
AN ADAPTIVE SOLUTION FOR INTERNET
SERVICES’ SUPPLY CHAINS

Torsten Hahmann1
Jan Möller1

Philipp Sommer1
Bernhard Peissl2

Alexander Wahler2
1 Hasso-Plattner-Institute for IT Systems Engineering,

University of Potsdam, Germany
{torsten.hahmann|jan.moeller|philipp.sommer}

@hpi.uni-potsdam.de
2 NIWA Web Solutions, Vienna, Austria

{bernhard.peissl|wahler}@niwa.at

Abstract. Industry has adopted service orientation paradigm over the last years.
Automatic service discovery, dynamic service composition and process
adaptability will bring SOA to its full potential. The integrated research project
“Adaptive Services Grid” realizes a platform providing such automation
functionalities based on semantics. Enhancing SOA with semantics has a
massive impact on the development methodology for the overall system.
In this paper a business use case for dynamic supply chains demonstrates how
to disentangle the interdependencies between service identification, WSDL
interface descriptions and their semantic specifications. The paper shows a
step-by-step approach for developing such applications on top of adaptive
service-oriented architectures. Minimized dependencies between work tasks will
allow efficient work distribution among domain experts and service engineers.

1. Introduction

Today’s European telecommunication industry is increasingly competitive
with many new entrants to the market and a challenging regulatory environment.
Along with the ongoing recovery from the technology boom-and-bust, these
factors add up to a tough business environment. Price erosion means that
providers and operators have realized that they must radically transform the way
they do business in order to reduce costs and remain competitive. At the same
time, a number of new challenges are emerging, including product innovation,
aggressive new market entrants, and the blurring of the boundary between IT
and traditional telecommunications. Companies are seeking to grow new
business while defending traditional core revenues. The industry suffers from

high manpower costs due to a lack of automation, poor time-to-market due to
inflexible business processes and poor customer service due to a lack of
integrated support systems.

Thus the industry is seeking urgently to reduce IT costs, more than 35% of
which are attributable to integration1. Furthermore, there is a focus on faster
time to market via more flexible business processes and services and a need to
reconfigure system components quickly and efficiently in order to satisfy
market needs and to provide fully integrated support systems for increasingly
sophisticated services.

On the other hand, customers are demanding integrated services, tailored to
their specific needs. The market is becoming increasingly federated due both to
regulatory pressures and to companies’ attempts to catch market opportunities
with tailored, bundled services. In this market, the number of B2B relationships
between telcos, internet service providers (ISP) and specialist content and
service providers has dramatically increased.

All these factors have led many telcos and ISPs to radically rethink the way
they operate. They have realized that the new environment requires tighter yet
more flexible management of processes and services. In this paper we present
the work in developing a B2B service framework for automated reselling of
ISPs products through the adoption of “Adaptive Services Grid” (ASG)2
platform. Focus lies on the used development process that can be applied to
application development based on semantically enhanced SOA in general and
ASG in particular.

1.1. Terminology
When speaking about services the terminology is essential. As different

meanings exist, we use the term service here on an abstract business level
describing some business capability or in a very general sense of business
transactions [3], [5], synonym to the term real-world services used by [1].
When referring to web services or elementary services, basic functionality in a
technical understanding is meant. Definitions differing slightly in scope can be
found in [3] and [26]. Nevertheless an elementary service also relates to some
business functionality, thus both denotations cannot be clearly separated. A
common understanding of services, e-services and web services in their
different contexts addresses [4]. We focus on the provisioning of products
through a supply chain process. A supply chain process in this sense covers the
delivery of business services by electronic means. On contrary an order process

1 Gartner Group, 2004
2 http://asg-platform.org, funded under the 6FP, EC Contract No. 004617

refers only to the collection of customer information relevant for service
provisioning.

2. Use Case – Reselling of ISP products

The use case we present here is an example based on the business-to-
business (B2B) wholesale model of an Internet Service Provider (ISP). The ISP
in our study specializes on products like domain registration and web hosting,
not on providing internet access. To understand requirements for a sophisticated
B2B solution a look at the existing Business-to-Customer application can be of
great avail. By analyzing the current B2C web shop3 and its underlying
provisioning system basic functionality required for the B2B model can be
identified.

2.1. Current situation
The present B2C solution based on a web shop allows ordering of domains,

emails, and web space. The ISP must provide functionality for domain
registration, operating & maintaining DNS information, web hosting
configuration, and payment bundled to end-customer products. Selection of
domain registration interfaces depends on the specific top-level domain.
Assignment of domains with .com or .org endings is governed by ICANN while
e.g. national domains are assigned by DENIC in Germany or NICAT in Austria.
Registrars accredited by the supervising organizations can register subordinate
domains. Web hosting services encapsulate interfaces for web hosting systems.
They allow allocation of web space to users while enforcing fine-grained
restrictions on data volume, traffic and email configuration.

The goal of developing a B2B solution is the reuse of already available
elementary business capabilities. The vision of an enlarged market drives the
ISP to shift the existing end-customer-centric application to a more flexible
platform that can be used through various front-end solutions operated by
resellers. Moreover, service reuse in a flexible environment reduces customer
acquisition and support costs for the ISP. The underlying internet service
provisioning system requires extension to support a more generalized Business-
to-Business approach instead of a restricted B2C application. Currently the
complexly interweaved subtasks of product ordering in the web shop and
provisioning of these products through a backend system hinders the reuse of
provisioning capabilities through varying order processes.

3 http://www.chillydomains.com

Provisioning systemB2C
web shop

external service

internal service

ISP
Figure 1: Current B2C solution

2.2. B2B solution

Market research shows that there is already a sizable demand for combining
domain registration and web hosting services. Especially the association with
peregrine products is an interesting market with growth potential. It is
anticipated that B2B customers act as resellers that integrate added-value web
hosting services (domains, web space, emails) into their existing product
portfolio (newspaper subscriptions, broadband internet, community portals). As
part of its product bundles, resellers select services offered by the ISP as free
add-ons, for bonus programs or as additional features at attractive prices. For
example a reseller may order for its customer web space at a special rate or
provide them with a domain of their choice when they decide to sign up for a
long-term internet access contract. In future only imagination limits evolving
reseller models; service provisioning must thus be highly flexible. For the
convenience of the resellers, payment services shall be offered as well. Resellers
without own billing system or not wanting to deal with payment chooses
payment options from the ISP’s service pool.

2.3. Business Requirements

The wide range of potential reseller necessitates the development of a
solution independent of resellers’ order processes and its products. The time-
consuming definition of static processes should be avoided. In order to instantly
add new resellers that can profit from ISP services provided, reseller integration
costs must be reduced to a minimum. If each joining reseller requires high
investments in order to deliver customized products, the costs would probably
be covered not adequately by expected revenues.

Generally three kinds of flexibility can be identified as necessary for
implementing the described business model:

(BR1) an interface allowing fast and cost-efficient integration of resellers with
various background and diverse products, resellers want to offer
internet services without massive changes to their own application

(BR2) resellers and/or their customers want to customize products requiring a
flexible product management and product composition; minimizing the
effort required to define/redefine product bundles

(BR3) a flexible extension mechanism to offer new elementary services
quickly to all resellers without having to manually change processes

All three types of flexibility together permit reduced time-to-market –
essential for business success. Finally business success depends heavily on the
ability to ensure maximum availability and in the consideration of quality of
services expressed as non-functional requirements that serve the ISP’s and
reseller’s goals best.

Most problematic is the fact that there is no point in time where all possible
processes can be designed beforehand. The number of possible product
combinations is out of control, static predefined processes cannot cover all
combinations within reasonable costs. Dependencies between elementary
services will lead to exponentially growing efforts. We derived following
technical requirements:

(TR1) separation of order processes from supply chain processes

(TR2) on-demand composition of supply chain processes to cover all possible
product combinations and integrate new services automatically

(TR3) adaptive processes for higher availability and consideration of new
services at run-time

3. Implementation approaches

Service-oriented computing is a paradigm trying to solve the business
requirements BR1 and BR3. By providing high-level interfaces that abstract
from concrete operations service-oriented architectures aim to loosen coupling
(compare to (TR1)) between components on a service provider’s part from those
on the service consumer’s side [6]. Services in SOA should be reusable and
replaceable; it focuses on the scalability for “Internet-scale provisioning and use
of services and the requirement to reduce costs in organization to organization
cooperation” [14]. The service consumer must compose services in her
applications manually. The reference model for SOA does not demand
semantics allowing automated service composition [14]. But SOA is only a first
step towards rapid application development [10], other research projects like the

Web Service Execution Environment (WSMX) tackle the questions of dynamic
selection and semantic web services invocation using ontology mediation [8],
[15]. The ASG project goes beyond dynamic service selection [18] by offering
advanced service composition capabilities [10] – merging advantages of the
workflow and the AI approach to allow on-demand workflow generation based
upon AI planning algorithms [16], [17], [20].

3.1. Adaptive Services Grid

 “The goal of Adaptive Services Grid (ASG) is to develop a proof-of-
concept prototype of an open platform for adaptive services discovery, creation,
composition, and enactment.” [2]. It extends the concept of service oriented
architectures by formal semantics for service specifications as WSMX does. The
ASG reference architecture explains in detail how ASG achieves automatic
composition of semantic web services [10]. Basically a user sends a request
containing initial state and desired goals to the platform. The life-cycle of the
service provisioning triggered by the user request spans three sub-cycles.

Figure 2: ASG service provisioning life-cycle [10]

In the planning sub-cycle ASG uses reasoning to discover appropriate
services from the service landscape to fulfill user requests. We must distinguish
between two ASG-specific types of services. Atomic services encapsulate a
coherent piece of semantically described functionality whereas composed
services are created at runtime and combine functionality of arbitrary atomic
services. Due to the lack of machine-processable semantics in earlier
architectures composition occurs manually or semi-automatic at design time
[22], [23]. Formal semantic specifications enable the ASG platform to be highly
adaptable to changes in the service landscape. New services can instantly been

selected when composing processes. In the context of Internet services supply
chains the reseller expresses its goals and ASG composes provisioning
processes on-demand – resolving (TR2) through a very flexible mechanism.

Semantic service capabilities are bound to concrete atomic services in the
agreement sub-cycle. Atomic services are selected by evaluating quality of
service requirements expressed by the reseller or ISP, e.g. execution costs.
Negotiation allows contracting with candidate services resulting in service level
agreements (SLA). The outputs are BPEL-compliant process definitions
executable with any workflow engine supporting BPEL standards [25].
Enactment sub-cycle uses a BPEL-engine to invoke negotiated service
implementations. Endpoint references identify atomic service instances
deployed on the ASG grid service infrastructure [27] according to WS-
Addressing standard [6]. Monitoring allows detection of failures and violations
of service level agreements contracted with atomic services. In such cases, re-
negotiation of elementary services with equivalent capability is triggered. If no
alternative services fulfill demanded requirements, re-planning takes place in
order to adapt the initially planned process to service availability [10]. E.g. in
case of failure of a selected payment service provider another provider can be
chosen in our use case.

Dynamic service composition and adaptability (see (TR2), (TR3)) satisfy the
business requirements (BR1) and (BR2) requesting flexible ways to create
supply chain processes for varies resellers and product combinations. Overall
availability of business services offered also increases significantly. Earlier
approaches to automatic service composition left execution possibilities for
composed service open [17], [19], [20]. However, benefits of automatic service
composition for application integration are of limited practical use without
facilities covering service execution [2], [30]. Compared to traditional
architectures, SOA and WSMX, the ASG platform is clearly ahead in the fields
of automated and dynamic service composition, adaptability and overall
flexibility. These aspects are most important when choosing a platform suiting
our business requirements extracted in part 2.3.

4. Development of an ASG-based solution

A roadmap for application development in the context of ASG must regard
interdependent aspects like domain ontology, elementary service identification,
semantic service specifications, service groundings and service implementation.

The development process starts with clearly defined business requirements of a
proposed application. Following artifacts are expected as results:

1. Interface definitions (WSDL) of elementary services and their
implementation as atomic services for the grid infrastructure

2. Domain ontology describing concepts of the use case that can be referred
to in the semantic service specifications and their representation as XML
schema for use in WSDL

3. Semantic service specifications for service discovery and their service
groundings for mapping semantic parameters to WSDL parameters

The description of the service landscape is not a goal of the methodology
itself, but can be of great help through the whole development process. It
evolves over time, beginning with rudimentary capability descriptions.
Successively domain model, concrete in- and output data and informal pre- and
post-conditions supplement the service landscape. A consistent service
landscape enhances knowledge transfer between participants – as it collects
knowledge from both domain experts and service engineers. In particular, it
proved helpful for the steps ontology definition and semantic service definition.

business
requirements:

goals

identify business
capabilities & abstract

data flow

define service capabilities & data flow

consider service reuse
find

adequate
granularity

use internal/
external services

evaluate techn.
interfaces (WS?)

define
service interfaces

develop
domain model
for scenario

WSDL

find candidate
compositions

describe
dependencies

between services implement
Atomic Services

implement
functionality

wrap external
service

service
impl

derive
one common

scenario ontology

transform ontology
to XML schema

specify services
formal semantic

ground services by
connecting WSDL

with semantic
parameters

3.b

1
2

3.a 3.b

54.a

6

7
tool support available

ontology

XML
schema

semantic
service

specification
& grounding

4.b

5*
alternative options

ASG specificsemantics service functionality

Figure 3: Methodology applied in the dynamic supply chain use case

When developing an ASG-based solution two parts of the methodology
must be strictly separated. The first part containing step 1 and 2 in Figure 3 is
common to all service oriented architectures: main task is to define service
capabilities in an appropriate granularity. Service reuse advocated by SOA
presses us to take preexistent services into consideration. How primary business
services and shared services are discovered and high-level interactions identified
is approached in [11]. SOA methodology heavily depends on the business
circumstances. We concentrate on the steps specific to an ASG-based solution,
starting with the defined service capabilities as result of step 2 (see Figure 3). We
separate it into two independent tasks: (I) defining and implementing service
functionality (3.b, 4.b) and (II) providing formal semantics for dynamic service
composition (3.a to 6). Finally we must ground semantic specifications to
service implementations, see step 7 in Figure 3.

4.1. Service identification
Here the term service identification covers the detection of well-shaped

functionalities elementary services provide. Most important is the balance
between highly reusable functionality and strongly de-coupled software
components containing inseparable logic. Granularity and composability of
individual services must be evaluated according to specific business
requirements. Distinct service types are characterized by its interfaces (web
service vs. legacy interface) and its service provider (internal vs. external). In
the case of internet services many services like web hosting or national payment
options are provided by the ISP itself. All services for domain registration and
some of the standardized payment methods are offered using external providers.
Nevertheless, even external services offering standardized web service
interfaces cannot be simply plugged into ASG. Services use specific properties
and reference IDs in ASG and require specific deployment descriptors – the
term atomic service refers exactly to such an adopted service. It can encapsulate
external web services, use legacy interfaces or implement business logic itself.

Figure 4: abstract elementary service description for service landscape

Service identification results in the description of services in a textual
representation, defining functionality, input-/output messages (parameters can
be mutually exclusive) by high-level means as seen in Figure 4. These short
descriptions must be supplemented by detailed documentation of external or
otherwise preexisting functionality. Foreseeable exceptions leading to final

states or meaningful intermediary states (processable in renegotiation or
replanning) must be captured as well.

4.2. Service functionality
The interface descriptions containing input and output of services must be

refined with precise data types. Outputs of this task are service operations with
respective messages as WSDL definitions [7]. From our use case development
we recommend using an iterative approach to model data types with UML class
diagrams and concrete WSDL messages. Service engineers give feedback when
describing WSDL messages to the domain engineering experts, who likewise
return feedback to the service engineers. Data types should cover different
services with similar functionality, e.g. services of two payment providers
should use common data types like “CreditCard” or “AmountOfMoney”
encouraging reuse. With regard to ontology definition such general concepts
have to be identified. In [8], [23] and [28] methodical concepts for ontology-
based knowledge management are discussed in-depth. The resulting service
landscape expresses input and output parameters as complex data types defined
by the corresponding domain model. Some parameters not mentioned in the
service landscape from step 2 are added because of requirements of external
service providers, e.g. one of our payment services asks for the end customer’s
IP-address in order to prevent credit card fraud.

Figure 5: concrete in- and output messages added to elementary service description

4.3. Semantics
The methodology for defining ASG-specific semantics goes beyond tasks

suiting service-oriented computing and web service development in general. It
concentrates on the artifacts ontology and semantic service specifications. For
tackling the semantics part, the rudimentary service landscape as described in
4.1 and the domain model developed in step 3.b are required as inputs.
For transforming the domain model to a corresponding ontology, dependencies
between services must be taken into account. Such conditions (consisting of
preconditions and positive as well as negative effects) cannot be expressed in
the definitions of messages and endpoints written in WSDL, thus conditions
must be part of the formal semantics. By trying to compose services manually

(step 3.a in Figure 3), domain experts can identify conditions that limit services
to a specific execution order (see example composition in Figure 6). Our
experience indicated that even a small selection of service compositions helps
tremendously in uncovering a high percentage of all semantic dependencies
between services. For much larger service pools, this must be investigated
further. The process of “playing service composer” also helps detecting
similarities in conditions between interchangeable services. Only the right level
of abstraction for specifications will allow on-demand negotiation with service
instances based on a specific set of given preconditions and desired effects.

Figure 6: exemplary service composition

In the ontology data types from the domain model usually map to concepts,
associations between concepts are expressed as relations. Complex data types
must be decomposed to reusable concepts and relations between concepts. In the
long term ASG aims to use WSMO as framework for specifying ontologies and
web services semantically [21]. Since groundings are not yet definite in WSMO
[12], we did not use WSML for our semantic service specifications. Thus, we
formulate our semantic service specifications and ontology in the object-
oriented knowledge-base language Flora2 [29] – comparable to previous ASG
prototype implementation efforts [2], [13].

For our use case an open platform (also referred to as marketplace) allowing
everybody to publish services using their own ontologies is a goal too zealous
and not fitting investigated business needs. We assume one common ontology
whose concepts are shared by all services. This pragmatic approach is more
likely to guarantee seamless interaction between services as the ISP controls all
artifacts: semantic service specification, service interfaces and ontology.
Devising an integrated ontology will ensure consistent data flow during process
enactment. However, an integrated ontology usually consists of several partial
ontologies describing aspects of the application domain.

Figure 7: preconditions and effects added to elementary service description

In ASG each atomic service is assigned exactly one semantic specification
and one service grounding. A semantic service specification can contain several
sets of conditions that are used for reasoning on semantic services during
planning sub-cycle (see Figure 2). Negotiation with potential atomic service
instances rests upon a single set of conditions, not upon the whole semantic
service specification. More than one semantic service specification can contain
congruent sets of preconditions and effects.

 ASG

ex
ec

u
ti
o
n

la
ye

r

B
2
B

in
te

rf
ac

eReseller

B2C web shopcu
st

o
m

er external service

internal service

ISP

semantic
request

Figure 8: B2B solution using ASG as adaptive service platform

5. Conclusion

Our business requirements demanded high flexibility for combining
elementary services to various end customer products. We have reached that
goal by using the dynamic service composition, negotiation and enactment
features of ASG. All ASG-based solutions require the artifacts discussed in our
methodology – we have given them a suitable and efficient order and minimized
feedback loops and identified precise document-oriented work steps.

The methodology presented here refines the method discussed in [13] by a
gradually approach to defining the service landscape. It has been applied in our
use case successfully. The development of the use case showed that the
perceived complex dependencies between different artifacts must be
disentangled in order to provide ASG-users with a methodology of practical use.
Our artifact-driven method defines specific steps to develop all aspects of our
scenario – both, WSDL-interface descriptions and their semantic specifications.
This pragmatic approach comparable to a cookbook appeared much more usable
when all parts of an ASG use case are controlled by a single stakeholder. It is
important to understand that service landscaping is a process covering all phases
of the development. The service landscape is neither a fixed artifact that can be
defined in a single subtask nor a primary output.

We have identified three tasks for developing an ASG-based solution: (I)
service identification and (II) service functionality definition/implementation –
both generally required for service-oriented computing and (III) specification of
semantics in order to allow dynamic selection and composition of services to
complex processes. All platforms using semantic web services must devise
methods for defining semantic specifications, ontologies, and service groudings.

The method we applied leaves out mediation – an acceptable limitation when
targeting a closed platform addressing rapid application development.

6. Outlook

We have already followed most of the steps for a selected set of services –
registration services and payment services. For these services a complete service
landscape has been developed and we have produced all necessary artifacts:
WSDL-interfaces, atomic service implementation (wrapping external services),
semantic service specifications and partial ontologies. The ongoing work
focuses on adding more services, especially web hosting services and on setting
up a prototype system for demonstration purposes.

In future, two types of services must be distinguished: product-supply-
services and services for cross-cutting-concerns as payment, authorization and
notification. These must be generalized to avoid exponential extension of
conditions applying to product-supply-services. E.g. all services involving
monetary costs must ensure proper payment. However, trusted resellers using
in-house billing can order these products without direct payment. How such
complex scenarios can be modeled with ontology and conditions is left open. A
solution could be the use of non-functional properties e.g. for describing
payment requirements. In further research the questions of ontology mediation
as well as testing correctness and completeness of semantic services must be
tackled.

Here we looked at the development of one special use case scenario.
However, in the future it must be analyzed how the proposed methodology can
be applied to use cases with similar requirements. Especially larger applications
might demand a formalized document-flow to support distributed work of
several specialists.

7. Acknowledgement

We like to thank all ASG partners, in particular niwa Web Solutions, Vienna
and all participants of the common Vienna ASG C6/C7 work component
meeting in November 2005 for their valuable input. We especially appreciate
the guidance and feedback of our supervisors Guido Laures, Harald Meyer and
Peter Tröger at Hasso-Plattner-Institute Potsdam (HPI) and we want to thank all
contributors to the ASG student-project in the HPI bachelor program for the
good cooperation.

8. References

[1] Akkermans, H., Baida, Z., Gordijn, J., Peña, N., Altuna, A., Laresgoiti, I. 2004:
Value webs: Using ontologies to bundle real-world services. IEEE Intelligent
Systems - Semantic Web Services, 19(4) 57-66

[2] ASG consortium 2005: Adaptive Services Grid, www.asg-platform.org
[3] Austin, D., Barbir, A., Ferris, C., Garg, S. 2004: Web services architecture

requirements, W3C working group note, http://www.w3.org/TR/wsa-reqs
[4] Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H. 2004: A Shared Service

Terminology for Online Service Provisioning, Proceedings of ICEC 2004. 1-10
[5] Berry, L. 1981. Perspectives on the retailing of services. In Stampfl, R. W. and

Hirschman, E. C., editors, Theory in Retailing: Traditional and Non-traditional
Sources.

[6] Box, D., Curbera, F. (editors) 2004: Web Services Addressing (WS-Addressing),
http://www.w3.org/Submission/ws-addressing/

[7] Chinnici, R., Gudgin, M., Moreau, J.-J., Schlimmer, J., Weerawarana, S. 2003:
Web Services Description Language (WSDL), Version 2.0,
http://www.w3.org/TR/2003/WD-wsdl20-20031110/

[8] Grüninger, M., Fox, M.S. 1995: Methodology for the desing and evaluation of
ontologies. Workshop on Basic Ontological Issues in Knowledge Sharing at
IJCAI 95.

[9] Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C. 2005: WSMX - A
Semantic Service-Oriented Architecture, Proceedings ICWS 2005. 321-328

[10] Jank, K., Laures, G. 2005: Reference Architecture: Requirements, Current
Efforts, and Design. Adaptive Service Grid Deliverable D6.V-1.

[11] Jones, S., Morris, M. 2005: A Methodology for Service Architectures. OASIS
draft 26.Oct.2005.

[12] Kopecký, J., Roman, D. 2005: D24.2v0.1. WSMO Grounding, WSMO Working
draft. http://www.wsmo.org/2005/d24/d24.2/v0.1/20050119/#grounding_wsdl

[13] Laures, G., Meyer, H., Breest, M. 2005: An Engineering Method for Semantic
Service Applications. First International Workshop on Design of Service-
Oriented Applications (WDSOA 05) at ICSOC 05.

[14] MacKenzie, C., Laskey, K., McCabe, F., Brown, P., Metz, R., OASIS 2005:
Reference model for service oriented architectures. Working draft 09.Sept.2005.

[15] McIlraith, S., Son,T.C., Zeng, H. 2001: Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web. 16(2) 46-53

[16] Meyer, H. 2005: Entwicklung und Realisierung einer Planungskomponente für
die Komposition von Diensten, Diploma thesis at HPI.

[17] Milanovic, N., Malek, M. 2004: Current Solutions for Web Service
Composition, IEEE Internet Computing. 8(6) 51-59

[18] Paolucci, M., Kawamura, T., Payne, T., Sycara, K. 2002: Semantic Matching of
Web Service Capabilities. ISWC 2002, 333–347

[19] Pistore, M., Bertoli, P., Barbon, F., Shaparau, D., Traverso, P. 2004: Planning
and Monitoring Web Service Composition. Proceedings of AIMSA 2004. 70-77

[20] Rao, J., Su, X. 2005: A Survey of Automated Web Service Composition
Methods. SWSWPC 2004. 43-54

[21] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M.,
Polleres, A., Feier, C., Bussler, C., Fensel, D. 2005: Web Service Modeling
Ontology. Applied Ontology, 1(1) 77-106

[22] Sirin, E., Hendler, J., Parsia, B. 2002: Semi-automatic Composition of Web
Services using Semantic Descriptions, Web Services: Modeling, Architecture
and Infrastructure workshop in conjunction with ICEI 2003.

[23] Staab, S., Studer, R., Schnurr, H.P., Sure, Y. 2001: Knowledge processes and
ontologies. IEEE Intelligent Systems. 16(1) 26-34

[24] Talib, M.A., Yang, Z., Ilyas, Q.M. 2005: A framework towards Web services
composition modeling and execution. Proceedings of IEEE EEE05 international
workshop on Business services networks. 51-59

[25] Thatte, S. (editor) 2003: Business Process Execution Language for Web
Services, Version 1.1.

[26] Tidwell, D. 2000: Web services – the web’s next revolution, IBM tutorial.
www.ibm.com

[27] Tröger, P., Böhme, H., Polze, A.: ASG Services Grid Infrastructure. Adaptive
Service Grid Deliverable D5.III-1.

[28] Uschold, M. 1996: Building Ontologies: Towards a Unified Methodology.
Proceedings of BCS SGES 96.

[29] Yang, G., Kifer, M., Zhao, C., Chowdhary, V. 2005: Flora-2 User's Manual,
http://flora.sourceforge.net/docs/floraManual.pdf

[30] Zeng, L., Benatallah, B., Lei, H., Ngu, A., Flaxer, D., Chang, H. 2003: Flexible
Composition of Enterprise Web Services, Electronic Markets - The International
Journal of Electronic Commerce and Business Media. 13(2), 141-152

