similar to Shapiro, 2005, Lemma 3.4.28) says that if a most plausible
accessible situation gives the same sensing results for a revision action « as the actual
situation the agent is in, then after performing « that situation (technically, its successor)

is still a most plausible accessible situation.
Lemma A.1.2. Suppose « is a revision action for ¢. Then
Y EVs Sy, s [SF(a,s) ASF(a,s’) AMPB(s', s)] D MPB(do(«, s'), do(a, 5)).
Proof. Let J be a model of X, and p any variable assignment such that
JE (So E s) ASF(a, s) ASF(a, s") AMPB(s', s)

(if there are no such variable assignments, then the result is trivial). By the definition of
revision actions, the agent is certain that the action denoted by « is possible, so using the
SSA for B (which J makes true) it can be seen that J, u = B(do(«, s), do(«, s)). We need
to additionally show that the situation denoted by do(«, s’) is one of the most plausible
among the accessible situations from the situation denoted by do(«, s). That follows from
s’ denoting one of the most plausible accessible situations from the denotation of s (the
plausibility of the situation denoted by do(a,s’) is the same as that of the situation
denoted by ). O

So, the only way a most plausible accessible situation can cease to be a most plausible
accessible situation is if it becomes inaccessible.

Finally, the next lemma (similar to Shapiro, 2005, Lemma 3.4.30) shows that if ¢
is not disbelieved before a revision action for ¢ is performed, then afterwards any most
plausible accessible situation is the successor of a situation that was previously one of

the most plausible accessible situations.

Lemma A.1.3. Suppose « is a revision action for ¢. Then

S b= Vs 3Sp. (SF(a, s) A —Bel(—, s)> 5
(vs". MPB(s”, do(a, s)) O 3s’. MPB(s, 5) A (s” = do(a, 5)) A gb[s’}).

Proof. Let J be a model of 32, and py any variable assignment such that

J,u1 = (s 3So) ASF(a, s) A —~Bel(—¢, s).
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We want to show that
J, 1 EVs". MPB(s”,do(a, s)) D 3s’. MPB(s',s) A (s = do(a, s)) A ¢[s]

Let 12 be any variable assignment agreeing with py, except possibly on s”. Suppose that
J, pe = MPB(s”,do(a, s)). We now want to show that

J,pe = 3s". MPB(s', s) A (s = do(a, s')) A ¢[s'].

From the supposition that J, us = MPB(s”,do(c, s)) and the SSA for B we can conclude
that there must be a variable assignment u3, agreeing with py except possibly on s’ such
that

T, 13 | (8" =do(a, s')) AB(s', s) A Poss(a, s) A (SF(c, s) = SF(a, 8'))

Furthermore, because « is a revision action for ¢, we can conclude that J, us = (SF(a, s') =
¢[s']) and so J, u3 = ¢[s']. So all that remains is to show that J, us = MPB(s', s).

We have supposed that J, u3 = —Bel(—¢, s), so there is a variable assignment fu4,
agreeing with p3 except possibly on s*, such that J, uy = MPB(s*, s) A ¢[s*]. Because « is
a revision action for «, it can be seen that J, uy = B(do(«, s*),do(a, s)). However, since
we had supposed that s” (which denotes the same thing as do(«, s’)) denoted one of the
most plausible situations accessible from the situation denoted by do(c, s), it must be
that the situation denoted by do(c, s’) is at least as plausible as the situation denoted by
do(a, s*), and so the situation denoted by s’ must be at least as plausible as the situation
denoted by s*. In conclusion, J, 4y = MPB(s', s). ]

A.2 Proving the AGM properties

We now are ready to prove the AGM postulates. As previously mentioned, the proofs are

very similar to the corresponding ones by Shapiro (2005) and Shapiro et al. (2011).

Proposition A.2.1 (AGMzx1). Under the conditions of Proposition 3.5.4, K (o * ¢) is
deductively closed.

Proof. This follows from belief being deductively closed. O]
Proposition A.2.2 (AGM=x2). Under the conditions of Proposition 3.5.4, ¢ € K(o*¢).

Proof. Let « be a revision action for ¢. We want to show that, given that J = SF(«, o),
then J = Bel(¢,do(a, 0)).
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If there are no accessible situations in do(a, o), the result follows trivially. Other-
wise, let p be any variable assignment such that J, 4 = MPB(s”, do(«, 0)). We will have
established what we want to show if we get that J, u = ¢[s”]. By the SSA for B (Equa-
tion 2.11), we have that there is some variable assignment u' (agreeing with p except

possibly on s') such that
J,1 EB(s',0) A (s" =do(a, s")) APoss(a, s') A (SF(a, s') = SF(«, o))
Since J = SF(«, o), we can simplify that to get
J,1 EB(s',0) A (s" =do(a, s")) A Poss(a, s') A SF(a, s')

Since « is a revision action for ¢,

J, 1 = Poss(ar, ') A [SF(a, 8') = @[] A /\ VZ. F(Z,s') = F(#,do(a, s))
F' a fluent
Therefore, J, i = ¢[s]. Finally, recalling that J, 4/ = s” = do(«, §'), and that p/ and p
agree on s”, by Lemma A.1.1 we get that J, u |= ¢[s"]. ]

Proposition A.2.3 (AGMx3). Under the conditions of Proposition 3.5.4, K (o * ¢) C
o+ ¢.

Proof. Suppose that ¢ € K(o*¢), i.e., J |= Bel(y,do(a, 0)). We want to show that ¢ €
o+¢,ie. T = Bel(p D,0). If T |= Bel(—¢, o), then it’s trivial that J = Bel(¢ D 1, 0)).
Otherwise, let u be a variable assignment such that J, u = MPB(s', o) A¢[s']. Since o*¢ is
defined, J |= SF(a, 0), and since « is a revision action for ¢ and s is an accessible situation
where ¢ is true, J = SF(a, s’). Therefore, by Lemma A.1.2, J = MPB(do(«, §),do(«, 0)).
Furthermore, since J = Bel(1),do(a, 0)), we get that J = ¢[do(«, s")]. The result that
J E ¢[¢'] follows from Lemma A.1.1. O

Proposition A.2.4 (AGM=x4). Under the conditions of Proposition 3.5.4, if =¢ ¢ K (o),
then o + ¢ C K(t x ¢).

Proof. Suppose that —~¢ & K(o), i.e., 3 &= —Bel(—¢, o). Now, consider any ¢ € o + ¢,
i.e., any ¥ such that J = Bel(¢ D v,0). We want to show that J | Bel(, do(a, 0)).
Because ¢ * ¢ is defined, J = SF(«, o), and so by Lemma A.1.3 we can conclude that

J EVs". MPB(s",do(a, 0)) D 3s". MPB(s',0) A (8" = do(a, o)) A ¢[s'].
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From the assumption that 3 = Bel(¢ D 1, o) we can replace ¢ with ¢ in that expression:
JEVs". MPB(s”,do(a, o)) D 3s'. MPB(s',0) A (s” = do(a, o)) A [s'].

That is, any most plausible accessible situation from the situation denoted by do(c, o)
has a predecessor where 1 is true. The result follows from the action denoted by « not
changing the value of ¢ (Lemma A.1.1). H

Recall that the postulate (AGM=x5) is not claimed by Proposition 3.5.4. Therefore,
the next postulate to prove is (AGMx6).

Proposition A.2.5 (AGMx6). Under the conditions of Proposition 3.5.4, if = ¢ = 1,
then K (o x ¢) = K(o *x1).

Proof. Since revision by both ¢ and v is defined, the corresponding revision actions are
such that the agent is certain in o that each is possible, senses whether ¢ or v is true,
and doesn’t change the value of any fluent. The result follows from the agent believing

that logically equivalent sentences are equivalent. O]

Proposition A.2.6 (AGM=xT7). Under the conditions of Proposition 3.5.4, K (o * (¢ A
V) € (0% ) + 9.

Proof. Suppose that « is the revision action for ¢ and agay is the revision action for
¢ A 1. Now, suppose that v € K(o * (¢ A)), i.e., T = Bel(y,do(apry, o). We want to
show that v € (o%¢)+1, i.e., T |= Bel(¢) D 7,do(ay, 0)). Suppose for contradiction that

there is a variable assignment p; such that

3.1 = MPB(s”, do(ag, o)) A (4 A =) (A1)

Since o * ¢ is defined and «y is a revision action for ¢, we can conclude that there is a

variable assignment ps (agreeing with uy except possibly on s’) such that

31" = (8" = do(ag, s) AB(s',0) A @ls]

Furthermore, by Lemma A.1.1, J, us = (¢ A —y)[¢]. By applying Lemma A.1.1 again, we
also get that J, us = —y[do(apny, )], since o is also a revision action. If we can show
that J, po = MPB(do(agny, ), do(apay, o)), this will complete our proof by contradicting
the assumption that J = Bel(v, do(agry, 0)).

Since J, 2 = B(s',0) A (¢ A Y)[s'] and agny is a revision action for (¢ A 1), w
get that J, us = SF(agny, s’). Furthermore, because the revision operator is defined,
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J = SF(agny, 0). Since agay is a revision action, J, pg = Poss(apny, 8'), s0 it can be seen
using the SSA for B that J, s = B(do(agny, s'), do(apry, 0)). We next show that the
situation denoted by do(agny,s’) is as plausible as any other situation accessible from
the situation denoted by do(apny, o).

Suppose that there is another variable assignment p3 (agreeing with s except possibly

on s*) such that

3,13 1= B(s™, do(agry, )

Then there is a variable assignment p4 (agreeing with 3 except possibly on s*) such that

3,11 F (5 = do(agns, s)) AB(s%,0) A (6 A )]

Then it can be seen that J, s = B(do(ay, s*),do(ay, 0)). From Equation A.1 we know
that the plausibility of the situation denoted by do(ay, s*) is not greater than that of the
situation denoted by s” (which is the same situation denoted by do(ay,s’)). Therefore,
the plausibility of the denotation of s* is not greater than that of the denotation of &,
and so the plausibility of the denotation of do(agny,s*) is not greater than that of the
denotation of do(apny, ). O

Proposition A.2.7 (AGM=x8). Under the conditions of Proposition 3.5.4, if =) ¢
K(o*¢), then (cx¢) + ¢ C K(o*pA1).

Proof. Let ay and agay be the revision actions for ¢ and ¢ A v, respectively. Suppose
that =) € K (o % ¢). Now consider any 7y € (0 * ¢) + 1, i.e. any v such that J |= Bel(y) D
7v,do(ay, 0)). We want to show that v € K (o * ¢ A1), i.e., T = Bel(vy,do(agny, 0)).

Consider a variable assignment p; such that
’J, 1251 ): MPB(S”, dO(Oéqg/\w, 0'))

(if there is no such assignment, then no situation is accessible from do(agny, o), so the
result that v is believed trivially follows). We want to show that J, u; = 7[s"]. There

must be a variable assignment pg, agreeing with p; except possibly on s, such that
3,12 = (8" = do(agny, 8)) AB(s',0) A (¢ A Y)[S]
By (two applications of) Lemma A.1.1, J, s |= (¢ A ¢)[do(ay, s")]. If we can show that

j? H2 }: MPB(dO(Oé¢, 8/)7 dO(Oé¢, O')),
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that would mean that J, s = y[do(ay, )] (because 1) D 7 is believed in the situation de-
noted by do(ay,0)). That J, 1o |= y[do(agny, )] would then follow by (two applications
of) Lemma A.1.1, and we would be done.

To show that, recall the premise that =) ¢ K (o * ¢), i.e., J = ~Bel(—¢, do(ay, 0)).
Therefore, there is a variable assignment usz, agreeing with ps except possibly on s**,
such that

J, ps = MPB(s™,do(ag, o)) A [s™]

So, (recalling Lemma A.1.1) there must be a variable assignment p4, agreeing with s

except possibly on s*, such that

J,pa b= (87 = dofag, s7)) AB(s™,0) A (¢ A )[s7]

Since agpy 1s a revision action and revision by (¢ A1) is defined in o, it can be seen that

J, e |= Bldo(agny, ), do(agay, o))

It follows that the situation denoted by do(agay,s*) is not more plausible than the
situation denoted by do(agny,s’) = s”. Hence, the denotation of do(ay, s*) = s** is not
more plausible than the denotation of do(c, s’). So the denotation of do(ay, s') is one of

the most plausible accessible situations from the situation denoted by do(ay, o). O
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