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Abstract

Through contact algebras we study theories of mereotopology in a uniform
way that clearly separates mereological from topological concepts. We iden-
tify and axiomatize an important subclass of closure mereotopologies (CMT)
called unique closure mereotopologies (UCMT) whose models always have or-
thocomplemented contact algebras (OCA) an algebraic counterpart. The notion
of MT-representability, a weak form of spatial representability but stronger than
topological representability, suffices to prove that spatially representable com-
plete OCAs are pseudocomplemented and satisfy the Stone identity. Within the
resulting class of contact algebras the strength of the algebraic complementation
delineates two classes of mereotopology according to the key ontological choice
between mereological and topological closure operations. All closure operations
are defined mereologically iff the corresponding contact algebras are uniquely
complemented while topological closure operations highly restrict the contact
relation but allow not uniquely complemented and non-distributive contact al-
gebras. Each class contains a single ontologically coherent theory that admits
discrete models.

1 Introduction

Qualitative Spatial Reasoning (QSR) studies how the space surrounding us can be
described using only qualitative aspects, i.e. without reference to some metric, and
how we can efficiently automate reasoning with such descriptions. QSR has been a
very active area of interdisciplinary research with interest from Artificial Intelligence
(AD), Cognitive Science, Formal Logic, Geographical Information Systems, and Spa-
tial Databases — just to name a few. Extensive introductions and overviews of QSR
can be found, e.g., in [9; 10; 46]. Mereotopologies theories — which model only
topological (of ‘connection’) and mereological (of ‘parthood’) aspects of space — are
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foundational within QSR. In the last two decades many first-order theories of mereo-
topology have been proposed for QSR, which has in turn led to fruitful systematic
analyses exploring the ontological assumptions and the entailed logical properties of
different sets of axioms for mereotopological theories [see 7; 19]. Closure Mereo-
topology (CMT: [7]) is widely accepted as the most restricted mereotopology that
does not contain any controversial ontological assumptions. Though some specific
extensions of CMT have been studied in great detail, the question of what consti-
tutes a mereotopology that adequately represents physical space has been largely
neglected. In particular, the existing work on specific mereotopologies suggests that
still new combinations of axioms could yield yet unexplored theories of closure me-
reotopology. We give strong evidence why this is not the case. We do so by focusing
on the spatial representability of the models of a mereotopology. Though many con-
crete embeddings of mereotopological models in topological spaces have been con-
structed [see 3; 11; 12; 13; 14; 15; 16; 44], the question of whether these topoloigcal
representations adequately reflect the intended structure of physical space has not be
addressed!. As it turns out, the key in this pursuit is the necessary strength of the
complementation operation. We show that assuming the existence of some kind of
uniquely defined complements and requiring a weak form of spatial representability
restrict the algebraic structure arising from mereotopologies to an extent that only a
few particular theories remain. Only two distinct minimal classes of ontologically
coherent mereotopologies (we define C-closure in that regard) are conceivable — dis-
tinguished by the presence or absence of unique complements. Our analysis further
identifies the algebraic properties that correspond to the various closure operations
and other ontological assumptions of the mereotopologies.

For our investigation we treat mereotopology algebraically as first proposed by
[39; 41] and [15; 17]. The systematic studies of algebraic counterparts2 of me-
reotopologies in [28; 44] offer many insights that help us understand the different
mereotopological theories and the relationships amongst them. The study of alge-
braic theories of mereotopology is, for example, most convincing in separating the
mereological component from the topological component as pointed out by [32]. We
are particularly interested in Unique Closure Mereotopology (UCMT) and Unique
Infinitary Closure Mereotopology (UGMT), subclasses of CMT of which all models
have algebraic counterparts. The class UCMT includes many prominent mereotopo-
logies such as the theories of Whitehead [47], of Clarke [8], the Region-Connection
Calculus (RCC: [25; 36]), and its generalization (GRCC: [32]) which admits dis-
crete models. The theory UCMT is introduced in Section 2; it assumes closure
under (binary) sums and intersections just as CMT does, but additionally assumes
closure under complementation with respect to a universal region and that all these
closure operations are unique. In Section 3 we show that the algebraic counterparts
of UCMT are orthocomplemented contact algebras (OCA). Thus, the spatial repre-
sentability of UCMTs can be studied through the spatial representability of OCAs
— a task we are much more comfortable with. In Section 4 we look at spatially rep-
resentable OCAs, but in lack of a complete definition of spatial representability we
resort to a weaker form thereof, MT-representability. We can show that every MT-
representable complete OCA is pseudocomplemented and satisfies the Stone identity,
i.e., is a SPOCA. For this result, we rely on the lattices being complete. However, this
is only a minor restriction since we can reasonably expect all spatially representable
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contact algebras to be complete. For discrete MT-representable mereotopologies, it
is no restriction at all.

Section 5 contains our key contribution: We identify algebraic conditions that
are necessary and sufficient for the closure operations sums, intersections, comple-
ments, and universal to be defined mereologically or topologically in SPOCAs. In
particular, we show that the ontological choice between a mereological or topologi-
cal complementation in a mereotopology is reflected in the algebraic structure: The
algebras of mereologically closed mereotopological models are uniquely comple-
mented and thus distributive while those of topologically closed models are only
pseudo- and orthocomplemented but potentially non-distributive. This confirms how
central complementation is in mereotopology as suggested by [40]. We identify
the two minimal classes that emerge as MT-representable and ontology coherent (a
notion defined later) algebraic structures from those two classes of SPOCAs in Sec-
tion 6. The first class, namely weak Boolean contact algebras (WBCA), defines
all closure operations mereologically; though only the more restricted generalized
Boolean contact algebras (GBCA) are guaranteed to have intuitive spatial represen-
tations. The second class, namely SPOCAs with contact defined as xCy < x £ y*,
defines all closure operations topologically. These two classes are also the weakest
ones that could axiomatize space as intended by Whitehead [47]. However, neither
of them satisfies all conditions discussed by Whitehead. As a further consequence
of our work, we can verify algebraically that the assumptions of Whiteheadean me-
reotopology as outlined in [20; 35] are not compatible with the connectivity axiom
(Con) VxC(x,—x). Ways to overcome this problem are also discussed in Section 7.
Furthermore, we prove that no ‘true mereotopology’, that is no MT-representable
MT-closed mereotopology, with discrete models can exist. Only if we allow coher-
ently closed (C-closed) instead of MT-closed mereotopologies, exactly two theories
(amongst all combinations of mereological and topological definitions of each of the
closure operation sum, intersection, complement, and universal), namely the GBCAs
and the SPOCAs with xCy < x £ y*, admit both continuous and discrete models.

On a different note, our work demonstrates that the duality between algebraic
structures and topological spaces is not a mere theoretical exercise only of mathe-
matical interest, but helps us understand the diversity of theories of qualitative space
and select an axiomatization according to any given set of desirable ontological as-
sumptions. Our methodology is outlined in Fig. 1: We leverage the knowledge about
duality between certain lattices and topological spaces to the understanding of me-
reotopology. The models of all mereotopologies satisfying the discussed closure
assumptions can be represented algebraically in a straightforward manner. With
the introduced notion of MT-representability we are then able to reduce the con-
tact algebras resulting from UCMTs to a much more restricted set of contact al-
gebras, namely SPOCAs, that includes all spatially representable and ontologically
coherent algebraic counterparts to models of UCMT. Two examples of such contact
algebras arising from UCMTs, which are representative of the only two C-closed
MT-representable contact algebras with discrete models, are given in Fig. 1. The
figure also describes their logical counterparts as well as the common spatial inter-
pretation of their models.
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2 Mereotopologies with complements

We only consider so-called equidimensional mereotopologies, i.e. unsorted mereo-
topological theories whose domain elements can be interpreted as being of a single
uniform dimension. For example, the domain elements could be interpreted all as 1D
regions (such as time intervals or intervals on a line) as in Allen’s Interval Algebra
[1], or as spatial regions which are all 2D or all 3D, or as spatio-temporal regions of
either all 3D or all 4D. Explicit multidimensional mereotopologies, i.e. mereotopo-
logies with multiple sorts or explicit dimensions such as proposed in [21; 23; 24; 29],
are beyond our scope here.
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Figure 1 An overview of our approach. The correspondence be-
tween a logical theory of mereotopology and its model on the left-
hand side are fairly standard. Representation results between some
classes of algebraic structures, specifically lattices, and topological
spaces as indicated on the right-hand side are known for some spe-
cific cases. In order to establish a subset of the logical theories of
mereotopologies that have spatially representable topological in-
terpretations, we need to, first and foremost, establish a correspon-
dence between the models of CMTs and contact algebras. Since
we cannot achieve this in general (indicated by the dashed arrow),
we resort to the restriction of CMTs to UCMTs as shown in the
second row. Every model of a UCMT has an algebraic counterpart
in the class of orthocomplemented contact algebras (OCAs) as in-
dicated by the solid arrow in the middle. As the second crucial step
(the right dashed arrow in the top row), we try to reduce the class
of OCAs to a smaller class that still includes all spatially repre-
sentable contact algebras. This is a subclass of the Stonian pseudo-
and orthocomplemented contact algebras (SPOCAs), which are at
least MT-representable. However, as indicated by the uni-directed
solid arrow on the right, not all SPOCA s are spatially representable
or even topologically representable.
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All equidimensional mereotopological theories consists of a single parthood and a
single contact relation that satisfy the axioms (P.1)—(P.3) and (C.1)-(C.3) [45]. Such
theories are commonly referred to as ground mereotopologies (MT) [7]. If C and/or
P are not explicitly present or are not primitive relations, they still form an alternative
set of primitives in a logically equivalent mereotopology. Throughout the paper we
assume that any two regions with identical extensions of parthood and contact are
identical. This follows immediately in our restriction to a single class of regions of
equal dimensions.

Throughout the paper we assume standard first-order logic with equality and all
logical sentences as implicitly universally quantified.

(P.1) P(x,x) (P reflexive)
(P2) P(x,y) AP(y,x) > x=1y (P anti-symmetric)
(P.3) P(x,y) ANP(y,z) — P(x,2) (P transitive)
(C.1) C(x,x) (C reflexive)
(C2) C(x,y) — C(y,x) (C symmetric)
(C.3) C(z,x) ANP(x,y) — C(y,2) (C monotone with respect to P)

Equivalent to (C.3) is the following axiom
P(x,y) = Vz(C(z,x) = C(z,y))
Any such ground mereotopology allows defining the concepts of ‘overlap’ O,
‘underlap’ U, and ‘proper part’ PP in the following natural way:

(0) O(x,y) < 3z[P(z,x) A P(z,y)] (Overlap)
U) U(x,y) < 3z[P(x,2) AP(y,2)] (Underlap)
(PP) PP(x,y) < P(x,y) A=P(y,x) (Proper Part)

In the sequel, we take these definitions for granted in any mereotopological theory.

2.1 Closure mereotopology with unique closures (UCMT) A common require-
ment for mereotopological theories are closure operations. These require an inter-
section for any two overlapping entities and a sum for any two underlapping entities,
compare e.g. the closure meoreotopology (CMT: [7]). Here, we go beyond CMT in
three ways in order to define unique closure mereotopology (UCMT).

First, we require a greatest entity to exist, i.e. something that everything else is
a part of (UCMT.4). The existence of such a universal entity is plausible in any
restricted domain of interest, such as the earth, a specific country, building, or an
even smaller experimental domain (such as a closed ‘blocks world’ consisting of a
finite number of blocks).

(UCMT.4) VxP(x,u) (Unique universal entity)

Secondly, we require all closure operations to be uniquely defined. The universal
must be always unique by (P.2), we denote it by a constant u. If sums and intersec-
tions are unique for all pairs of entities, we can denote them by functions @ and ©.
Moreover, we need to ensure that the sum x @y is the smallest element which has
both x and y as part (‘supremum’) and that anything that overlaps the sum must also
overlap either x or y. Likewise, the intersection x ©®y is the greatest element which
is both part of x and y (‘infimum’). This is reflected in the axioms (UCMT.1) and
(UCMT.2) which also ensure P(x,x®y) and P(x ®y,x). It follows that every pair
of elements has a sum and intersection so that P(x;,x) and P(y;,y,) together imply
P(x1 ®y1,%x ®y2) and P(x; ®y1,x2 @ yz) if O(x1,y1). In the presence of (UCMT.4)
any two entities underlap, thus we do not require a conditional in (UCMT.1).
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(UCMT.1) Vz[(O(x,2) VO(3,2)) < O(xD y,z)] (Sum is supremum)
(UCMT.2) O(x,y) — Vz[(P(z,x) AP(z,y)) <> P(z,x®y)] (Intersection is infimum)

Finally, we require models not only to be closed under intersections and sums,
but also to be closed under complementation — an additional primitive unary relation
in the theory. Given that a universal entity exists, complements are a natural concept
motivated by human perception of physical space: If we are given a restricted physi-
cal space, we can easily identify the complement with respect to the universal entity.
Again, the complement shall be uniquely defined, hence we denote it by a function
©. Furthermore, the complement function shall be involutary (UCMT.5) — a rea-
sonable assumption for uniquely defined complements. Additionally, (UCMT.6) and
(UCMT.7) ensure that entities and their complement interact correctly with respect
to sums and intersections (overlap). Though & is a total function, the universal does
not have a complement (cf. UCMT.3 further down). Thus, (UCMT.6) and (UCMT.7)
do not apply to the universal u.

(UCMT.5) x=06(6x) (Complements involutary)
(UCMT.6) x#u—x®(Sx)=u (Sum of complements)
(UCMT.7) x# u— —0(x,6x) (Complements non-overlapping)

We do not restrict ¢, ®, and & any further at this point. Instead, we consider in
Section 5 two plausible definitions, a mereological and a topological one, of each of
these functions.

Contrary to the existence of a universal entity, a null entity is cognitively unde-
sirable. The null entity would be part of every entity, thus be in contact to every
other entity, but on the other side not really existent, i.e. not in contact to anything
at all. Therefore we postulate the following to ensure the cognitive adequacy of the
mereotopological theories. However, it is not an essential assumption in our work
because the algebraic counterparts of these mereotopologies explicitly introduce a
null entity. Hence our analysis extends to mereotopologies with unique closures that
allow or require a null entity such as [37].

(UCMT.3) Vx3y—P(x,y) (No null entity)
Throughout this paper we use the term UCMT in the following broad sense:

Definition 2.1 Let 91T be a consistent, unsorted first-order theory with two dis-
tinguished binary predicates C and P, two binary functions @, ©®, a unary func-
tion &, and a constant u. If 9T entails the sentences (P.1)—(P.3), (C.1)—(C.3), and
(UCMT.1)-(UCMT.7) with the definitions (O), (U), (PP), we call 91T a UCMT.

The domain elements in a model of UCMT are often called regions.

Any UCMT has a mereological component that is restricted to a closed mereol-
ogy CM where sums, intersections, complements, and the universal are unique but
is non-committal with respect to other mereotopological principles. These mereoto-
pological principles, their corresponding axioms, and the properties of the resulting
logical theories have been studied in much detail in [7; 19]. We will show later that
the requirement of unique closures including unique complements does not leave
many choices with respect to other mereotopological principles if we require spatial
representability and ontological coherence.

2.2 General mereotopology with unique infinitary closures (UGMT) Many
mereotopologies go beyond CMT by requiring sums and intersections of arbitrarily
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many — possibly infinitely many — entities to exist. Axioms postulating such infini-
tary closures or unrestricted fusions either require axiom schemas or sets or classes,
[cf. 7]. For better readability we use a set notation here; 2~ denotes an arbitrary set
of domain entities:

(UGMT.1) VZ'|Vz[3x € 27 (0(x,z)) < O(P Z ,2)]] (Unrestricted sum)
(UGMT.2) V2 [Fz[Vx € 2 (P(z,x))] — Vz[Vx € 2 (P(z,x)) < P(z, O Z)]|
(Unrestricted intersections)
A UCMT that satisfies these axioms is a general mereotopology (GMT) with
unique infinitary closures (including complements):

Definition 2.2 A UGMT is a UCMT that satisfies (UGMT.1) and (UGMT.2).

Only in Section 3.2 we will briefly discuss the subclass UGMT and how their alge-
braic counterparts yield complete lattices.

3 The algebraic structures arising from models of UCMT

We now introduce a class of algebraic structures called contact algebras and show
that the models of UCMT correspond to orthocomplemented contact algebras
(OCA) while the models of UGMT correspond to complete OCAs. First let us
define what we mean by a contact algebra. Contact algebras are not a new concept,
various classes thereof have been studied as algebraic counterparts of specific mereo-
topological theories, e.g. by [3; 15; 17; 39; 41; 44]. Our definition here encompasses
the weakest common properties:

Definition 3.1 A contact algebra (.Z,C) consists of a bounded lattice .Z which
defines a partial order < and a contact relation C that satisfies the following axioms:

(CO) 0—Cx (Null disconnectedness)
(CDhH x# 0 — xCx (Reflexivity of C)
(C2) xCy « yCx (Symmetry of C)
(C3) xCyny <z—xCz (Monotonicity)

Thus, the contact relation must satisfy the axioms of a ground mereotopology. The
axioms (C1)—(C3) are algebraic versions of the axioms (C.1)—(C.3) of MTs while
(CO) deals with the the newly introduced smallest element O that is necessary to
construct a lattice from a mereotopological model. The assumption that O is not
connected to any other entities is merely a convenient choice without deeper impli-
cations. To distinguish the contact relation in a mereotopological theory from the
contact relation in its algebraic counterpart, we write C(x,y) to refer to the former
and xCy to refer to the latter.

3.1 Relevant classes of lattices =~ Before we show how to construct the algebraic
counterparts of UCMTSs, we review the various classes of lattices necessary in our
discussions throughout the remainder of the paper. These are used to define more
restricted classes of contact algebras. Most of these classes of lattices are defined
in standard references such as [6; 26], while more specialized classes are covered
in [42]. Each class allows non-distributive models unless explicitly ruled out. The
relations between these classes of bounded lattices are illustrated in Fig. 2.

One remark upfront: Any lattice can be treated as an algebraic structure (L,-,+)
as well as a partially ordered set (L, <) with unique supremum + and unique infimum
- for any pairs of entities. We can define x <y «» x-y = x for any x,y € L. Throughout
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Boolean lattice = relatively unicompl. = pseudocompl. section-semicompl.

Stonian p-ortholaftice

p-ortholattice

/

pseudocompl. orthocompl. unicompl. relatively compl.
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[

Figure 2 Relationships between bounded lattices with varying
kinds of complementation; adapted from [27; 42]. The arrows
indicate refinement, e.g. every p-ortholattice is also a pseudocom-
plemented and an orthocomplemented lattice. These refinements
are transitive. In the case of distributive bounded lattices many of
these classes of lattices collapse.

semicompl.

the paper, we depict lattices as Hasse diagrams which are transitive reductions of the
partial order of the lattice. That means only the direct, i.e. covering, order relations
are depicted while transitive closure is implied. x <y holds if and only if there is a
path consisting of one or multiple line segments strictly leading upwards from x to y.

Definition 3.2 A bounded lattice is a structure (L,-,+,0, 1) of type (2, 2,0,0) such
that

(BO) (L,-,+) is a lattice, i.e. a+b and a-b are uniquely defined for all

a,belL;

(B1) there exists an element 1 € L so that 1-a=a (and 1 +a = 1) for all
a€el;

(B2) there exists an element O € L so that 0-a =0 (and 0+ a = a) for all
acL.

Definition 3.3 A bounded distributive lattice is a structure (L ,-,+,0, 1) such that

(DO) (L,-,+,0,1) is a bounded lattice,
(D1) the distributive law holds, i.e. a-(b+c¢) =a-b+a-cforall a,b,c € L.

The structures in the following Definitions 3.4 to 3.8 are all of type (2,2,1,0,0)
equipped with a unary function of complementation or pseudocomplementation.

Definition 3.4 A complemented lattice is a structure (L,-,+,",0,1) such that
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Figure 3 A simple p-ortholattice with orthocomplements, pseudo-
complements, and quasicomplements indicated.

(00) (L,-,+,0,1) is a bounded lattice,
(01) 4 is a complement of a,i.e.a+d =1anda-a’ =0.

Definition 3.5 An orthocomplemented lattice (short: ortholattice) is a structure
(L,-,+ ,-,0,1) such that
(00) (L,-,+,0,1) is a bounded lattice,
(O1) a* is an orthocomplement of g, i.e. for all a,b € L we have
(@) att =a,
(b) a-at =0,
(¢) a < bimplies bt <at.

Notice that orthocomplemented lattices are complemented.

Definition 3.6 A pseudocomplemented lattice is a structure (L,-, +,*,0, 1) such
that

(PO) (L,-,+,0,1) is a bounded lattice,
(P1) a* is the pseudocomplement of a, i.e. forallb e L,a-b=0 < b <a".
Definition 3.7 A quasicomplemented lattice is a structure (L,-,+,%,0, 1) such that

(Q0) (L,-,+,0,1) is a bounded lattice,
(Q1) a* is the quasicomplement of a, i.e. forallb € L,a+b=1 <= b>a™.

Quasicomplemented lattices are also known as dually pseudocomplemented lattices.

Definition 3.8 A uniquely complemented lattice (short: unicomplemented lattice)
is a structure (L, -,+ ,’,0,1) such that
(U0) (L,-,+,’,0,1) is a complemented lattice,
(U1) & is the unique complement of @, i.e. forallb € L,b+a=1and b-a=0
imply b=ad'.
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Clearly, every uniquely complemented lattice is orthocomplemented, but not nec-
essarily pseudocomplemented or quasicomplemented. On the other side, Fig. 3
gives an example of a orthocomplemented, pseudocomplemented, and quasicom-
plemented lattice which is not unicomplemented. Pseudo- or quasicomplemented
lattices do not even have to be complemented. Lattices that are both pseudocom-
plemented and orthocomplemented (and thus also complemented and quasicomple-
mented) but not unicomplemented were introduced in [30] as p-ortholattices.

Definition 3.9 A p-ortholattice is a structure (L,-,+,",%,0,1) such that

(POO0) (L,-,+,",0,1) is a quasicomplemented lattice,
(PO1) (L,-,+,,0,1) is an ortholattice.

An ortholattice is pseudocomplemented if and only if it is quasicomplemented. For a
given p-ortholattice (L,-,+,",%,0,1), the structure (L,-,+,*,0,1) is a pseudocom-
plemented lattice if we define x* = x'™. P-ortholattices in which the orthocom-
plementation and pseudocomplementation operations coincide (unlike Fig. 3) are
unicomplemented. Unicomplemented ortholattices are Boolean [5].

Definition 3.10 A Boolean lattice is a structure (L,-,+,",0,1) such that

(BOO) (L,-,+,,0,1) is an orthocomplemented lattice,
(BO1) the distributive law holds, i.e. a- (b+c¢) =a-b+a-cforall a,b,c € L.

But there are other interesting subclasses of p-ortholattices that are not distributive
and thus not Boolean. Stonian p-ortholattices were introduced in [30] to algebra-
ically capture the structure of the mereotopology of [2]. A Stonian p-ortholattice is
a p-ortholattice that satisfies the Stone identity (SPO1). Fig. 4 illustrates that not all
p-ortholattices are Stonian.

Definition 3.11 A Stonian p-ortholattice is a structure (L,-,+,% >0, 1) such that

(SPO0) (L,-,+,",%,0,1) is a p-ortholattice,
(SPO1) The Stone identity holds, i.e. (a+b)t =at-b" foralla,b € L.

Again, a Stonian p-ortholattice (L,-,+," 1.0, 1) can also be defined equivalently
as (L,-,+,* At ,0,1) using the pseudocomplementation operation if we choose
x* = x*TL. We use both structures interchangeably. The Stone identity was orig-
inally proposed by Marshall Stone as an immediate generalization of Boolean
algebras to so-called Stone lattices — pseudocomplemented distributive lattices
which satisfy the Stone identity. Several other ways of stating the Stone identity
are known, amongst them a* +a** =1 and (a-b)™ =a* -b*T". But one ver-
sion of the Stone identity, that is in distributive lattices also equivalent to those,
namely a* +a** = 1, is inadequate here since it holds for all p-ortholattices. Stonian
p-ortholattice generalize the (distributive) Stone lattices to non-distributive lattices.

Notice that the dual of (SPO1), (a-b)* = a* + b™, holds for all quasicomple-
mented lattices and, equally, (a +b)* = a* - b* holds for all pseudocomplemented
lattices. Moreover, (SPO1) and its dual hold for orthocomplements in ortholattices,
that is (a+b)* = at -b* and (a-b)* = at + b for all a,b € L if L is orthocom-
plemented [30]. Finally, it is easily verifiable that that Boolean lattices are Stonian
p-ortholattices.
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Figure 4 A p-ortholattice that violates (x-y)* = x* +y* and is
therefore not Stonian [30].

3.2 Orthocomplemented contact algebras (OCA)  We now show that all the
models of a UCMT can be viewed algebraically as contact algebras in which the
lattice is orthocomplemented?.

Definition 3.12  An orthocomplemented contact algebra (OCA) is an algebraic
structure o = (£, C) consisting of an ortholattice .Z = (L,+,-,,0,1) equipped
with a contact relation C satisfying (CO) to (C3).

The theory Toca = {L2V-L6", L2"-1L4", 01’-03’, C0-C3} axiomatizes OCAs, see
Appendix A for the axioms. Notice that OCAs are not necessarily distributive. We
only consider non-trivial OCAs which contain an element apart from 0 and 1. Now
we show how to construct an OCA from an arbitrary model of UCMT.

Theorem 3.1  Every model .# of UCMT is homomorphic to some OCA.

Proof Define the mapping g from .# with domain M into the algebraic structure
o =(£,C)=((L,+,,*,0,1),C) with L=MU{0} and 0 ¢ M as following:

L. gx)=x;

2. g(©x) =x* forall x # u;
3. g(x®y) =x-yiff xOy;
4. g(xdy) =x+y;

5. 8(u)=1;

6. xCy iff C(x,y);

7. 1 =0and 0t =1;

8. g(x®y) =0if x—0y;

9. 0+x=xand 0-x=0;

10. 0—Cx.
We now need to show that

(i) g is a homomorphism (structure preserving),
(ii) & is an ortholattice, and
(iii) C satisfies (CO) to (C3).
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(i): Itis easy to see that g is an injective function. It is a homomorphism because the
operations ©,®, &, directly correspond to *, -, 4 for all elements in M.

(ii): Since @ and ® define supremum and infimum for every pair of elements (infi-
mum is defined as O for all non-overlapping pairs), & = (MU{0},+,-,,0,1)
is a lattice with x <y <> x-y = x and thus:

(I1) x<y < P(x,y)orx=0
By (8) and (9), the lattice has in 0 a lower bound. By (5) and (UCMT.4), it
has in 1 an upper bound. Thus, .Z is a bounded lattice.
& further satisfies the properties O1(a) to O1(c) of ortholattices:
O1(a): follows because * is involutary (by UCMT.5) and (7).
O1(b): follows from x-x+ =0 by (UCMT.7) and (8).
O1(c): by (11) and (2) it suffices to prove P(x,y) — P(6y,Sx). For x =0 or
y =0, it holds trivially by (7), (9), (5), and (UCMT.4). Now suppose for
two elements x,y € M \ {0}, P(x,y) but not P(Sy,©x). Then we get a
contradiction from the following derivation:

3z[P(z,6y) A —P(z,6x)] P transitive and anti-symmetric (P.2), (P.3)
=3[Pz, 0y) A O(z,%)] (UCMT.1), (UCMT.6)
=3z,v[P(z,©y) AP(v,z) AP(v,x)]  definition of O (O)
=W[P(v,0y) AP(v,x)] P transitive (P.3)
=3W[=P(v,y) AP(v,x)] (UCMT.7), definition of O (O)
=-P(x,y) P transitive (P.3)

(iii): The contact relation C satifies (CO) by definition and (C1)—(C3) follow directly
from (C.1)—(C.3) of a UCMT.

Thus, the structure 7 = (£, C) = ((MU{0},+,-,-,0,1),C) is an OCA and g is a
homomorphism from .# into .27 O

We can obtain an analogous result for UGMT in terms of complete OCAs. We define
what it means for a lattice to be complete — a second-order property similar to the
fusion operator in UGMT:

Definition 3.13  Let (L,-,+,0,1) be lattice. It is complete if and only if it is closed
under arbitrary meets, that is

VSCLAxeL:x=][]S
A complete lattice is also complete under arbitrary joins, i.e.,
VSCLAxeL:x=)S

These so-called fusion operators Y and [] are often alternatively denoted as A and \/,
respectively. We call a contact algebra complete if its underlying lattice is complete.
Then, the following corollary immediately follows:

Corollary 3.2  Every model .# of UGMT is homomorphic to some complete OCA.

Proof With .# being a model of UGMT, it is also a model of UCMT which is
homomorphic to some OCA. By (UGMT.1) and (UGMT.2) it is complete. O

This enables us to focus on the topological representability or embeddability of
(complete) OCAs in order to study representability of all the models of UCMT and
of UGMT.
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4 Mereotopologically representable complete OCAs

The study of topological representability of algebraic structures has a long tradition
established by the seminal work by [43] on the duality between Boolean algebras
and the topological spaces now known as Stone spaces. Since then, many gener-
alizations thereof have been found. Here, we are not interested in full duality, but
rather in embeddings of OCAs (with lattices as core) in a topological space in a way
that preserves the mereotopological structure, i.e. gives point-set interpretations to
all lattice elements so that parthood and contact also have point-set interpretations
that reflect their intended spatial meaning. If an OCA has such a topological repre-
sentation or embedding, we call it spatially representable. But instead of giving a
complete definition of spatial representability, we only partially define it by giving
a few necessary conditions that must hold in a spatially representable OCA. Ev-
ery OCA that satisfies these conditions is called mereotopologically representable
(MT-representable). Then we have for all OCAs

spatially representable = MT-representable
but not its converse, i.e.
MT-representable + spatially representable

Nevertheless, by showing that MT-representable complete OCAs are pseudocom-
plemented and satisfy the Stone identity we can conclude the same for spatially
representable complete OCAs. Thus, MT-representability restricts the behaviour of
complementation in the lattice structure of the algebraic counterparts resulting from
models of UGMT. Translated into the realm of the logical theories, we essentially
show that all models of UGMTs that have some spatial representation must have an
algebraic structure whose lattice is a Stonian p-ortholattice. This defines a weak-
est class of equidimensional mereotopologies with unique closures under arbitrary
sums, arbitrary joins, and under complementation.

For this section, we assume a basic familiarity with topological spaces. A few
words on our notation: A topological space (X, T) is defined by its universe X and
its topology 7, the set of all open subsets of X. Sets are denoted by capital letters
to distinguish them from lattice elements. /(a) denotes the set that a lattice element
a is represented by. The interior, closure, and complement (with respect to X) of
a set A are denoted by int(A), cl(A), and A. Set intersection, union, and inclusion
are denoted by N, U, and C. The following set-theoretic equivalences in topological
spaces are used without further mentioning:

Lemma 4.1 Let (X, T) be a topological space. Then for all A,B C X:
int(A N B) = int(A) Nint(B) and cl(AUB) =cl(A) Ucl(B).

4.1 MT-representability = For an OCA to be spatially representable, we require
that a lattice homomorphism into a set of subsets of X of a topological space (X, 7)
exists. The lattice operations - and + correspond to operations I and LI defined over
the subsets of X. They may map to standard set intersection M and union U in the
topological space, though this is not required. Notice that as a lattice homomorphism,
h must preserve joins and meet, i.e. h(x-y) = h(x)Mh(y) and h(x+y) = h(x) Uh(y).
In particular, we must have A(x) C h(y) <= x-y =y; in other words, the lattice
order < and thus the parthood order P is preserved as subset inclusion C in the
representing topological space.
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We are now ready to define MT-representability of an OCA:

Definition 4.1 Let </ = ((L,+,-,%,0,1),C) be an OCA.

It is called MT-representable if there is some topological space (X, T) and an
injective lattice homomorphism % from L into the structure (.7,M, ) where T C X
for each T € 7 and the following hold for all x,y € L:

1. (1) =X and h(0) = &;
. int(h(x))Nint(h(y)) C h(x-y) = h(x)Nh(y) Ccl(h(x)NA(y));
. for all x # 0, int(h(x)) # h(0) = @;
. int(h(x)) Nint(h(y)) # 0 = xCy for all x € L;
. cl(h(x))Ncl(h(y)) =0=x—Cyforall x € L.

[ NS I )

Condition (1) ensures that the space is not larger than necessary, while condition (2)
ensures that the set that represents the meet of two entities differs only in bound-
aries from the point-set intersection of their representing sets. More specifically, the
representation of the meet of two entities is not smaller than the intersection of the
interiors of their representations and not larger than the intersection of the closures
of their representations. If condition (2) holds, its dual must also hold:

(2') int(h(x) Uh(y)) C h(x+3) = h(x) Lh(y) € cl(h(x)) Ucl (h(y))
Condition (3) ensures that everything apart from the zero entity has a non-empty
interior. The conditions (4) and (5) ensure that contact is adequately interpreted so
that two entities whose representations share a point are indeed in contact while if
the closures of their representations do not share a point, they are not in contact.
Finally, we know x-x= = 0 and x +x* = 1 and conclude that (x) Mh(x") = & and
h(x)Uh(x") = X. Then we deduce from Def. 4.1(2) that:

(6) int(h(x)) C h(x*) C cl(h(x))

Special version of MT-representability are representability by regular closed (or
regular open) sets or by regular sets as for the Boolean Contact Algebras (BCAs)
with x—Cy < x < y' or the Stonian p-ortholattices with x—Cy « x < y*. In other
words, lattices representable by regular closed sets of a topological space, such as
BCAs, satisfy all conditions of Def. 4.1. Key here is that conditions (2) and (4), (5)
are satisfied if we use N as M and have cl(x) = x for all x € L; (2) then simplifies
to int(h(x)) Nint(h(y)) C h(x)NA(y) C h(x) Nh(y) which is trivially true, while (4)
and (5) amount to c/(h(x)) Ncl(h(y)) # 0 < xCy which is satisfied once we define
x—Cy < x <y asin BCAs [cf. 16]. For the representation of Stonian p-ortholattices
by regular sets, we can choose xMy =xNyNint(cl(xNy)) to satisfy condition (2)
while the conditions (4) and (5) are satisfied if we define A(x) NA(y) # 0 < xCy [cf.
2]. Now we can prove the first property of MT-representable complete OCAs:

Theorem 4.2 A MT-representable complete OCA is pseudocomplemented.

Proof Suppose & = ((L,+,-,*,0,1),C) is a MT-representable complete OCA that
is not pseudocomplemented. Then there must exist a lattice element x € L with
two or more distinct but incomparable meet-complements xl ,-- X € L. We have
X- x Ofor 1 <l<nbutf0ranyz ksothat1 <i k<nandz7ékne1therxL <xk
nor x{- > x;i-. Then h(x) Nh(x;") = @ = h(x) Nh(x}) while neither h(xi) C h(xk )
nor h(x; ) C h( ). By completeness of the lattice, there exists a unique sum x* € L
SO thatx Z{xﬂl <i<n}.
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We will now show that (x) NA(x") = h(0) by contradiction. Suppose this is not
the case, i.e., that 2(x) Nh(x*) 2 2(0). Then there exists a set z that is a subset of both
h(x) and h(x*). By Def. 4.1(3) it has an interior int(z) # O that is also a subset of
both i(x) and h(x'). Because h(x1) C Y {int(h(xi"))|1 <i < n}, this open set int(z)
must be in one of the int(A(x;")). Then int(z) C i(x;) for some i since int(A) C A
for all sets A. But then int(z) C h(x-x;") for some i, a violation of our assumption
that x- x;- = 0. Hence, by x* > x;* for all i and x - x* = h(0) the lattice element x* is
a pseudocomplement of x.

Furthermore, for an infinite ascending chain of meet-complements x; there must
exist by completeness a greatest one, namely its sum Y {x;} which is by definition
the pseudocomplement of x € L. (|

The restriction to complete lattices essentially shifts the focus from UCMT to
UGMT. Notice, however, that all discrete models of UCMT are trivially complete.

Now we prove that in a MT-representable OCA the Stone identity must also hold.
First, recall that a pseudocomplemented ortholattice is also quasicomplemented,
which also applies to contact algebras defined over those lattices. In the following,
we utilize the fact that MT-representable complete OCAs are quasicomplemented to
prove that they satisfy the Stone property. We exploit the fact that (x) — h(x™)
is an interior mapping in the topological sense for a quasicomplemented OCA given
condition 2 of Def. 4.1 [cf. 30], i.e.,

h(x*) = int(h(y)) +)

This is well known for Boolean lattices which are representable by the regular
open sets of a topological space. More generally, it can be justified by consider-
ing that by the definition of a quasicomplement, x* is the smallest entity so that
x+xt = 1. We have then h(x* +x*1) = h(x" +x) = h(x")UR(xT) =h(1) =X
which is an open set in every topological space.

Analogously, h(x) — h(x**) is a closure mapping in the representation of a pseu-
docomplemented OCA given condition 2 of Def. 4.1, i.e.,

h(x™) = cl(h(y)) (*)
We further need the following result from [30]:

Lemma 4.3 Let (L, +,-,*,,0,1) be a p-ortholattice. Then we have
1. a* = (at)*
2. att = (a)TT

We are now in the position to prove the Stone identity for MT-representable, quasi-
complemented OCAs:

Theorem 4.4 A MT-representable OCA &7 = ((L,+,-,,7,0,1),C) satisfies
(x-y)Tt =xTt.y"* forall x,y € L.

Proof Suppose &/ = ((L,+,-,~,7,0,1),C) is a MT-representable quasicomple-
mented OCA. Let x,y € L denote two arbitrary lattice elements. We prove the two
directions (x-y)*T Cxt*.y™* and (x-y)*™ D x* . y™ T individually.
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First (x-y)™* Cx™t.y™* follows from

h((x-y) ™) = int(h(x-y)) +)
Cint(cl(h(x)) Ncl(h(y))) Def. 4.1(2)
= int((x™") NA(y™)) *)
= int(int(h(x™) NA(Y™™))) int(int(A)) = int(A)
= int(int(h(x™)) Nint(h(y*™))) Lemma 4.1
= int(h(x"") NA(™TT)) +)
C h(x .yt Def. 4.1(2)
=h(xt-yt) Lemma 4.3

For the other direction, (x-y)™* D x™*.y"* suppose (x-y)**t 2 xt*.yt+,
Then A((x-y)™") 2 h(x*" - y™") and there must exist a non-empty set z so that
h(z) C h(x™- ++) buth ) € h((x-y)™). By Def. 4.1(3), we know that int(h(z))
is non-empty; hence we assume

int(h(z)) Cint(h(x™t-yTT)) (assumption)

while int(h(z)) Z int(h((x-y)™T)) is contradicted by the following computation:

int(h(z)) Cint(h(x™t-y™T)) (assumption)

Cint(cl(h(x™T)NA(y™™))) Def. 4.1(2)
—int(Cl(imt(h() Nint(h() ()

C int(cl(h(x-y))) Def. 4.1(2)

= int(int(cl(h(x-y)))) int(int(A)) = int(A)
th(lnt( ((e-3)™)) *

= int(h((x-y)"")) (+)
=int(h((x-y)TT)) Lemma 4.3

++
O

With 4 being an injective lattice homomorphism, we conclude (x-y)*™™ =xTt.y

This leads us to the definition of SPOCAs as a subclass of OCAs which contains all
complete OCAs that are MT-representable. SPOCAs can be axiomatized algebra-
ically by the theory TspocaU {L2V-L6", L2""-1L4", O1°, 02°, O3, PC1, PC2’, and
PC2”, S, C0-C3}, see Appendix A for the axioms and see [48] for more explanations
and a reduction of this non-minimal theory.

Definition 4.2 A Stonian pseudocomplemented and orthocomplemented contact
algebra (SPOCA) is a structure ((L,-,+,%,,0,1),C) so that

1. (L;-,+,%,0,1) is an ortholattice;

2. (L,,+,7,0,1) is a quasicomplemented lattice;
3. (a+b)t =a" b foralla,b e L;

4. C satisfies (CO) to (C3).

The following corollary summarizes our result of this section:

Corollary 4.5 A MT-representable complete OCA is a complete SPOCA.
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As a consequence, from now on we can focus our attention to SPOCAs without
worrying that other spatially representable classes of contact algebras may be over-
looked. The only case we have not accounted for are strictly non-complete lattices.
It is however unlikely that any such class is of relevance for a spatially representable
mereotopology.

5 Closure operations in SPOCAs

In this section, we give a mereological and a topological definition of each of the
closure operations sum, intersection, complement, and universal; closely adhering to
the definitions presented in [7]. We investigate whether each of the four closure op-
erations are defined in either (or in both) ways in general SPOCAs. For those mereo-
logical or topological closure operations that are not entailed, we identify equivalent
algebraic properties. Surprisingly, very few such additional properties are necessary;
the necessary ones primarily arise from complements being defined mereologically
or topologically. If we define complements mereologically, the arising SPOCAs are
distributive, while defining complements topologically allows SPOCAs whose un-
derlying Stonian p-ortholattices are non-distributive. In the later case, the contact
relation must be more restricted. The resulting two main types of SPOCAs are ex-
plored in detail in Section 6.

Generally we expect each of the closure operations to be defined at least mereo-
logically or topologically. But from an ontologically sound theory of mereotopology,
we expect further that all closure operations are defined consistently, e.g. either all
are defined mereologically or all are defined topologically. We use the following
terminology, the axioms follow shortly:

Definition 5.1 A UCMT is M-closed iff it satisfies M-Iycyr, M-Sycmr, and
M-Cycur-

Definition 5.2 A UCMT is T-closed iff it satisfies T-Iycyr, T-Sycmr, and
T-Cycmr-

Definition 5.3 A UCMT is T’-closed iff it satisfies T-Iycyr, T-Sucmr, and
T-Cycmr.

A UCMT is then coherently closed (C-closed) if it is defined in one of those three
ways:

Definition 5.4 A UCMT is C-closed iff it is M-closed, T-closed, or T’-closed.

Ideally, the closure operations can be defined mereologically and topologically at the
same time. Then we call it MT-closed.

Definition 5.5 A UCMT is MT-closed iff it is

1. M-closed, and
2. T-closed or T’-closed.

We use all these properties both for the logical theories as well as for their corre-
sponding algebraic theories.

All lemmas throughout this and the subsequent section have been proved using
the automated theorem prover Prover9 [34] unless otherwise stated. Most proofs
are omitted since they contribute only little insight; proof inputs and outputs can be
found at www.cs.toronto.edu/~torsten/CA/.
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5.1 Mereological closure operations  The closure operations intersection, sum,
and complementation can be defined mereologically as following. It is easily verified
that these are consistent with (UCMT.6) and (UCMT.7).

M-Iycyr) Yw[P(w,x®y) < (P(w,x) AP(w,y))] (Intersection)
(M-Sycmr) Yw[O(w,xDy) < (O(w,x) V O(w,y))] (Sum)
(M-Cycmr) Yw[O(w, ©x) < =P (w,x)] (Complement)

In the sequel we will exclusively use the algebraic equivalents of these axioms as
found in Appendix A. These differ only slightly from the above axioms to account
for the additional bottom element O in a contact algebra, see Lemma B.1 in Appendix
B for the proof of the equivalence of the two versions. In the algebraic versions of
the axioms A and V denote meet and joint, while the logical connectives are written
as & and |.

Notice that the universal u is always defined mereologically as Vx P(x,u).
Moreover, we can easily prove that the algebraic equivalents of (M-Iycyr) and
M-Sycumr), i.e. (M-I) and (M-S), are theorems in SPOCAs.

Lemma 5.1 Tspoca F M-1
Lemma 5.2 Tspoca F M-S

(M-C) does not necessarily hold in SPOCAs. Defining complementation mereolog-
ically requires the SPOCA to be uniquely complemented and thus distributive and
Boolean. The necessary axiom (Uni) postulating unique complementation can be
found in Appendix A.

Lemma 5.3 TSPOCA F M-C < Uni

Proof Since unicomplemented ortholattices are Boolean and vice versa it suffices
to show that a unicomplemented SPOCA satisfies the algebraic equivalence of
M-C): z-x-#0 <z # x and that a SPOCA satisfying this property is unicomple-
mented. This has been done using the automated theorem prover. (]

For the sums and complements to be unique, we further need extensionality of O

postulated as following. Recall that -O(x,y) <= xAy=0.

(O-Ext) Vz(zAx =0 zAy=0) > x =1y (O-extensionality)
But from (M-C) we can already prove extensionality of O:

Lemma 5.4 Tspoca UM-C E O-Ext

We obtain the following corollary on the effects of mereological closures in
SPOCAs:

Corollary 5.5 A SPOCA is M-closed iff it is unicomplemented. A M-closed
SPOCA is O-extensional.

5.2 Topological closure operations The closure operations intersection, sum,
and complementation can be defined topologically as following. Again, their alge-
braic versions are found in Appendix A with Lemma B.2 in Appendix B proving
the equivalence of both versions. It is easily verified that these are consistent with
(UCMT.6) and (UCMT.7). There are two slightly distinct ways of defining topolog-
ical complements, denoted by (T-C) and (T-C’).

(T-Iycyr) YwW[C(w,x@y) — (C(w,x) AC(w,y))] (Intersection)
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Figure 5 Two regions x and y connected to z whose set intersection
is not connected to z due to the non-transitive nature of contact.

(T-Sucur) Yw[C(w,x®y) < (C(w,x) V C(w,y))] (Sum)
(T-Cycmr) Yw[P(w,Ox) < =C(w,x)] (Complement)
(T-C’ycmr) YW[PP(w,Sx) < —C(w,x)] (Alternative complement)

Notice that since the universal is always defined mereologically as Vx P(x,u), it is
also automatically defined topologically as Vx C(x,u). However, this does not guar-
antee the topological uniqueness of the universal, i.e. that ¥y [(Vx C(x,y)) — y = u]
holds.

Intersections are always defined topologically in SPOCAs. Notice however that
(T-I) only contains a simple implication and not a biconditional. The reverse direc-
tion is not desirable as Fig. 5 illustrates.

Lemma 5.6 Tspoca E T-1

Proof Follows directly from (C3). O
Moreover, SPOCAs satisfy one direction of the implication in the axiom (T-S).
Lemma 5.7  Tspoca F Vx[xC(y+2z) < (xCy | xCz)]

Proof Follows directly from (C3). (]

Since the reverse direction of (T-S) does not always hold, we can use (C4) to guaran-
tee that sums are defined topologically in SPOCAs, i.e. if an element x is connected
to another element z, it is also connected to one of the parts of z that make up z.

(C4 xC(y+z) — xCy | xCz (Topological sum)
Lemma 5.8 Tspoca UC4 ET-S
Proof Immediately follows from Lemma 5.7. O

5.2.1 Topological complement operation ~ Now we turn to the complement. We
have two options, using either (T-Cycpyr) or (T-C’yeprr)- We first study (T-Cycprr)
and then proceed with (T-C’ycyr). In SPOCAs, (T-Cyceuyr) is captured algebra-
ically by (C5) which requires an element to be in contact to all elements that are not
parts of its orthocomplement. In particular, for any x, x—Cx™.
(C5) Cx =z Lxt (Topological complement)
Interestingly, (C5) alone is sufficient to ensure that (T-S) holds and that C is ex-
tensional, i.e. (C4) and (C-Ext) are satisfied in SPOCAs which satisfy (C5). (C-Ext)
expresses extensionality of C, that is, two elements are considered identical if they
are in contact to exactly the same elements. C-extensionality is equivalent to requir-
ing that a mereotopology can be reconstructed from contact as the only primitive
relation. It further ensures topological uniqueness of the universal.
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(C-Ext) Vz(zCx «+ zCy) <> x =Yy (C-extensionality)
Lemma 5.9 Tspoca UCS5FE C4
Lemma 5.10 Tgpoca UCS E C-Ext

Moreover, (Int) must hold in SPOCAs satisfying (CS). This seems, however, coinci-
dental and owed to the fact that elements are disconnected from their complements,
that is, (—=Con) holds. Despite its name, (—Con) is not the negation of (Con) but the
exact opposite assumption. (Con) is inconsistent with a non-trivial SPOCA satisfy-
ing (C5). (Int) and (Con) have previously only been used in the context of contact
algebras with Boolean lattices, but easily generalize to SPOCAs. In our study we in-
clude (Int) only for completeness purposes, it is not motivated by or directly related
to the closure operations.

(Con) Vx # 0, 1[xCx"] (Connected complements)
(—Con) Va[x—Caxt] (Disconnected complements)
(Int) Y, y[x—Cy — Jz(x—Cz & y—Cz")] (Interpolation)

Lemma 5.11 Tgppoca UCS E ~Con
Proof Choose y = x* in (C5) to obtain —xCx. O

Lemma 5.12 Tspocs UCS E Int

Proof We show that choosing z = x* in (Int) always evaluates to true. We

obtain x—Cy — (x—Cx* Ay—Cx**). By Lemma 5.11 it is sufficient to prove
Vx, y[x—Cy — y—Cx*+] which is with x = x** the trivially true inverse of (C2). [

We obtain the following corollaries on the effect of topological closures in SPOCAs:

Corollary 5.13 A SPOCA is T-closed iff it satisfies (C5). A T-closed SPOCA is
C-extensional and satisfies (C4), (—Con), and (Int).

Finally, we verify that (C5) and (Uni) are independent of another, i.e. that there
exists SPOCAs that satisfy (C5) but are not uniquely complemented and that there
exist SPOCAs with a Boolean lattice that do not satisfy (C5). Both results are not
very surprising.

Lemma 5.14  Tspoca UUni Z C5
Lemma 5.15 Tspoca UCS ¥ Uni

5.2.2 Quasi-topological complement operation Now we turn to (T-C’ycpr) as
an alternative to the axiom (T-Cycyr) for defining complements topologically.
(T-C’ycmr) is captured algebraically by (C5).
(C5) x#0[z#1|(x#1&z#0) — [zCx «— z £ x1]
(Alternative topological complement)

Obviously, (C5) and (C5’) are mutually inconsistent but what are the conse-
quences of using (C5’) instead of (C5) to define complements? (C5’) requires an
element to be connected to all other elements which are not proper parts of its (or-
tho-)complement, i.e. (Con) is a theorem.

Lemma 5.16  Tspoca UCS' E Con
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By Lemma 5.16 (C5’) is not really a topological definition of complementation since
complements are connected, i.e. xCx*. Truly topological complements are comple-
mentary with respect to C. In a SPOCA that satisfies (C5’), (C-Ext) does not nec-
essarily hold. In particular, we can have Jx,y [x # y & Vz (xCz & yCz)]. Then, the
universal is no longer topologically unique; this requires (Dis) in addition. For that
reason, we refer to (C5°) as a quasi-topological complement.

In the presence of (C5’), (Int) is a also theorem of SPOCAs.

Lemma 5.17  Tspoca U C5' EInt

Most important here is that (C5”) forces SPOCAs to be uniquely complemented and
thus Boolean. Then, mereological complements are also guaranteed to exist and
(O-Ext) directly follows.

Lemma 5.18 Tspoca U C5' = Uni
On the reverse, unicomplementation is not sufficient to ensure that (C5’) is satisfied.
Lemma 5.19  Tspoca UUni ¥ CS'

Therefore the class of SPOCAs satisfying (C5’) is an extensions of the SPOCAs that
have a Boolean lattice structure. Those that additionally satisfy (C4) have all clo-
sure operations defined mereologically and topologically except for the complement
which is defined mereologically but only quasi-topologically. We obtain three more
corollaries on the effect of topological closures in SPOCAs:

Corollary 5.20 A SPOCA is T -closed iff it satisfies (C4) and (C5’).

Corollary 5.21 A T’-closed SPOCA is unicomplemented, O-extensional, and sat-
isfies (Con) and (Int).

Corollary 5.22 A T’closed SPOCA is M-closed.

6 Coherently closed MT-representable UCMTs

We already mentioned that a UCMT is only ontologically coherent if it is M-closed,
T-closed, or T’-closed. Corollary 5.22 lets us now simplify the definition of
C-closure for MT-representable UCMTs, since we established in Section 4 that
MT-representable UCMTs result in SPOCAs as their algebraic counterparts.

Corollary 6.1 A MT-representable UCMT is C-closed iff it is T-closed or
M-closed.

Now we can use the Corollaries 5.5 and 5.13 to identify the two weakest theories of
C-closed MT-representable UCMTs and explore the theories with stronger topolog-
ical or mereological closure conditions. A particular emphasis will be on theories
that admit discrete models, i.e. theories allowing models that contain atomic entities.

6.1 M-closed MT-representable UCMTs Because M-closed SPOCAs are uni-
complemented, they must have a Boolean lattice:

Corollary 6.2 The algebraic counterpart of a M-closed UCMT has a Boolean lat-
tice.

Proof Follows from unicomplemented ortholattices being Boolean [5]. O
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Figure 6 The classes of M-closed contact algebras and their exten-
sion relations amongst them indicated by arrows. For each class
more than a single contact relation may exist. For example, on
BCAs contact defined as overlap xCy < x-y # 0 or as standard
contact x—Cy < x <y’ are two distinct extensional contact rela-
tions. On the other side, there are Boolean algebras that only allow
strictly non-weak and/or extensional contact relations.

Many of the contact algebras previously studied in the literature have Boolean lattices
and satisfy (C0)—(C3) [see 15; 32; 39]. The most important ones are:

Definition 6.1 A contact algebra (¢, C) in which .Z is a Boolean lattice is a
1. Generalized Boolean contact algebra (GBCA) if C satisfies (C4);
2. Boolean contact algebra (BCA) if C satisfies (C4) and (C-Ext);
3. RCC algebra (RBCA) if C satisfies (C4), (C-Ext), and (Con);
4. Proximity BCA (PBCA) if C satisfies (C4), (C-Ext), and (Int).

For a more comprehensive overview of the different classes of contact algebras and
their relationships to each other we refer to [28]. Contact algebras that have Boolean
lattices but do not satisfy (C4) are even weaker than GBCAs; we call them weak
Boolean contact algebras (WBCA):

Definition 6.2 A weak Boolean contact algebra (WBCA) is a contact algebra
(&, C) in which .Z is a Boolean lattice ..

As illustrated by the model in Fig. 7(a), there do exist WBCAs that satisfy neither
(C4) nor (C-Ext). Thus, the class WBCAs is strictly more general than both EW-
BCAS (to be introduced shortly) and GBCAs. WBCAs are the weakest algebraic
structures resulting from an MT-representable UCMT that is M-closed. WBCAs
admit atoms and in particular finite models as Fig. 7(a) shows.

Theorem 6.3 A M-closed MT-representable UCMT has an algebraic structure
(&, C) whose lattice £ is Boolean and whose contact relation satisfies (CO) to (C3).

This is a more general perspective of the results from [18] in which the different
contact relations definable on Boolean algebras have been studied. The weakest
contact relation in [18] already satisfies (C4), while Fig. 7(a) shows that there are
weaker contact relations definable on a contact algebra with a Boolean lattice which
may arise from M-closed UCMTSs whose sums are not topologically closed, i.e.,
which violate (C4). We do not argue for the usefulness of these structures; in practice
(C4) seems like a reasonable assumption. We only explore weaker M-closed contact
algebras by showing what other contact relations are theoretically definable on a
Boolean lattice.
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(b) The Boolean lattice By with 4 atoms

Figure 7 (a) B3 with {{(0,x)|x € L} U{(a,b),(a,c),(b,c)}} ¢ C
(and  symmetric tuples) defining disconnection is a
WBCA which does not satify (C-Ext) nor (C4). B3 with
{{(0,x)|x € L} U{(a,c)}} ¢ C (and symmetric tuples) is a
non-extensional GBCA. The elements a’,b’, ¢, and 1 are indistin-
guishable with respect to the contact relation.

(b) By with x <y’ — x—Cy defining disconnection except for
{{1,2}, 3,4}} € C results in an EWBCA not satisfying (C4).

WBCAs can be extended by (C-Ext) to obtain Extensional Weak Boolean Contact
Algebras (EWBCA) or by (C4) to obtain the already defined GBCAs. EWBCAs are
axiomatizable by the theory Tgwpca = Tspoca U {Uni,C-Ext}, see Appendix A for
the axioms.

Definition 6.3  An extensional weak Boolean contact algebra (EWBCA) is a
WBCA (¢, C) in which the contact relation C satisfies (C-Ext).

Again, there exist EWBCAs whose contact relation do not satisfy (C4) (compare
Fig. 7a). Unfortunately, in the following we show that in all EWBCAs not satisfying
(C4), xCx' holds for some elements, while for atoms it cannot hold. In other words,
the theory of EWBCASs extended by the negation of (C4) and (Atom) is inconsistent
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with either of (—Con) and (Con). For the proof we rely on the following result from
[17] stating that (Dis) implies (C-Ext) in contact algebras and thus in WBCAs:

(Dis) Vx[x #1— Jy(y #0Ax—Cy)] (Disconnection)
Lemma 6.4 [17] Tyypca F C-Ext — Dis
Lemma 6.5 TgypcaU—-C4U—-Conk L

Proof We give an automatic proof showing that Tspoca U {Uni,Dis} U —C4
U—Con E L for all non-trivial models. Since by Lemma 6.4 Tspoca U {Uni,Dis} is
strictly weaker than Tgwpca, (—Con) is inconsistent with any non-trivial EWBCA.

O

EWBCAS that contain some atom are inconsistent with (Con) because the atom must
be connected to its complement:

Lemma 6.6 Tgwpca UAtomUCon F L

Proof By Lemma 6.4 it is sufficient to prove that Tspoca U {Uni,Dis} U Arom
UCon E L. Let a be an atom of L. Then ' is a dual atom, i.e. only 1 >d'. By
overlap, @' is in contact to all elements except for a. Now by (Con) aCd’, then
Vy[a'Cy <> 1Cy] but 1 # &', a violation of (Dis). This does not hold for a trivial
model where 1/ = 0. O

Therefore, all models of EWBCAs which do not satisfy (C4) but contain an atom
suffer from this non-uniform interpretation of the contact relation — in particular
all atomic, all atomistic, and all finite models of EWBCAs and, more generally, of
WBCAs with (Dis). That xCx’ for atoms x is inconsistent with extensionality has
been observed for BCAs in [38]. Our proofs are slightly stronger and show that
this problem persists in the weaker theory WBCAs extended by (Dis) requiring a
topologically unique universal element. The failure of xCx’ for some elements is not
by itself a concern; in a disconnected model one element may be isolated from the
remaining space. However, the failure of xCx’ for all atoms is a serious issue hinting
to a weakness in the theory. Although it can be overcome by enforcing (C4), this
only creates other problems since (C4) and (C-Ext) together disallow any discrete
models unless contact is reduced to overlap (which in turn reduces the theory to a
pure mereology). The problem does not persist in WBCAs, for those we can prove
that (Con) is consistent:

Lemma 6.7 Typca U—~C4UAtomU Con kL

Proof Fig. 7(a) provides a counterexample. (]

What extensions of WBCAs are obtained if some of the closure operations are also
defined topologically? Intersections are already defined topologically in WBCAs.
If sums are defined topologically, we require (C4) and obtain GBCAs. If we define
complements topologically by (C5), we obtain PBCAs. Its discrete models again
reduce contact to overlap. Finally, if we require neither sums nor complements to be
defined topologically, but instead enforce C-extensionality, we obtain BCAs whose
discrete models have overlap as the only feasible contact relation. Hence, amongst
the different strengths of closure operations, the two classes WBCAs and GBCAs
are the only algebraic theories of M-closed MT-representable UCMTs that admit
non-atomless models with a contact relation different from overlap.
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Figure 8 Let Vx,y[x # 0 & x <y — xCy] and aCa* (and symmet-
ric tuples) define contact. Then the displayed lattice 65 together
with C defines a SPOCA (%5, C) that satisfies (C5) and is thereby
T-closed.

a
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The extensions of WBCAs with the quasi-topological complements requires
adding C5’, resulting in MT-representable contact algebras that parallel those with-
out C5’, see Fig. 6. Amongst them, even the weakest theory WBCA’ does not admit
models with atoms:

Lemma 6.8 Tspoca U C5'UAtom E L

6.2 T-closed MT-representable UCMTs  T-closed MT-representable UCMTs
have SPOCAs as algebraic counterparts which may be non-distributive as long as
(C5) is satisfied:

Theorem 6.9 A T-closed MT-representable UCMT has an algebraic structure
(Z,C) in which . is a Stonian p-ortholattice and C satisfies (C0)—(C3) and (C5).

This non-distributive class of SPOCAs has been studied in depth in [30]; it is the
algebraic equivalent of the subtheory RT ™ of the mereotopology of [2].

Because such T-closed SPOCAs also satisfy (C4), intersections and sums are im-
plicitly defined mereologically as well. The only real extension in terms of addi-
tional mereological closure operations requires complements to be mereologically
defined, which in turn by Lemma 5.3 makes the lattice Boolean and thus results
in a PBCA: (C-Ext) as well as (Int) are already entailed in all T-closed SPOCAs.
This also means (C-Ext) extends T-closed SPOCAs nonconservatively, while (Con)
is altogether inconsistent with T-closed SPOCAs. We already know that PBCAs
are always atomless, hence the theory SPOCA U (C5) is — amongst all possible ex-
tensions of T-closed MT-representable UCMTSs by additional mereological closure
operations — the only theory that admits atoms. Fig. 8 gives such a model.

6.3 MT-closed MT-representable UCMTs Sections 6.1 and 6.2 let us conclu-
sively answer the question whether MT-closed MT-representable UCMTs exist and
what their structure is. Such structures must be either M-closed and T-closed or only
T’-closed, the latter implying that there are M-closed by Corollary 5.22. For the first
case, the intersection of the respective minimal theories, i.e. of WBCAs and SPOCAs
satisfying (CS5), results in PBCAs that satisfy (C5). In these structures (—Con) is en-
tailed; it requires that the contact relation is defined as overlap xCy < x-y # 0 which
reduces the theory to a pure mereology. For the second case, we get the BCAs with
contact defined as (C5’) as minimal theory. Hence, we have the following result:
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Theorem 6.10 Every MT-closed MT-representable UCMT with C 2 O has an
algebraic structure that is a BCA (., C) in which C satisfies (C5’).

We also have negative results on the existence of MT-representable UCMTs with
C20:

Theorem 6.11 No M-closed and T-closed MT-representable UCMT with C 2 O
exists.

Theorem 6.12 No MT-closed MT-representable UCMT with C 22 O and with
discrete models exists.

7 Summary and discussion

Our exploration revealed two weakest classes of potentially spatially representable
complete OCAs that correspond to extensions of UCMT. On the one hand, WBCAs
are the weakest class in which all closure operations are defined mereologically.
On the other hand, SPOCAs with (C5) are the weakest class in which all closure
operations are defined topologically. A third candidate class, SPOCAs with (C5”)
turned out to further extend WBCAs and thus not a weakest class in its own right.
We are not aware of full embedding theorems for these two weakest classes of contact
algebras. This remains to be investigated in the future.

7.1 Spatially representable contact algebras with discrete models =~ Amongst
the spatially representable OCAs, the classes allowing discrete models are of partic-
ular interest. Although space is potentially infinitely divisible according to Aristo-
tle, in practical applications any concrete model of space will have ‘atoms’ at some
level, i.e. there is some finest granularity. This granularity is usually determined by
the precision of available data or measurement devices (think of satellite images vs.
microscopic pictures) or the precision we want to reason at (think of a car navigation
system vs. the accurate description of surface chemistry). For a generic Ontology
(in the philosophical sense) of space discrete models might not be that important,
but for any specific domain we want to be able to specify models completely e.g. by
explicitly listing a finite set of regions and the primitive relations (such as connec-
tion and parthood) amongst them. Such a specification should be consistent with the
theory and not a mere approximation thereof. Many mereotopologies, e.g. the RCC
(corresponding to RBCAs), prevent the existence of atomic regions by including
a divisibility axioms, i.e. requiring the existence of an interior part for each region.
Such theories do not allow us to list all atomic regions of a specific model. Of course,
approximations of such models are possible, but these approximations have different
model-theoretic properties. This has an important consequence: the construction of
and the reasoning with specific models using a theory consistent with discrete, and
especially finite, models can be achieved using standard theorem provers, which is
not possible for mereotopological theories that only admit infinite models.

Which extensions of the two weakest classes of MT-representable OCAs allow
discrete models, i.e., are not atomless? We showed that non-atomless WBCAs and
EWBCAs have contact relations that behave erratic with regard to contact amongst
complements. While the stronger BCAs and extensions thereof do not suffer from
this problem, their discrete models are only of mereological nature, i.e. C = O [16].
Similarly, WBCAs satisfying (C5’) rule out discrete models by Lemma 6.8. This
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leaves GBCAs and SPOCAs with xCy < x £ y* as the only (amongst all combina-
tions of mereological and topological closure operations) MT-representable OCAs
that admit discrete models. These two classes can be characterized as following:

1. GBCAs in which all closure operations are defined mereologically while sums
and intersection are also defined topologically. In general, GBCAs are consis-
tent with either of (Con) or (—Con). The entities in such algebraic structures are
representable by either (1) only regular open, (2) only regular closed, or (3) un-
restricted point sets (with point-set intersections, unions, and complements). In
the second case (Con) must hold while in the other cases (—Con) must hold. The
lattices underlying this class are distributive, i.e., parthood is distributive with
respect to sum and intersections.

2. The subclass of SPOCAs with xCy « x £ y as weakest contact algebras defining
all closure operations topologically while sums and intersections are also defined
mereologically. Due to the topological nature of complements, (—Con) must hold.
The representation of such algebraic structures must include both regular open
and regular closed sets, since each regular closed set has a regular open set as
complement and vice versa. In this class, the underlying lattices — and thus the
parthood relation — may be non-distributive.

Indeed, GBCAs and SPOCAs with xCy « x £ y* exemplify the two ways of con-
structing discrete mereotopologies discussed in [33]. SPOCAs with xCy « x £ y*
constitute a C-extensional theory with classical topological operators in which each
entity, in particular each atom, is ‘duplicated’ as open and as closed set, while GB-
CAs define an O-extensional theory without classical topological operations, i.e.,
that do not distinguish regions with identical closures.

7.2 Spatially representable Whiteheadean mereotopology In [47], Whitehead
originally proposed a C-extensional mereotopology and defined atoms as regions
without proper parts. He thereby implied the existence of discrete models. Unfor-
tunately, as Theorem 6.12 shows, no MT-closed MT-representable mereotopology
with discrete models can exist. In fact, the only theory that (1) allows atoms, (2)
is C-extensional, and (3) is MT-representable are the SPOCAs with xCy < x £ y*
defining contact — assuming that this class of SPOCAs can be further strengthened to
a class of spatially representable SPOCAs; cf. [48] for work in this direction. From
[30] we know that such theory is also definable by a single mereological primitive P
(the partial order relation < in the lattices) or by a single topological primitive C; it
seems to seamlessly bridge the gap between mereology and topology. But at the same
time, Whitehead never distinguished sets with identical closures. We can understand
this as an implicit condition for representations by closed regions (or, dually, by only
open regions); in fact many researchers followed this understanding of Whitehead’s
intentions. He entices us to believe that the two assumptions, namely existence of
atoms and representability by closed regions, are consistent. However, SPOCAs with
xCy < x £ y* as the only remaining candidate for true Whiteheadean mereotopology
do rely on this difference between interiors and closures. If the distinction between
interiors and closures is removed, these models collapse into Boolean contact alge-
bras, compare [49], and thereby prevent a meaningful definition of contact apart from
overlap in discrete models. With this stricter requirement of representability by only
closed sets, no discrete region-based theory in the intention of Whitehead is defin-
able [see also 20; 35]. Further research on theories of qualitative discrete space must
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therefore concentrate on non-topological, such as graph-based, approaches. Inde-
pendently, mereotopologies accommodating regions of various dimensions deserve
more attention.

There are others ways out of this dilemma as demonstrated in the literature. If we
do not insist on discrete models, RBCAs and the equivalent logical theory RCC, pro-
vide a truly Whiteheadean account of continuous space. One spatial representation
thereof is the complemented disk algebra consisting of all simple closed regions of,
e.g., R? as described in detail in [31]. If we abandon C-extensionality instead we can
rely ob GBCAs. Non-extensional theories have also been used for defining multi-
dimensional mereotopologies [22; 38]. The rationale for giving up C-extensionality
is simple [38]: C-extensionality is a principle that holds in the perfect world where
we can always find smaller parts that distinguish two distinct entities. If finite models
are considered as models with limited accuracy, i.e. as approximations of continu-
ous models, C-extensionality may be violated because the distinction in the contact
between two entities may be too small a part so that it is lost in the approximation.

An alternative parsimonious way out of this dilemma is to abandon VxC (x, ©x) in-
stead. The non-distributive SPOCAs with xCy < x £ y* allow such choice. At first
sight it seems to be a surprising choice since well-behaviour of lattices is usually
associated with distributivity. But as we have shown in [30], the non-distributive lat-
tices in question (Stonian p-ortholattices and restrictions) behave nicely even without
distributivity. In particular, these structures also satisfy the DeMorgan laws and stop
only short of being Boolean. We thereby are able to answer the question posed in
[13] asking what kind of structures should be considered the standard model of a non-
distributive contact algebra for the case of spatially representable contact algebras.
The standard (and only) models of spatially representable complete non-distributive
contact algebras are the regular sets of a topological space.

Notice that there is no need to completely abandon (Con). If we define an addi-
tional ‘attachment’ relation A from C as A(x,y) < [C(x,y**) VC(x**,y)] A =C(x,y),
we can prove VxA(x, ©x) in a connected space even if Vx—C(x, ©x). Attachment is a
stronger relation than contact defined in SPOCAs as —C(x,y) < x < y*, but weaker
than weak contact WCont as defined in [2]. Moreover, C and A make the distinction
between the intended interpretations of ‘sharing a point’ and ‘overlapping neighbor-
hoods’ clear.

7.3 Conclusion  This work treated mereotopology with unique closure operations
algebraically and studied the arising contact algebras that may yield spatial represen-
tations for all their models. In particular, this is the first time that non-distributive
contact algebras are included and studied comprehensively as algebraic counterparts
of mereotopologies. We showed that SPOCAs defined over Stonian p-ortholattices
with xCy < x & yt as contact are a good candidate for an ontologically coherent
region-based theory of space. In fact, these are the least constrained algebraic struc-
tures that admit discrete C-extensional models amongst all of the algebraic theories
satisfying the conditions of MT-representability which are at the same time neces-
sary conditions for spatial representability. The other candidates for spatially repre-
sentable contact algebras are BCAs, in particular its atomless extension RBCA, and
the weaker GBCAs. These correspond to the logical theories RCC and GRCC known
from the literature. While RCC models are C-extensional and always continuous, the
models of GRCC can be discrete but are not C-extensional. We demonstrated that the
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main difference between GBCAs and SPOCAs with xCy < x £ yt is whether com-
plements are defined mereologically or topologically. Mereological complements
require distributive contact algebras such as GBCA, BCA, or RBCA, while topolog-
ical complements allow non-distributive contact algebra based on Stonian p-ortholat-
tices. The remaining closure operations sum, intersections, and universal are in either
case defined mereologically; topological sums require (C4) while a topological uni-
versal requires (Dis) or (C-Ext). As one of our key contributions, all mereological
and topological closure operations are directly attributed to properties of the part-
hood lattice or the contact relation. Mereological complements manifest themselves
in unique complementation in the algebraic counterparts while topological comple-
ments require (C5) which binds the contact relation to the orthocomplementation
operation. Contact algebras with topological complements can be non-distributive,
but are required to satisfy (Con), (C-Ext), and (C4). Thus the ontological choice
of defining complements topologically is directly associated to many other, more
implicit, ontological choices.

7.4 Outlook We have established in GBCAs and SPOCAs with (C5) two weak-
est, potentially spatially representable, theories that allow atoms and define all
closures either mereologically or topologically. As natural next steps concrete topo-
logical embeddings theorems for these two classes of contact algebras need to be
established analogue to the topological embeddings for BCAs [16]. For the SPOCAs
with (C5), we know that non-representable models exist [48]. By extending the the-
ory of SPOCAs with axioms that rule out some of the non-representable models,
[48] is a first step towards such an embedding theorem.

Notes

1. Our notion of spatial representability deviates from standard topological representations
in the sense that we are interested in whether all regions of an algebraic theory of me-
reotopology can be represented by adequately sized point sets so that notions such as
contact (sharing a point), overlap (sharing a region), and complementation have intu-
itive spatial semantics. This understanding of spatial representations is similar to what
are called a ‘faithful interpretations’ by [20; 35]. It is more stringent than the standard
notion of topological representability of algebraic structures in pure mathematics.

2. ‘Algebraic counterpart’ refers to the class of contact algebras that can be constructed
according to Theorem 3.1 Equally, a mereotopology whose models can be mapped to
structures of a certain class of contact algebras is referred to as ‘logical counterpart’ of
the class of contact algebras.

3. Orthocomplemented lattices have already been used in [4] as an algebraic theory of
Clarke’s axiomatization of mereotopology.

References

[1] Allen,J. F., “Maintaining knowledge about temporal intervals,” Communications of the
ACM, vol. 26 (1983), pp. 832-823. 4



30

(2]

(3]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Hahmann and Griininger

Asher, N., and Vieu, L, “Toward a geometry of common sense: a semantics and a com-
plete axiomatization for mereotopology,” in International Joint Conference on Artificial
Intelligence (IJCAI-95), pp. 846852, 1995. 10, 14, 25, 28

Bennett, B., and Diintsch, 1., “Axioms, Algebras and Topology,” pp. 99-159 in Hand-
book of Spatial Logics, edited by Aiello, M., Pratt-Hartmann, 1., and van Benthem, J.,
Springer, 2007. 2,7

Biacino, L., and Gerla, G., “Connection structures,” Notre Dame Journal of Formal
Logic, vol. 32 (1991), pp. 242-247. 29

Birkhoff, G., Lattice Theory, 3rd edition, American Mathematical Society, 1967. 10, 21
Blyth, T. S., Lattices and Ordered Algebraic Structures, Springer, 2005. 7

Casati, R., and Varzi, A. C., Parts and Places, MIT Press, 1999. 2,5,6,7, 17

LT}

Clarke, B., “A calculus of individuals based on ‘Connection’,” Notre Dame Journal of
Formal Logic, vol. 22 (1981), pp. 204-218. 2

Cohn, A. G., and Hazarika, S. M., “Qualitative spatial representation and reasoning: an
overview,” Fundamenta Informaticae, vol. 46 (2001), pp. 1-29. 1

Cohn, A. G., and Renz, J. “Qualitative Spatial Representation and Reasoning,”, in
Handbook of Knowledge Representation, edited by van Harmelen, E., Lifschitz, V., and
Porter, B., Elsevier, 2008. 1

Dimov, G., and Vakarelov, D., “Contact algebras and region-based theory of space: A
proximity approach - I,” Fundamenta Informaticae, vol. 74 (2006), pp. 209-249. 2

Diintsch, I., MacCaull, W., Vakarelov, D., and Winter, M., “Topological representa-
tions of contact lattices,” in Conference on Relational Methods in Computer Science
(RelMiCS-9), Lecture Notes in Computer Science (LNCS) 4136, pp. 135-147. Springer,
2006. 2

Diintsch, 1., MacCaull, W., Vakarelov, D., and Winter, M., “Distributive contact lattices:
Topological representations,” Journal of Logic and Algebraic Programming, vol. 76
(2008), pp. 18-34. 2,28

Diintsch, I., and Vakarelov, D., “Region-based theory of discrete spaces: A proximity
approach,” Annals of Mathematics and Artificial Intelligence, vol. 49 (2007), pp. 5-14.
2

Diintsch, 1., and Winter, M., “Algebraization and representation of mereotopological
structures,” Journal of Relational Methods in Computer Science, vol. 1 (2004), pp. 161-
180. 2,7, 22

Diintsch, 1., and Winter, M., “A representation theorem for Boolean contact algebras,”
Theoretical Computer Science, vol. 347 (2005), pp. 498-512. 2, 14, 26, 29

Diintsch, 1., and Winter, M., “Weak contact structures,” in Conference on Relational
Methods in Computer Science (RelMiCS-5), Lecture Notes in Computer Science (LNCS)
3929, pp. 73-82. Springer, 2005. 2, 7, 24

Diintsch, 1., and Winter, M., “The lattice of contact relations on a Boolean algebra,” in
Conference on Relational Methods in Computer Science (RelMiCS-10), Lecture Notes
in Computer Science (LNCS) 4988, pp. 98-109. Springer, 2008. 22



[19]

[20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

Complementation in representable theories of region-based space 31

Eschenbach, C., “A comparison of calculi of mereotopology,” Draft manuscript, May
2007. 2,6

Forrest, P., “From ontology to topology in the theory of regions,” The Monist, vol. 79
(1996), pp. 34-50. 3,27, 29

Galton, A., “Taking dimension seriously in qualitative spatial reasoning,” in European
Conference on Artificial Intelligence (ECAI-96), pp. 501-505, 1996. 4

Galton, A., “The mereotopology of discrete space,” in Conference on Spatial Informa-
tion Theory (COSIT-99), Lecture Notes in Computer Science (LNCS) 1661, pp. 251-
266. Springer, 1999. 28

Galton, A., “Multidimensional mereotopology,” in Principles of Knowledge Represen-
tation and Reasoning (KR’04), pp. 45-54, 2004. 4

Gotts, N. M., “Formalizing commonsense topology: the INCH calculus,” in Interna-
tional Symposium on Artificial Intelligence and Mathematics, pp. 72-75, 1996. 4

Gotts, N. M., Gooday, J. M., and Cohn, A. G., “A connection based approach to com-
monsense topological description and reasoning,” The Monist, vol. 79 (1996), pp. 51-75.
2

Gritzer, G., General Lattice Theory, 2nd edition, Birkhéduser, 1998. 7

Hahmann, T., “Model-Theoretic Analysis of Asher and Vieu’s Mereotopology,” Mas-
ter’s thesis, University of Toronto, Department of Computer Science, 2008. 8

Hahmann, T., and Griininger, M., “Region-based Theories of Space: Mereotopology
and Beyond,”, in Qualitative Spatio-Temporal Representation and Reasoning: Trends
and Future Directions, edited by Hazarika, S., IGI Publishing, 2010. 2, 22

Hahmann, T., and Griininger, M., “A naive theory of dimension for qualitative spatial
relations,” in Symposium on Logical Formalizations of Commonsense Reasoning (Com-
monSense 2011) at AAAI-SS’11. AAAI Press, 2011. 4

Hahmann, T., Winter, M., and Griininger, M.. “Stonian p-ortholattices: A new approach
to the mereotopology RT,” Artificial Intelligence, vol. 173 (2009), pp. 1424-1440. 10,
11, 15,25,27,28

Li, S., and Li, Y. “On the complemented disk algebra,” Journal of Logic and Algebraic
Programming, vol. 66 (2006), pp. 195-211. 28

Li, S., and Ying, M., “Generalized region connection calculus,” Artificial Intelligence,
vol. 160 (2004), pp. 1-34. 2,22

Masolo, C., and Vieu, L., “Atomicity vs. infinite divisibility of space,” in Conference
on Spatial Information Theory (COSIT-99), Lecture Notes in Computer Science (LNCS)
1661, pp. 235-250. Springer, 1999. 27

McCune, W., “Prover9,” http://www.cs.unm.edu/ mccune/prover9/, 2010. 17

Mormann, T., “Continuous lattices and Whiteheadian theory of space,” Logic and
Logical Philosophy, vol. 6 (1998), pp. 35-54. 3, 27,29

Randell, D. A., Cui, Z., and Cohn, A. G., “A spatial logic based on regions and connec-
tion,” in Principles of Knowledge Representation and Reasoning (KR’92), pp. 165-176,



32

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Hahmann and Griininger

1992. 2

Roeper, P., “Region-based topology,” Journal of Philosophical Logic, vol. 26 (1997),
pp- 251-309. 6

Roy, A.J., and Stell, J. G., “A qualitative account of discrete space,” in Conference on
Geographic Information Science (GIScience-02), Lecture Notes in Computer Science
(LNCS) 2478, pp. 276-290. Springer, 2002. 24, 28

Stell, J. G., “Boolean connection algebras: A new approach to the region-connection
calculus,” Artificial Intelligence, vol. 122 (2000), pp. 111-136. 2,7, 22

Stell, J. G., “Part and complement: Fundamental concepts in spatial relations,” Annals
of Mathematics and Artificial Intelligence, vol. 41 (2004), pp. 1-17. 3

Stell, J. G., and Worboys, M. F., “The algebraic structure of sets of regions,” in Con-
ference on Spatial Information Theory (COSIT-97), Lecture Notes in Computer Science
(LNCS) 1329, pp. 163-174. Springer, 1997. 2,7

Stern, M., Semimodular Lattices - Theory and Application, Encyclopedia of Mathemat-
ics and Its Application. Cambridge University Press, 1999. 7, 8

Stone, M. H., “The theory of representations for boolean algebra,” Transactions of the
American Mathematical Society, vol. 40 (1936), pp. 37-111. 13

Vakarelov, D., “Region-based theory of space: Algebras of regions, representation the-
ory, and logics,” pp. 267-348 in Mathematical Problems from Applied Logic I, edited
by Gabbay, D., Goncharov, S., and Zakharyaschev, M., Springer, 2007. 2, 7

Varzi, A. C., “Basic problems of mereotopology,” in Conference on Formal Ontology in
Information Systems (FOIS-98), pp. 29-38, 1998. 5

Vieu, L., “Spatial representation and reasoning in artificial intelligence,” pp. 542 in
Spatial and Temporal Reasoning, edited by Stock, O., Kluwer, 1997. 1

Whitehead, A. N., Process and Reality, MacMillan, 1929. 2, 3, 27

Winter, M., Hahmann, T., and M. Griininger, “On the representation of Stonian p-
ortholattices,” submitted to Annals of Mathematics and Artificial Intelligence December
2010. 16,27, 29

Winter, M., Hahmann, T., and M. Griininger, “On the skeleton of Stonian p-
ortholattices,” in Conference on Relational Methods in Computer Science (RelMiCS-11),
Lecture Notes in Computer Science (LNCS) 5827, pp. 351-365. Springer, 2009. 27

8 Acknowledgement

We are deeply grateful to Michael Winter for our extended discussions of the material in
Section 4 and to Carola Eschenbach for her constructive comments on an earlier version
of this paper. Their comments helped to significantly improve the clarity of our presen-
tation here. We also thank Sanjiang Li and two anonymous reviewers for their valuable
comments.



Complementation in representable theories of region-based space 33

Appendix A Axioms for automated proofs

Axioms as used for the automated proofs in Prover9 (the notation has been slightly
changed to make it more readable). &, |, —, and < denote the logical connectives
‘and’, ‘or’, simple implication, and ‘if and only if’, respectively, while A and V de-
note the lattice operations of meet and join. Universal closure is assumed throughout.

The theories Tpca = {L2V-L6", L2"-L4", C0-C3, O1’, 02°, O3’} and
Tspoca = TocaU {PC1, PC2’, PC2”, S} axiomatize OCAs and SPOCAs.

Lattice: Standard axioms for commutativity, associativity, and absorption

L2  xAy=yAx (L2Y) xVy=yVx

L3N (xAy)Az=xA(yAz2) (L3Y)  (xVy)Vz=xV(yVz)
L4 xV(xAy)=x L4y  xA(xVy)=x
Boundedness: Existence of a null and one (universal) element

(L5Y) Ovx=x (L6Y) Ivx=1
Orthocomplementation and pseudocomplementation

ory) xtt=x (PC1)  xA(xAY)*=xAy*
02) xvxt=1 (PC2) 0*=1

(03)  xAy=(xtvyh)t (PC2) 1"=0

The Stone identity

() vy T=xTvy

Contact: Basic axioms of a weak contact algebra

(CO) 0—-Cx (CDh x#0— xCx

(C2) xCy — yCx (C3) Vz(x Ay =x & zCx) — zCy

Mereological closures as defined in Section 5.1

M-I)  xAy#0— (zA(xAy) =z (Ax=z&zAy=7))
M-S)  zA(xVy)#0 < (xAz#0|yAz#0)

M-C) zAxt=0ezAx=¢

(O-Ext) Vz(xAz=0<yAz=0)<—x=y

Topological closures as defined in Section 5.2

(T-I) XAy #0— (zC(xAy) — (zCx & wCy))

(T-S) xC(yVz) < xCy | xCz

(C4) xC(yVz) — xCy | xCz

(C5) ZAxt =z =z7Cx ~ (T-C)
(C5) (x#0z# 1| (x#1&z#0)) — (z2Cx = (z=x" | zAxt #7)) ~ (T-C)
(C-Ext) VZ()CCZ > yCZ) ox=Yy

Other axioms of interest

(Dis) x#1—3y(y #0 & x—Cy)

(Int) x—Cy — Jz(x—Cz & y—Czt)

(Con) x=0]|x=1|xCxt

(—Con) x—Cx*

(Uni) (xAy=0&xVy=1&xAz=0&xVz=1)—y=¢
(Unicomplemented)

(Atom) Ja(a#OAVx(x=0|x=a|xNa#x)) (Existence of an atom)
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Appendix B Equivalence of algebraic axioms

Here we show that the axioms from Section 5 in a UCMT are equivalent to the
algebraic versions thereof, i.e. the axioms used for the automated proofs as shown in
Appendix A. We can mainly rely on Theorem 3.1 but have to show additionally that
all cases involving the introduced null element O are properly covered. We first show
the equivalence for the mereological axioms and then for the topological axioms.

B.1 Mereological axioms

M-Tycpur)  VYW[P(w,x®y) < (P(w,x) AP(w,y))] (Intersection)
M-Sycur)  Yw[O(w,x@y) < (O(w,x)V O(w,y))] (Sum)
M-Cycmur) VYw[O(w,6x) < =P(w,x)] (Complement)
M-I) XAy #£0— [VzzA (xAy) =z (zAx=z& zAy =7)]]

(M-S) ZIAN(xVY)#0— (xAz#0|yAz#0)

(M-C) AxE=0-z7Ax=72

Lemma B.1  Let Tycyr be the theory of UCMT that satisfies (P.1)—(P.3), (C.1)—
(C.3), (UCMT.1)-(UCMT.7) with the definitions (O), (U), (PP). Let Tpcs be the
theory of orthocomplemented contact algebras as constructed in Theorem 3.1. Then:

1. Tycmur ): (M'IUCMT) iff Toca ': M-I);
2. Tycur E M-Sycur) iff TocaU(O-Ext) = (M-S);
3. Tycur E M-Cycur) iff TocaU(O-Ext)= (M-C).

Proof Let us define z = g(w) throughout.

1. Assume (M-Iycpyr). By definition P(a,b) < a < b and because of a <b—aAb=a
we obtain zA (xAy) =ziffzAx=zand zAy =z forall x,y,z#0. If x=0 or
y =0, then x Ay = 0 and (M-I) holds. Otherwise, if z=0, zA (xAy) =0 =z and
zAx=0=zand z/A\y = 0=z and thus (M-I) also holds.

If (M-I) then for all x,y,z # 0 M-Iycpyr) follows from P(a,b) < aAb = a.

2. Assume (M-Sycuyr), then if O is extensional by (O-Ext) and by definition of O
we obtain O(w,x®y) < zA (xVy) # 0 and thus also (M-S) for all x,y,z # 0. If
z=0,thenzA (xVy) =0and x Az =0 and y Az =0. Analogue if both x = 0 and
y=0.Ifonly x=0then zA (xVy) = zAyiff y Az =0 since x Az = 0. Analogue
fory=0.

Reversely, if (M-S) then for all x,y,z # 0 (M-Sycyr) directly follows.

3. Note that (M-C) is equivalent to z Ax # 0 < z Ax # z.

Assume (M-Cycpr). Since we already established that the complementation
operator © must at least satisfy the properties of an orthocomplementation, we
have O(w,©x) = z Ax* # 0 in the presence of (O-Ext) and —P(w,x) = zAx # 7
which covers all cases of (M-C) in which x,z ¢ {0,1}. The remaining cases of
(M-C) are:

(i) Ifz=0,thenzAx" =0and zAx=0=z
(i) If z=1then IAx" =x" #0unlessx=1and zAx =x# | unless x = 1.
The case when x = 1 is covered by (4).
(iii) If x =0 then zAQ" =z # O unless z =0 and zAx = 0 # O unless z = 0. The
case z = 0 has already been covered by (1).
(iv) If x=1thenzA1l-=0andzA1=1z.
Reversely, if (M-C) then for all x,z # 0 and x # 1 (M-Cycyyr) directly follows.
O
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B.2 Topological axioms

(T-lycmr)  YW[C(w,x©®y) — (C(w,x) AC(w,y))] (Intersection)
(T-Sucmur)  Yw[C(w,x@y) < (C(w,x) VC(w,y))] (Sum)
(T-Cycur)  Vw[P(w,6x) « —C(w,x)] (Complement)
(T-Cyemr) Vw[PP(w,6x) < —~C(w,x)] (Alternative complement)
(T-I) xAy#0— (zC(xAy) — (zCx & wCy))

(T-S) 7C(xVy) <> zCx | zCy

(C5) ZAxt =z —zCx

(C5%) (x#0|z# 1| (x#1&z#0)) — (zCx « (z=x" | zAxT #72))

Lemma B.2  Let Tycyr be the theory of UCMT that satisfies (P.1)—(P.3), (C.1)—
(C.3), (UCMT.1)—~(UCMT.7) with the definitions (O), (U), (PP). Let Tpcs be the
theory of orthocomplemented contact algebras as constructed in Theorem 3.1 Then:

1.
2.
3.
4.

Tycur = (T-lycur) iff Toca = (T-1);
Tycur = (T-Sycur) iff Toca = (T-S);
Tycur = (T-Cycur) iff Toca = (C5).
Tycur = (T-C'ycur) iff Toca = (C5”).

Proof Notice that we again define z = g(w) throughout.

1.

Assume (T-Iycyr), then (T-I) for all x,y,z # 0. If z =0, for all v -C(w,v) and
thus (T-I). Otherwise, if x = 0 (or y = 0), then x Ay = 0 and thus also (T-I).
Reversely, if (T-1) then for all x,y,z # 0 (T-Iycpr) directly follows.

. Assume (T-Sycmr), then (T-S) for all x,y,z # 0. If z = 0 then for all v —~C(w,v)

and thus (T-S) holds. The same if x =0 and y = 0. If only x = 0 then C(z,y) if
and only if C(z,y). The same if y = 0.
Reversely, if (T-S) then for all x,y,z # 0 (T-Sycpyr) directly follows.

. Assume (T-Cycpr). Since © must at least satisfy the properties of an orthocom-

plementation P(w,©x) < z Ax™ = z. The remaining cases are:
(i) If z=0then zAx" =0 =zand ~C(0,x).

(ii) Ifz=1then 1 Ax* = x* # zunless x = 0 and C(w,x) unless x = 0. The case
when x = 0 is covered by (3).

(i) If x = 0 then z A0+ = z and =C(w,0).

(iv) If x =1 then z A 1 = 0 # z unless z = 0 and C(z, 1) unless z = 0. The case
when z = 0 is covered by (1).

Reversely, if (T-C) then for all x,z # 0 and x # 1 (T-Cycpyr) directly follows.

. We can rewrite (T-C’ycyr) as Vw[—PP(w, Sx) < C(w,x)]. Assume (T-C’ycpr)-

Then —PP(w,Sx) < z =x" or zAx" # z since © must at least satisfy the proper-

ties of an orthocomplementation. Then for all x,z ¢ {0, 1} (C5’) holds. Trivially,
(C5’) holdsif x =0o0rz=1 or x =1 and z = 0. The remaining cases are:

(i) If z= 0 then =C(0,x) and 0 # x* unless x = 1 and 0 Ax* = 0 = z. The case

x = 11is covered by the precondition of (C5’).

(ii) Ifx=1then C(z,1) unless z=0and z # 1+ unlessz=0and zA 1+ =0 #z
unless z = 0. The case z = 0 is covered by the precondition of (C5’).

Reversely, if (T-C”) then for all x,z # 0 and x # 1 (T-C’ycpyr) directly follows.

O



