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Abstract. Full physical containment is the relation in which one physical entity
is completely inside another. It is central to the description of natural resources
held in reservoirs above or below the surface. Previous ontological representa-
tions of containment are located in abstract space, incomplete, or insufficiently
incorporate voids, so in this paper we develop a complete taxonomy for the full
containment relation that is situated in physical space and integrates voids. The
taxonomy is formalized in a mereotopological theory and specializes the DOLCE
foundational ontology, thus advancing hydro ontology development.
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1 Introduction
Containment is critical to the geosciences. It plays a foundational role in the descrip-

tion of both surface and subsurface resources, such as water, petroleum, and natural gas,
where a nuanced notion is required to capture the subtle ways that something can be in-
side or surrounded by something else. For example, estimates of subsurface fluids or
gases need to know how much underground space exists, how much of it is fillable
and open to flow, and how much is actually filled or flowing. A container’s spaces—
its voids—assume particular significance in these scenarios, as it is their size and ar-
rangement (together known as porosity [17]) that is used to determine storage and flow.
This is particularly evident in models and simulations of subsurface resources, which
inherently rely on a sophisticated containment schema that delineates three things, a
container, its voids, and a containee, as first-class entities. However, these distinctions
are largely absent in emerging domain representations, such as data standards for water
and geology [1, 21], which either ignore containment or omit voids from containment
relations. Their omission is problematic given the expected role that such standards
will play in delivering data from distributed databases, and sensor networks, to model-
ing and simulation tools. Theoretical work on qualitative topological relations [4, 5, 9,
10, 14, 16] can help bridge this representation gap, but the relations are modeled in an
abstract mathematical-geometric conception of space rather than in physical space, ac-
counting for topological constraints but not for physical constraints. The relations also
hold only between untyped regions, which are akin to mathematical objects, rather than
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between physically typed entities, such as voids or material bodies, thus the physical
significance of the relation is not captured. In short, what is required is an ontologi-
cal interpretation of topological relations in which abstract containment is considered
physically.

In this paper, we begin such an interpretation motivated by various containment
relations associated with both surface and subsurface water. An ultimate endpoint for
this work is its incorporation into a hydro ontology. The paper thus aims to accomplish
a specific piece of ontology engineering, and in doing so it makes the following original
contributions: (1) it provides a taxonomy of the full containment relation, in which the
relation and its components are interpreted physically (see Figure 4); (2) it specializes
the DOLCE foundational ontology [19] to provide types for the components of the
relation; and (3) it grounds these physical distinctions in a first-order theory of abstract
space, which provides mereotopological and mereogeometrical relations.

The paper is organized as follows: Section 2 illustrates motivating examples; Sec-
tion 3 discusses related work; Section 4 introduces some background material; Sec-
tions 5–7 describe the full containment relation, first generically and then partitioned
into dependent and detachable containment; Section 8 provides some additional discus-
sion and the paper concludes in Section 9 with a recap and future directions.

2 Containment scenario
Various types of physical containment that motivate this work are illustrated in Fig-

ure 1. Included are the following relations:

contains(LB,SWB) contains(LB,Rock) contains(LB,Hole)
contains(Hole,SWB) contains(Hole,Rock) contains(SWB,Rock)
contains(AQ,GWB) contains(AQ,RM) contains(AQ,CT)
contains(AQ,Gaps) contains(Gaps,GWB) contains(Gaps,CT)
contains(GWB,CT)

Described is a lake: a surface water body (SWB) located in a lakebed (LB) and thus
also in its associated hole. Also described is a rock at the bottom of the lake, a ground-
water body (GWB) in the gaps of an aquifer’s (AQ) rock matter (RM), and a contam-
inant (CT) within the groundwater body. These examples show that full physical con-
tainment is primarily considered here, mainly for scoping reasons, but also because it is
most frequently encountered in the water domain. Full physical containment involves
complete immersion or enclosure of one entity within another, such as a rock com-
pletely immersed in the lake, or a body of water completely enclosed by the lakebed,
but excludes partial containment such as a boat floating partially submerged on the lake.

AQ
CT

GWB

RM

SWB
Gaps

Hole

Rock

LB

Fig. 1. Containment examples in surface and subsurface water. See text for details.
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Despite this narrowing of scope, it is apparent that a physical interpretation of full con-
tainment can lead to useful specializations, e.g. being inside a hole is different from,
but associated with, being surrounded by a material container. These and many other
distinctions are elaborated in Sections 6 and 7.

3 Related work
Containment relations have been considered in image schemata, qualitative spatial

relations, formal top-level ontologies, and geoscience representations. In the work to
date, however, containment relations are either detached from an associated physical
ontology, the participation of voids is limited, or the taxonomy is incomplete.

Containment image schema is a cognitive-driven template for containment. Diversely
studied in terms of its formalization and uses [18, 24], it typically exhibits a rudimen-
tary ontology consisting of the roles played by participants (container/containee), their
potential behaviour (moving in/out), and states (inside/outside). However, this ontology
lacks a key participant—the void afforded by a container and occupied by a containee—
and also generally lacks a physical typing of participants, which could lead to erroneous
interpretations. Also typically lacking are physical constraints, such as the existential
dependence of a void on its host container.

Qualitative spatial relations have been studied extensively, most notably in the 9-
intersection and RCC paradigms, which describe the possible topological relations that
occur between abstract regions as well as their compositions and inferences [4, 5, 9, 10].
Voids can implicitly participate in the defined abstract containment relations, inasmuch
as a void can be represented as an abstract region, but there is no mechanism for typing
the region as a void [12]. These relations are, then, subject to concerns similar to those
expressed about image schema: a lack of physical typing and associated constraints.

Formal top-level ontologies such as DOLCE and BFO [13, 19], include neither phys-
ical containment relations nor voids, but provide a superstructure from which they can
be specialized. Indeed, DOLCE physical entities and their dependants have been ex-
tended to encompass containers and voids, respectively [15], laying the groundwork for
a physical containment relation. The upper ontology SUMO [20] does include two basic
containment relations, ‘contains’ and ‘inside’: while ‘contains’ is a partial containment
relation that is further specialized into a proper and a complete version, the ‘inside’ rela-
tion lacks a clear definition and other kinds of containment are missing. Cyc [11], a large
collection of commonsense knowledge, possesses a rich suite of physical containment
relations that are, however, also incomplete: for example, a void cannot contain some-
thing, except implicitly via the very general ‘inside’ relation, which has no constraints
on its domain and range. Conversely, voids can explicitly contain material entities in
one of four containment relations in [8], but the remaining relations occur between ab-
stract regions, again without physical typing and constraints. Similarly, holes (but not
gaps) are fillable in [2], though other types of containment relations are missing.

Relevant geoscience representations for water or geology, such as ontologies or data
transfer standards, e.g. [21, 23], do not include containment relations nor voids. An ex-
ception is the Groundwater Markup language (GWML) [1], in which water reservoirs
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offer a limited notion of voids, and where a containment relation holds between a reser-
voir and the matter filling it, but GWML is not expressed formally and lacks a general
approach to containment.

4 Background
This work follows in the footsteps of [15] and relies on a distinction between phys-

ical space and abstract spatial regions of purely topological/geometrical nature. For the
former we specialize the DOLCE foundational ontology, and for the latter we reuse the
first-order spatial ontology from [14, 16], which is a multidimensional version of the
first-order axiomatization of the Region Connection Calculus (RCC) [4]. This section
reviews the relevant DOLCE categories of physical entities, the theory of abstract space,
and the formalization of physical voids from [14, 15]. We follow [14] in notation and
axiom numbering. Free variables in our logical sentences are assumed to be implicitly
universally quantified.

Physical endurants —real entities of primarily physical nature that populate physical
space form the domain of interest for our study of physical containment. These physical
entities are captured by the DOLCE category PED , as shown in Figure 2. They can
be physical objects (e.g. rocks), POB , amounts of matter (e.g. clay), M , or physical
features, F . Features are either relevant part features (e.g. a bump or an edge), RPF ,
which are constituted by a portion of the matter of their associated physical object, or
dependent place features (e.g. a hole or a shadow), DPF , which are immaterial, i.e.,
not constituted of any matter. All other physical endurants are material, denoted by the
predicate mat(x). The predicate DK 1(x, y), called direct primary constitution, denotes
that x is the immediate matter constituting an object or relevant part y.

(Mat-D) mat(x)↔ POB(x) ∨M(x) ∨ RPF (x) (material endurant)
(DK1-D) DK 1(x, y)→M(x) ∧ [POB(y) ∨ RPF (y)] ∧ P (r(x), r(y))

(primary direct constitution of an object or relevant-part feature by matter)

Physical endurants are entities extended in physical space; following the ideas of [7,
8] we assign them a location in abstract space using the r(x) function. The resulting
abstract regions, i.e., the entities satisfying S(x) ↔ x = r(x), are disjoint from the set

Physical-Void (V)

+ void-host: NOT Physical-Void
Dependent-Place (DPF)

Physical-Hole (Hole) Physical-Gap (Gap)

+void-host 1..*

hosts-v

+host-of-void 0..*

Relevant-Part (RPF)

+host 1..*
hosts
+host-of 0..*

Non-Agentive-Physical-

Object (NAPO)

Feature (F)Amount-of-Matter (M) Physical-Object (POB)

DK1

0..* +constituent 1
DK1

0..*

 Physical-Endurant (PED)

Physical-HollowPhysical-TunnelPhysical-Cavity

Fig. 2. The DOLCE category of physical endurants and its refinements, as UML diagram.
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of physical endurants that populate physical space. This distinction between physical
endurants and abstract regions allows us to consider abstract space as a mathematical-
geometrical construct, which provides greater flexibility in all spatial operations. For
example, many physical features of physical endurants, such as physical boundaries,
are defined in terms of their regions.

Abstract regions of space are interpreted as topologically closed regions of abstract
space obtainable by gluing together finite sets of manifolds with boundaries [14]. Their
dimension can vary, e.g., both a 2D area and its 1D boundary are valid regions. We
compare regions dimensionally using the predicates <dim, =dim, and ≺dim that denote
lower, equal, and next lower dimension, respectively. We assume that all physical en-
durants are located in a region of maximal dimension, that is, of codimension 0. For
example, all physical endurants in a 3D space must also be 3D.

(MaxDim-D) MaxDim(x)↔ S(x) ∧ ¬∃y[x <dim y] (regions of maximal dim.)
(S-A8) PED(x)→ MaxDim(r(x)) (PEDs are located in regions of maximal dim.)

Regions can be in various spatial relationships. These relationships are all founded
on a single primitive spatial relation Cont(x, y) that expresses ‘x is a subregion (of
equal or lower dimension) of y’ and that is reflexive, antisymmetric, and transitive1.
For mathematical simplicity we include an empty region of lowest dimension, denoted
as ZEX (x). Among other relations, we define contact C, parthood P , proper parthood
PP , overlap PO , and superficial contact SC ; those apply only to regions2, but we can,
for example, write C(r(x), r(y)) to state that the physical endurants x and y are in
contact. Regions that overlap exactly the same set of regions are considered equivalent
(PO-E1).

(C-D) C(x, y)↔ ∃z [Cont(z, x) ∧ Cont(z, y)] (contact: a shared entity exists)
(EP-D) P (x, y)↔ Cont(x, y) ∧ x =dim y (equi-dimensional parthood)
(EPP-D) PP(x, y)↔ P (x, y) ∧ ¬P (y, x) (equi-dimensional proper parthood)
(PO-D) PO(x, y)↔ ∃z [P (z, x) ∧ P (z, y)] (overlapping in a part)
(SC-D) SC (x, y)↔ C(x, y)∧¬∃z[Cont(z, x)∧P (z, y)]∧¬∃z[P (z, x)∧Cont(z, y)]

(superficial contact)
(PO-E1) S(x) ∧ S(y)→

[
∀z[PO(x, z)↔ PO(y, z)]→ x = y

]
(PO-extensionality: two regions with the same PO-extension are equivalent)

The set of regions of maximal dimension is assumed mereologically closed, that is,
for every pair of regions x and y with MaxDim(x) and MaxDim(y) and thus for every
pair of regions corresponding to physical endurants, the intersection x ·y, the difference
x− y, and the sum x+ y are defined (they may yield the zero region); for their precise
definitions we refer to [14]. Moreover, we assume that a universal region Su of maximal
dimension exists with MaxDim(Su) and ∀x[S(x)∧¬ZEX (x)→ Cont(x, Su)], so that
all regions of maximal dimension have a complement x′ = Su−x. These mereological
closure operations apply only to regions; we do not force the set of physical entities to
be closed in the same way. The operations allow us to define strong contact, CS(x, y),
as sharing a region of the next lower dimension. E.g., 3D bodies are in strong contact

1 The relation Cont(x, y) is equivalent to the relation x ⊆ y used in [15].
2 This deviates from the more relaxed use of the predicates in [15].
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if they touch in a 2D surface, but not if they only touch in a curve segment or in points.
This, in turn, lets us define (self-)connectedness and internal (self-)connectedness (also
known as strong self-connectedness), meaning that the interior of x+y is a single piece.
The universal region Su is assumed to be internally connected, that is, ICon(Su).

(CS-D) CS(x, y)↔ SC (x, y) ∧ x =dim y ∧ r(x) · r(y) ≺dim x (strong contact)
(Con-D) Con(x)↔ ∀y[PP(y, x)→ C(y, r(x)− r(y))] (connected)
(ICon-D) ICon(x)↔ ∀y[PP(y, x)→ CS(y, r(x)− r(y))] (internally connected)

We further use a primitive function ch(x) to denote the convex hull region of x. It
is needed to specify necessary spatial conditions for the existence of voids. See [14] for
a more complete axiomatization of ch based on ideas from [4, 8].

Voids , V , are special kinds of immaterial dependent place features, as they depend on
some hosting, non-void, physical endurant. Voids include holes (following [2]) and
gaps, which are differentiated according to whether their hosts are internally connected
or not, respectively [15]. Any void must be located in the convex hull ch(x) of a host x,
but the region ch(x) − r(x) need not be completely covered by voids. In other words,
part of the convex hull of an endurant may be neither the location of a material part nor
of a void of the endurant. For example, the space between the base and the bulb of a
wine glass is typically not called a void. As identifying voids is thus somewhat arbitrary,
hosts-v is a primitive, i.e., undefined relation. It can be refined in various ways [15],
such as hosting a hole or a gap (depending on the host’s internal connectedness); hosting
a cavity, hollow, or tunnel (depending on the void’s opening, see V-A12); or hosting an
external or internal void (depending on the contact of the void’s opening to the exterior
or to other voids in the same host).

(V-A1′) hosts-v(y, x)→ PED(y)∧¬V (y)∧V (x)∧P (r(x), ch(y))∧CS(r(x), r(y))∧
PO(r(x), r(y)) (hosting a void: relation between a void x and its physical host y)

(V-D) V (x)↔ ∃y[hosts-v(y, x)] (all voids are hosted)
(V-A11) hosts-v(x, v)→ op(x, v) = r(v) · (r(x) + r(v))′

(the opening of a void v is the part of its boundary that is not shared with its host)
(V-A12) hosts-cav(x, y)↔ hosts-v(x, y) ∧ op(x, y) ⊀dim r(x) (hosting a cavity:

hosting a void with an opening that is not of the dimension of its host’s boundary)

We can ascribe voids to the level of granularity at which they occur [15]: a physical
object directly hosts larger, macroscopic voids, while more minuscule voids are hosted
by the object’s constituent matter. The region encompassing all voids within an object’s
matter defines its pore space—it is the difference between the object’s region and the
region corresponding to its constituent matter. This two-level model of physical space
can be extended to multiple levels to represent, for example, that a rock body constituted
by grains of rock matter (first level) is also constituted by crystals (second level) and
then molecules and atoms (third level). To accommodate multiple levels of granularity,
we introduce a set of hosting relations expressing that a physical endurant hosts a void
at the n-th level of granularity, written as hosts-vn(y, x) with n being a natural number.
hosts-v(y, x) is then equivalent to hosts-v0(y, x). The relations hosts-vn will be prop-
erly defined and axiomitized in subsequent work. Here, the relation hosts-vany(y, x) is
used to express that y hosts the void x at some level of granularity—assuming a fi-
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nite number of granularity levels. Then the entire void space of a physical endurant x,
voidspaceall(x), is defined as the sum of the regions of all voids therein, independent
of their level of granularity. This region must correspond to a void itself, which is intu-
itively hosted by the object’s constituent matter and encompasses all the empty spaces
within an object that can be filled by matter of the lowest granularity.

(Vany-D) hosts-vany(y, x)↔ ∃(n ≥ 0)
[
hosts-vn(y, x)

]
(hosting a void at any granularity level)

(V-A25) PO(y, voidspaceall(x))↔ ∃v[hosts-vany(x, v) ∧ PO(y, r(v))]
(the union of the voids of all levels of granularity define voidspaceall(x))

(V-A26) mat(x) ∧ ¬ZEX (voidspaceall(x))→ ∃y, h[r(y) = voidspaceall(x)∧
hosts-v(h, y)] (some void is located in a material endurant’s nonempty void space)

5 Generic physical containment
Three restrictions are imposed here on full physical containment relations. First,

all participants must be physical endurants, i.e. physical objects, amounts of matter, or
related features such as voids. Second, the full physical containment relation addresses
spatial inclusion in physical space, eliminating other forms of non-physical or non-
spatial containment, such as a file containing data, a book containing information, or
my heart containing feelings. Third, only static containment relations are considered:
change, motion, and other time-related ideas are beyond the scope of this paper. The
predicate fully-phys-contains(y, x) is used to denote this generic kind of full physical
containment, which has the necessary condition that x’s region is a subregion of y’s
convex hull. Any two physical endurants—material or immaterial—can participate in
generic full physical containment. However, full containment in immaterial containers
is still more restrictive: the containee x must not only be located within container y’s
convex hull, but within y’s region. Figures 3(a) and (b) demonstrate the need for this
restriction.

(FPCont-D) fully-phys-contains(y, x)↔ PED(x) ∧ PED(y) ∧ P (r(x), ch(y)) ∧[
¬mat(y)→ P (r(x), r(y))

]
(for x to be generically fully

physically contained in y, both x and y must be physical endurants and x’s region
must be within y’s convex hull and, if y is immaterial, within y’s region)

Where feasible, we identify relationships to the containment relations presented in
[8, 5] and give explicit mappings (labelled Mx) to the relations from [5]. The relation
fully-phys-contains(y, x) resembles the union of Donnelly’s generic and material-re-
gion containment predicates CNT -IN g(x, y) and CNT -IN mr(x, y) [8], as well as the
INSIDE (x, y) predicate defined in [5], but differs by its addition of physical typing.

(M1) fully-phys-contains(y, x)→ INSIDE (r(x), r(y)) ∧ [CNT -IN g(x, y)∨
CNT -IN mr(x, y)] (y generically physically contains x implies INSIDE (x, y))

For brevity, we subsequently drop the qualification “physical” with the understand-
ing that all containment relations in this paper occur exclusively between two physical
endurants. Two types of generic containment relations are distinguished first, using the
physical dependence between participants as a discriminator: dependent containment
and detachable containment, as illustrated by the initial division of full physical con-
tainment in the taxonomy in Figure 4. Intuitively, this division delineates whether the
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(a)

tunneldepression
boulder cavity

rock
body

tunnel
rock
body

(b)

Fig. 3. Examples of a physical endurant spatially contained in the convex hull of an immaterial
physical endurant, but not in its region. On the left, the depression is within the tunnel’s convex
hull, but not physically contained in the tunnel. On the right, the boulder’s cavity is within the
tunnel’s and rock body’s convex hulls, but is not physically contained in the tunnel or rock body.

topological attachment between participants is necessary or accidental, respectively.
Each of these two branches is subsequently delineated according to the (im)materiality
of the container and containee, leading to two more horizontal levels of division in
the taxonomy: in the first the container is either a material endurant or a void, and in
the next the containee varies similarly. The last level in the taxonomy represents refine-
ments of the previous distinctions; these are a partial selection from a greater number of
possibilities, and they denote common uses that could eventually be further expanded.
For example, containment involving material detachable containers is subdivided by
the manner of enclosure, i.e. whether the container fully, partially, or incidentally en-
closes the containee. Containment with immaterial detachable containers is subdivided
by the spatial positioning of the material containee, i.e. whether it splits or fills the void
container; and containment in which the dependent container and containee are both
im(material) is subdivided by parthood, i.e. whether the containee is a spatial part of
the container. Other possible subdivisions are discussed where applicable within the
relevant sections below. Note the taxonomy in Figure 4 is the product of a set of theo-
rems, labelled JPEDx, which prove that the subrelations at each division are pairwise
disjoint and jointly exhaustive with respect to the relation they refine.

While all kinds of physical endurants are valid participants in full physical contain-
ment relations, we restrict our study to voids as the only kind of immaterial physical
endurant. In other words, voids are the only subtype of DOLCE’s DPF category that
are included. Other subtypes of DPF , such as shadows, might also participate in full
physical containment relations, but they are beyond the scope of this paper.

6 Dependent containment
Dependent containment is denoted as dep-contains(y, x), meaning that ‘y phys-

ically contains x through some inherent physical dependency between x and y’. This
(undirected) physical dependency is denoted by the symmetric primitive predicate
dep(x, y) meaning ‘there is a dependency between the endurants x and y’. Depen-
dent physical containment is further specialized in this section according to the types of
physical endurants participating in the relation. Both containers and containees can be
either material endurants or voids, resulting in four possible specializations. Figure 5
illustrates a selection of these dependent containment relations. It is noteworthy that
while some specializations of dep(x, y) might be strongly related to a form of ontolog-
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(a) (d)(b) (e)(c)

Fig. 5. Examples of two dependent physical endurants in a containment relation. The rock body
(dark) (a) contains a submaterial part (light), (b) contains its constituent matter (light) as subma-
terial, (c) the rock body (dark and medium grey) materially contains a boulder (medium grey and
white) without the latter being a submaterial, (d) hosts two holes: a depression and a cavity (both
orange/medium grey), and (e) hosts a gap, a tunnel system (orange/medium grey).

ical dependence, e.g. if x exists then y must exist [22], we interpret dep(x, y) physically
and topologically, rather than existentially, as seems more appropriate. The relationship
to ontological dependence is left to future work. The four specializations of dependent
containment are next described individually in Subsections 6.1–6.4.
(Dep-A1) dep(x, y)→ PED(x) ∧ PED(y)

(dependence is a relation between physical endurants)
(Dep-A2) dep(x, y)→ dep(y, x) (dependence is symmetric, i.e. undirected)
(DepCont-D) dep-contains(y, x)↔ fully-phys-contains(y, x) ∧ dep(y, x)

(dependent containment is generic containment where x and y are dependent)

6.1 Material containment
An obvious kind of dependent containment is material containment: a material en-

durant x that is physically contained in a second material endurant y, and whose region
overlaps y’s region, is materially contained in y. The most frequently encountered case
occurs when x is located completely within y’s region, which is known as x being a
submaterial of y, as shown in Figures 5(a),(b), and (c). In this case, the dependency
between x and y manifests itself in that all matter that constitutes x also constitutes y,
at least in part, e.g. a particular rock formation within an aquifer, or the water in a bay
and in the corresponding lake. The case of y materially containing x, but x not being
a submaterial of y, is far less common but can occur, e.g., in a coral reef. The coral
material—the containee—consists of dead as well as living corals. The dead corals are
essentially a kind of rock matter, thus also part of the rock body that hosts and contains
the reef, while the living corals are not part of the rock body.
(Dep-A3) mat(x) ∧mat(y)→ [dep(x, y)↔ PO(r(x), r(y))]

(material endurants are dependent iff they spatially overlap)
(MCont-D) materially-contains(y, x)↔ dep-contains(y, x) ∧mat(x) ∧mat(y)

(material containment is dependent containment between material endurants)
(SubMat-D) submaterial(x, y)↔ materially-contains(y, x) ∧ P (r(x), r(y))

(x is a submaterial of y iff y materially contains x and x is located in a subregion of y)
(SubMat-T1) DK1(x, y)→ submaterial(x, y)

(the constituent matter x of y is a submaterial of y)
(SubMat-T2) P (r(x), r(y)) ∧mat(x) ∧mat(y)→ submaterial(x, y)

(a physical endurant whose region is located in part of another material endurant’s
region is a submaterial thereof)

The relation submaterial(x, y) is the material version of Donnelly’s region con-
tainment [8], written as CNT -IN r(x, y).
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Fig. 6. Examples of two dependent voids in a containment relation. In (a) the gap hosted by the
layer of rock is immaterially contained in the depression hosted by the rock body. In (b), the
riverbed and canyon are both hosted by the rock body (voids do not need to be maximal), thus
the riverbed is immaterially contained in the canyon.

6.2 Hosting a void

The second kind of dependent containment arises from hosting a void. Any void x
hosted by a physical endurant y also depends on the host, because the void would not
be present without the host. For this to be transitive over material containment, V-A27
specifies how voids are preserved when hosted by a material part 3.

(V-A27) mat(y) ∧mat(z) ∧ hosts-v(y, x) ∧ P (r(y), r(z)) ∧ ¬PO(r(z), r(x))→
hosts-v(z, x) (any void x hosted by a material part y of z that is not even partially
filled by z is also hosted by z)

(Dep-A4) V (x) ∧mat(y)→ [dep(y, x)↔ hosts-vany(y, x)]
(a void and a material endurant are dependent iff they are in a hosts relation)

(DepCont-T1) hosts-vany(y, x)↔ dep-contains(y, x) ∧ V (x) ∧mat(y)
(y hosts void x iff y is a material endurant that dependently contains void x)

6.3 Immaterial containment

The third kind of dependent containment is immaterial containment. In order to
define it, we first capture dependency between voids: two overlapping voids are depen-
dent if their material hosts occupy overlapping regions. Then, a void that is dependent
on another void, and that occupies a subregion of the other void, is also immaterially
contained in the other void.

(Dep-A5) V (x)∧ V (y)→
[
dep(x, y)↔ PO(r(x), r(y))∧ ∃hx, hy[hosts-v(hx, x)∧

hosts-v(hy, y) ∧mat(hx) ∧mat(hy) ∧
(
P (r(hx), r(hy)) ∨ P (r(hy), r(hx))

)
]
]

(voids are dependent iff they overlap and have spatially nested material hosts)
(ImCont-D) immaterially-contains(y, x)↔ dep-contains(y, x) ∧ V (x) ∧ V (y)

(immaterial containment is dependent containment between voids)
(ImCont-T1) immaterially-contains(y, x)→ P (r(x), r(y))

(immaterial containment requires that x is located in a subregion of y)

In immaterial containment, the dependency relation is more implicit because of the
inclusion relation between their hosts’ regions. Intuitively, if the larger host (or one of
its material parts) does not host the smaller void, the larger void would not exist in its
present form. A general form of immaterial containment is illustrated in Figure 6(a). A
special case is illustrated in Figure 6(b), where two voids have the same host; then we
call the contained void a subvoid of the container void.

3 V-A27 is required in addition to the weaker condition previously imposed by V-A7 in [14, 15].
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(SubVoid-D) subvoid(x, y) ↔ immaterially-contains(y, x) ∧ ∃h[hosts-v(h, y) ∧
hosts-v(h, x)]

(x is a subvoid of y iff y immaterially contains x and they have a common host)

6.4 Can a material endurant be dependently contained in a void?
So far, we have considered three types of dependent containment between mate-

rial or void endurants. The remaining combination involves a void as container and
a dependent material endurant as containee. It is difficult to imagine this case unless
the container void is the entire space of interest, e.g., physical space. However, that
does not fit our framework requiring voids to be hosted by some physical endurant,
because space as such is not physically hosted. Hence voids and physical space are dis-
tinct notions, with the latter being a container for all empirical entities, including voids.
Physical space should then not be confused with related notions of voids, e.g. the term
“outer space” is more precisely described as the space “that separates the planets, stars,
and galaxies” [6, p. 132], which is in fact a gap (a void) hosted by celestial bodies. In
essence, void containers cannot dependently contain material endurants. We can prove
this in our formalization with the help of Dep-A4 and DepCont-D.

(Dep-T1) dep-contains(y, x) ∧mat(x)→ ¬V (y)
(a material entity cannot be dependently contained in a void)

The inclusion of physical space as a participant in containment relations remains a
potential future task.

6.5 Classification of dependent containment
Because voids cannot dependently contain material endurants, the remaining three

relations are exhaustive subrelations of dep-contains(y, x). Their typing immediately
entails they are disjoint relations.

(JEPD1) [mat(x) ∨ V (x)] ∧ [mat(y) ∨ V (y)] ∧ dep-contains(y, x)→
[materially-contains(y, x) ∨ immaterially-contains(y, x) ∨ hosts-v(y, x)]

(JEPD2) ¬materially-contains(y, x) ∨ ¬immaterially-contains(y, x)
(JEPD3) ¬materially-contains(y, x) ∨ ¬hosts-v(y, x)
(JEPD4) ¬immaterially-contains(y, x) ∨ ¬hosts-v(y, x)

To complete the dependent containment taxonomy, we consider notions of contain-
ment in which the container type is fixed, but the containee can vary as material endurant
or void: dependent material containment, dep-mat-contains , has a material container,
and dependent immaterial containment, dep-immat-contains , has an immaterial con-
tainer. Dependent material containment is thus specialized by the material containment
and the hosting relations, and dependent immaterial containment has immaterial con-
tainment as its only feasible specialization, so that their extensions are equivalent.

(DepMCont-D) dep-mat-contains(y, x)↔ dep-contains(y, x) ∧mat(y)
(dependent material containment)

(DepImCont-D) dep-immat-contains(y, x)↔ dep-contains(y, x) ∧ V (y)
(dependent immaterial containment)

(JEPD5) dep-mat-contains(y, x)↔ materially-contains(y, x) ∨ hosts-v(y, x)
(JEPD6) dep-immat-contains(y, x)↔ immaterially-contains(y, x)
(JEPD7) ¬dep-mat-contains(y, x) ∨ ¬dep-immat-contains(y, x)
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7 Detachable containment
Detachable containment holds between physical endurants that are not physically

dependent. It occurs when the containee is physically contained strictly due to a non-
necessary spatial arrangement. The term ‘detachable’ emphasizes that the two physical
endurants are independent and, in principle, separable4.

(DetCont-D) det-contains(y, x)↔ fully-phys-contains(y, x) ∧ ¬dep(y, x)
(detachable containment is generic containment between independent endurants)

By the definitions DepCont-D and DetCont-D, detachable and dependent containment
are subrelations of generic physical containment; now we can prove that they are jointly
exhaustive, pairwise disjoint (JEPD) subrelations.

(JEPD8) fully-phys-contains(y, x)↔ dep-contains(y, x) ∨ det-contains(y, x)
(JEPD9) ¬dep-contains(y, x) ∨ ¬det-contains(y, x)

To achieve our objective of classifying and formalizing the various kinds of detach-
able containment, we study its specializations that arise from the four combinations of
material endurants and voids as container and containee.

7.1 An endurant inside a void
Arguably, the most foundational form of detachable containment involves some-

thing being inside a void. This relation is denoted by the predicate inside(x, y) under-
stood as ‘the physical endurant x is spatially located within the void y’. Being located
inside a void requires that the containee’s region r(x) is completely within the region of
the void container, that is, P (r(x), r(y)), and not just within the container’s convex hull.
Beware that this relation switches the positions of the two parameters: x is inside the
void y, that is, inside(x, y), means y detachably contains x, that is, det-contains(y, x).

(INSIDE-D) inside(x, y)↔ det-contains(y, x) ∧ V (y)
(inside(x, y) is detachable containment in a void container)

(INSIDE-T1) inside(x, y)→ P (r(x), r(y))
(inside(x, y) requires x to be located within the region of y)

Next, the inside(x, y) relation is further specialized by the containee’s type.

A material endurant inside a void If a material endurant is inside a void, we use
the relation mat-inside(x, y). This relation is equivalent to the only relation discussed
in [8] that explicitly involves immaterial entities, namely material-region containment,
CNT -IN mr(x, y).

(MINSIDE-D) mat-inside(x, y)↔ inside(x, y) ∧mat(x)
(mat-inside(x, y) denotes that the material endurant x is inside the void y)

More fine-grained specializations of mat-inside(x, y) can be derived according to
(1) the kind of container void, and (2) the location of the containee within the container
void. The first choice includes distinctions based on (1a) the void’s internal connect-
edness (whether it is a simple or complex void), (1b) the host’s internal connectedness

4 Two physical endurants in a detachable containment relation may be inseparable for reasons
other than a physical dependence, for example, because they are interlocked, glued or other-
wise fused together, or because one endurant fully encloses the other.
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(c)(b)(a)

(f)(e)(d)

Fig. 7. A material endurant (white) being inside a void (orange/medium grey) and being sur-
rounded by another material endurant (dark). The void is a hole in the top row, and a gap in the
bottom row. The white containee may split (center column) or fill (right column) the void.

(whether the void is a hole or a gap), (1c) the void’s opening (whether the void is a
cavity, a hollow, or a tunnel), and (1d) the void’s connection to other voids within the
same host (whether the void is an internal or external void). As these choices simply
mirror the classification of voids in our earlier work, we invite the reader to consult [15]
for the relevant axioms necessary to expand the taxonomy accordingly.

The second choice includes distinctions based on the containee’s connection to
(2a.I) the container’s host, (2a.II) the outside, and (2a.III) other voids in the container’s
host. These three distinctions involve the container void’s host and are thus not de-
finable using the void alone. But they can be coupled with further distinctions that
fall within the second choice, namely whether the containee (2b.I) splits the void into
disconnected parts, (2b.II) completely fills the void, or (2b.III) is “stuck” in the void.
Except for “being stuck” in a void, which is an intricately shape-based relation, these
relations are definable using our underlying mereotopological theory. Figure 7 gives ex-
amples of splitting and filling a void. mat-fills-inside is equivalent to the intersection
of SUMO’s [20] relations ‘completelyFills’ and ‘properlyFills’.

(MSINSIDE-D) mat-splits-inside(x, y)↔ mat-inside(x, y) ∧ PP(r(x), r(y)) ∧
ICon(r(y)) ∧ ¬ICon(r(y)− r(x)) (a material containee x splits a void
y iff it is located in a proper subregion of y, the void y is internally connected, and
the part of y that is not occupied by the containee is not internally connected)

(MFINSIDE-D) mat-fills-inside(x, y)↔ mat-inside(x, y) ∧ r(x) = r(y)
(a containee fills a void if it is material and its region saturates the entire void)

(JEPD10) ¬mat-splits-inside(x, y) ∨ ¬mat-fills-inside(x, y)

A void inside another void Voids can be inside other voids without their hosts being in
a containment relation. We capture this relation between two independent voids using
the predicate void -inside(x, y).

(VINSIDE-D) void -inside(x, y)↔ inside(x, y) ∧ V (x)
(void -inside(x, y) is the relation of a void x inside another void y)

Figure 8(a) and (b) illustrate this relation. As the example (a) demonstrates, it is not
required that the containee’s host (A) spatially overlaps the container’s convex hull
(r(VB) + r(B)). However, this is often the case, as shown in example (b). A special
case of void -inside(x, y) occurs when the convex hull of the containee’s host is entirely
contained in the container void, as demonstrated by Figure 8(c). Then every void within
that particular host z is inside the void y.
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Fig. 8. Examples of a void detachably containing another void.

(VINSIDE-T1) P (ch(z), r(y)) ∧mat(z) ∧ V (y)→ ∀v[hosts-vany(z, v)→
void -inside(v, y)] (if the convex hull of a material endurant z is completely
contained in the void y, then every void v hosted by z is inside y as well)

Classification of inside The two relations mat-inside and void -inside are JEPD
subrelations of inside .

(JEPD11) inside(x, y)↔ mat-inside(x, y) ∨ void -inside(x, y)
(JEPD12) ¬mat-inside(x, y) ∨ ¬void -inside(x, y)

7.2 A material endurant surrounding another endurant
When a material endurant y detachably contains another endurant x, we say ‘y

surrounds x’ denoted by the predicate surrounds(y, x).

(SUR-D) surrounds(y, x)↔ det-contains(y, x) ∧mat(y)
(surrounds(y, x) is detachable containment with a material container)

This relation is equivalent to surround containment, CNT -IN s(x, y), from [8]. It
can be further refined according to the (im)materiality of the containee, as discussed in
the remainder of this section.

A material endurant surrounding another material endurant A material endurant
detachably contained in another material endurant is materially surrounded by the latter.
We denote this relation using the predicate surrounds-mat(y, x), which is read as ‘the
material endurant y partially or fully surrounds the material endurant x’.

(MSUR-D) surrounds-mat(y, x)↔ surrounds(y, x) ∧mat(x)
(material endurant y surrounds a material endurant x)

surrounds-mat(y, x) does not rule out the case in which x’s region is within y’s
convex hull, but outside any void (or set of voids) hosted by y. For example, the boulder
in Figure 9(a) is surrounded by the rock body, yet is not contained in the rock body.
This can occur when the convex hull of a material container has spaces that are neither
material nor voids. There is no principled way to identify voids amongst candidate
spaces at this time [3], hence their identification is somewhat arbitrary. When another
material endurant is located in such a non-void space, the relation is called incidentally
materially surrounds, written as incidentally-surrounds-mat(y, x).

(IMSUR-D) incidentally-surrounds-mat(y, x)↔ surrounds-mat(y, x) ∧
¬P (r(x), voidspaceall(y)) (y incidentally materially surrounds x iff y materially
surrounds x, but x’s region is not within y’s entire void space)

A special case of the material surrounds relation is fully materially surrounds, writ-
ten as encloses-mat(y, x). In this case, the containee must be located within some
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Fig. 9. Example of a (a) material endurant (a boulder) or a (b) void (a hollow in a boulder) located
within the convex hull of a material endurant (the rock body) without being located within any
of its voids (the depression). Hence, the boulder in (a) and the hollow in (b) are only incidentally
surrounded by the rock body.

(c)(b)(a)

(f)(e)(d)

Fig. 10. A material endurant (dark) surrounding another material endurant (white) with the sur-
rounding container’s void (orange/medium grey) being either a hole (top row) or a gap (bottom
row). From left to right: openly surrounds, encloses, and incidentally surrounds.

cavity of the container. Examples of a container fully surrounding a containee are water
in a closed bottle, or water in the subterranean cavity of a rock body.

(MENCL-D) encloses-mat(y, x)↔ surrounds-mat(y, x)∧∃v[hosts-cavany(y, v)∧
P (r(x), r(v))] (a material container y encloses a material containee x

iff it hosts a cavity wherein x is located)

The relation encloses-mat(y, x) is a physical version of being topologically inside,
TOP -INSIDE (x, y), as defined in [5], for detachable material endurants.

(M2) encloses-mat(y, x)↔ TOP -INSIDE (r(x), r(y)) ∧mat(y) ∧mat(x) ∧
¬dep(x, y) (encloses-mat is the topologically inside relation for detachable
material endurants)

It is obvious that incidentally-surrounds-mat and encloses-mat are disjoint rela-
tions. When the containee is neither incidentally surrounded nor enclosed by its material
container, the container openly materially surrounds the containee, denoted as openly-
surrounds-mat(y, x). Notice that openly-surrounds-mat(y, x) is agnostic about
whether the containee can exit the container—we consider physical accessibility to
be an associated but different relation. The three relations openly-surrounds-mat ,
incidentally-surrounds-mat , and encloses-mat form a set of JEPD subrelations of
surrounds-mat . Examples for each are given in Figure 10.

(OMSUR-D) openly-surrounds-mat(y, x) ↔ surrounds-mat(y, x) ∧ ¬encloses-
mat(y, x) ∧ ¬incidentally-surrounds-mat(y, x) (openly materially surrounds)

(JEPD13) ¬incidentally-surrounds-mat(y, x) ∨ ¬encloses-mat(y, x)



Physical Containment 17

(c)(b)(a)

Fig. 11. Examples of a material endurant (dark) (a) openly surrounding, (b) enclosing, and (c)
incidentally surrounding an independent void (light grey) hosted by the white object. The case
for a hole (orange/medium grey) is depicted, but works equally for a gap.

(JEPD14) surrounds-mat(y, x)↔ openly-surrounds-mat(y, x)∨
encloses-mat(y, x) ∨ incidentally-surrounds-mat(y, x)

Together, openly-surrounds-mat and incidentally-surrounds-mat are the phys-
ical version of being geometrically inside, GEO-INSIDE (x, y), from [5], for detach-
able material endurants.
(M3) openly-surrounds-mat(y, x) ∨ incidentally-surrounds-mat(y, x)↔ GEO-

INSIDE (r(x), r(y))∧mat(y)∧mat(x)∧¬dep(x, y)
(encloses-mat and incidentally-surrounds-mat together are the geometrically

inside relation for detachable material endurants)

A material endurant surrounding a void If a material endurant y surrounds a void x
that is independent of y, we write surrounds-void(y, x) and say y void-surrounds x.

(VSUR-D) surrounds-void(y, x)↔ surrounds(y, x) ∧ V (x)
(a material endurant y surrounds a void x)

Again, this kind of surrounds relation may be incidental, in which case we say y
incidentally void-surrounds x and write incidentally-surrounds-void(y, x). The en-
closed and open analogues can also be defined: y detachably void-encloses, that is,
fully surrounds the void x, if x is located in a cavity of y. When the void containee is
neither incidentally surrounded nor enclosed by its material container, then it is openly
void-surrounded by the container. Examples are given in Figure 11. These three subre-
lations of surrounds-void are the physical versions of topologically and geometrically
inside involving a material container and a void, and they are JEPD subrelations.

(IVSUR-D) incidentally-surrounds-void(y, x)↔ surrounds-void(y, x) ∧
¬P (r(x), voidspaceall(y)) (y incidentally void-surrounds the void x

iff y void-surrounds x but y’s void space does not spatially contain x)
(VENCL-D) encloses-void(y, x)↔ surrounds-void(y, x) ∧
∃v[hosts-cavany(y, v) ∧ P (r(x), r(v))]
(a material container y encloses a void x iff it hosts a cavity wherein x is located)

(OVSUR-D) openly-surrounds-void(y, x) ↔ surrounds-void(y, x) ∧ ¬encloses-
void(y, x) ∧ ¬incidentally-surrounds-void(y, x) (openly void-surrounds)

(JEPD15) ¬incidentally-surrounds-void(y, x) ∨ ¬encloses-void(y, x)
(JEPD16) surrounds-void(y, x)↔ openly-surrounds-void(y, x) ∨

incidentally-surrounds-void(y, x) ∨ encloses-void(y, x)

Classification of surrounds It is easy to see that the relations surrounds-mat(y, x)
and surrounds-void(y, x) are JEPD subrelations of surrounds(y, x). Both relations
are further specialized into three JEPD subrelations as already discussed.
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(JEPD17) surrounds(y, x)↔ surrounds-mat(y, x) ∨ surrounds-void(y, x)
(JEPD18) ¬surrounds-mat(y, x) ∨ ¬surrounds-void(y, x)

The following three subrelations of surrounds are introduced for convenience only.
(ISUR-D) incidentally-surrounds(y, x)↔

incidentally-surrounds-void(y, x) ∨ incidentally-surrounds-mat(y, x)
(ENCL-D) encloses(y, x)↔ encloses-void(y, x) ∨ encloses-mat(y, x)
(OSUR-D) openly-surrounds(y, x)↔

openly-surrounds-void(y, x) ∨ openly-surrounds-mat(y, x)

7.3 Classification of detachable containment
If we only consider material endurants and voids as possible participants, then

inside and surrounds are the only kinds of detachable containment, that is, they are
JEPD subrelations of det-contains .
(JEPD19) [mat(x) ∨ V (x)] ∧ [mat(y) ∨ V (y)]
→ [det-contains(y, x)↔ inside(x, y) ∨ surrounds(y, x)]

(JEPD20) ¬inside(x, y) ∨ ¬surrounds(y, x)

8 Discussion
The various types of containment described above lead to several implications. First,

material constitution is a special case of full physical containment.
(DetCont-T1) DK 1(x, y)→ materially-contains(y, x)

Second, the surrounds and inside relations are somewhat reciprocal: the two main
kinds of the surrounds relation, namely openly-surrounds(y, x) and encloses(y, x),
can always be traced back to the relation of x being inside y’s entire void space,
voidspaceall(y), which must exist according to V-A26. This accounts for the case
where the surrounded entity x is distributed across voids at multiple levels of granu-
larity within the container y. For example, an amount of water surrounded by a rock
body can be located partly in the rock body’s macroscopic voids and partly in the rock
matter’s microscopic voids. In the other direction, inside(x, y) entails that any host of
y openly surrounds or encloses x.
(DetCont-T2) openly-surrounds(y, x) ∨ encloses(y, x)→ ∃z[inside(x, z)∧

P (r(z), voidspaceall(y))] (y openly surrounding or enclosing x requires x to be
inside some void located in y’s void space)

(DetCont-T3) inside(x, y)→
∀h

[
hosts-vany(h, y)→ openly-surrounds(h, x) ∨ encloses(h, x)

]
(x being inside void y requires any host of y to openly surround or to enclose x)

Third, the most interesting relations, mat-inside and surrounds-mat , might be
refined further if we take not only the relative location of the two participating endurants
into account, but also the location of the indirectly involved host or void. DetCont-T2
and DetCont-T3 demonstrate that such a third, indirect, participant must exist. Consider
the example of a material containee inside a void hosted by some material endurant, e.g.
a rock in a hole hosted by a lakebed. In this case, it is possible to distinguish whether
the containee is (non)tangentially inside the void or (non)tangentially surrounded by the
host. Similar to the definition of (non)tangential parthood in [4], this can be expressed in
a multidimensional setting using a definable relation of tangential containment, TCont ,
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that specializes the spatial inclusion relation Cont [14]. We can then express more
sophisticated relations, such as whether the rock protrudes from the lake. A protruding
rock is not only tangentially contained in the water body but is also in contact, by means
of partial overlap or tangential contact, with the lake’s exterior—the space where neither
the lakebed nor the water body nor the water body’s voids are located.

Lastly, all relations in our motivating example (Figure 1) can now be much more
specifically expressed using the various kinds of full physical containment:

openly-surrounds-mat(LB,SWB) openly-surrounds-mat(LB,Rock)
hosts-v(LB,Hole) mat-inside(SWB,Hole)
mat-inside(Rock,Hole) openly-surrounds-mat(SWB,Rock)
materially-contains(AQ,GWB) materially-contains(AQ,RM)
encloses-mat(AQ,CT) hosts-vany(AQ,Gaps)
mat-inside(Gaps,GWB) mat-inside(Gaps,CT)
encloses-mat(GWB,CT)

By accounting for physical constraints in the definitions of the various containment
relations we further ensured that the rock is not physically contained in the gaps, i.e. that
¬fully-phys-contains(Gaps,Rock), because while the rock’s region is fully inside the
gap’s convex hull, it is not inside the gap’s region.

We further have two examples of the incidental surrounds relation:
incidentally-surrounds-mat(AQ,SWB) incidentally-surrounds-mat(AQ,Rock)

Some of the detachable containment relations, notably a void being inside another
void, or a void being surrounded by a material endurant, are included here merely for
completeness. They are not required to express the various containment relations in our
motivating example, and will likely not play a prominent role in practical settings.

9 Conclusion
Full physical containment—the notion that one physical entity is completely inside

or surrounded by another—plays a central role in describing many natural resources, es-
pecially water. To date, ontological representations of the full physical containment re-
lation are limited to abstract space, incomplete, or they insufficiently incorporate voids.
In this paper we argue that a thorough interpretation of this relation must accommodate
both voids and material entities as containers and containees, and must account for the
physical differences between voids and material entities. From this we develop a taxon-
omy, summarized in Figure 4, in which such containment relations are first differenti-
ated according to the dependency between container and containee, and then according
to their (im)materiality. This results in a delineation of full physical containment that
is grounded in physical space and more comprehensive than prior efforts. The taxo-
nomical distinctions are expressed using a formal multidimensional mereotopological
theory, inspired by RCC, and are integrated into the DOLCE foundational ontology,
as another step towards a rigorous hydro ontology. Potential future research directions
include extensions to partial containment, and to containment across various levels of
physical granularity, e.g. to better examine the relation between a containee held in the
gaps of some matter (such as a contaminant), and the physical object constituted by the
matter. Work is also underway to integrate the notion of physical space—distinct from
voids—as a container for all physical entities.
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