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Abstract. Boolean Contact Algebras (BCA) establish the algebraic coun-
terpart of the mereotopolopy induced by the Region Connection Calculus
(RCC). Similarly, Stonian p-ortholattices serve as a lattice theoretic ver-
sion of the ontology RT− of Asher and Vieu. In this paper we study the
relationship between BCAs and Stonian p-ortholattices. We show that
the skeleton of every Stonian p-ortholattice is a BCA, and, conversely,
that every BCA is isomorphic to the skeleton of a Stonian p-ortholattice.
Furthermore, we prove the equivalence between algebraic conditions on
Stonian p-ortholattices and the axioms C5, C6, and C7 for BCAs.

1 Introduction

Region-based theories of space play a crucial role in qualitative spatial reasoning
(QSR) within Artificial Intelligence (cf. [4]). Mereotopology – consisting of some
topological notion of contact and a mereological notion of parthood – is the
common core to most region-based theories of space. Instead of points as in
classical point-set topology, mereotopology uses regions as primitives and focuses
on the qualitative relations between different regions, such as contact, overlap,
external contact, and parthood. In allowing to define part-whole relations such
as self-connectedness of regions, the combination of topology with mereology is
more expressive than either theory by itself.

As long as AI has been interested in mereotopology, different first-order mereotopo-
logical theories have been proposed. Most prominent amongst them is the Region-
Connection Calculus (RCC) [3], which originated from Clarke’s theory [2]. An-
other theory of the same origin, the RT0 by Asher and Vieu [1], has received
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less attention although the theory is fairly similar to the RCC. The two theories
differ mainly in their intended topological interpretations: RCC models include
only regular closed sets while RT models allow any kind of regular sets (closed,
open, clopen, or neither). A very fruitful way of understanding these theories of
qualitative space is by looking at their algebraic counterparts. For the RCC, it
was shown that the models can be defined in terms of Boolean Contact Algebras
(BCA) for which topological representations have been given for various subsets
of the original RCC axioms [6, 7, 11, 12]. Recently, an algebraic representation of
the theory RT− as Stonian p-ortholattices [10] has been proved which allows to
compare the models of RCC and RT− in a purely algebraic way.

In this work, we exhibit the relationship between BCAs and Stonian p-ortholat-
tices by using the skeleton of Stonian p-ortholattices as bridging structure. We
show that the skeleton S(L) of an arbitrary Stonian p-ortholattice L is a BCA
when defining the contact relation of the BCA in terms of the lattice L. In
addition we prove the equivalence between algebraic conditions on Stonian p-
ortholattices and the axioms C5, C6, and C7 for BCAs. On the reverse, we prove
that every BCA can be embedded in a Stonian p-ortholattice. This theoretical
work provides semantic mappings between the two theories; it specifies which
class of models of the RT− can be mapped to which class of BCAs and vice
versa.

The paper is structured as following. Section 2 introduces Stonian p-ortholattices
and their algebraic properties. We define standard topological models and the
notion of a skeleton for Stonian p-ortholattices. Afterwards, we briefly review
BCAs and their topological representation. The following two sections contain
the main results of this paper. In Section 4 we establish that the skeleton of a
Stonian p-ortholattice is a BCA when choosing the contact relation accordingly,
and in Section 5 we construct a Stonian p-ortholattice from any BCA by using
the Boolean algebra of a BCA as the skeleton of the Stonian p-ortholattice.
However, examples demonstrate that there is no unique embedding of BCAs
into Stonian p-ortholattices.

These constructive embedding theorems verify in an algebraic way that the mod-
els of the theory RT− are indeed more general than BCAs. Most significantly for
QSR, the results imply that every model of RT− that is connected, ∗-normal,
and has a dense skeleton is in fact a model of the RCC. However, arbitrary
Stonian p-ortholattices L of RT− models do not adhere to the extensionality,
interpolation, and connection axioms. Their skeletons S(L) are arbitrary BCAs
as axiomatized by C0-C4.

2 Stonian p-Ortholattices

In [1] Asher and Vieu introduced the mereotopology RT0. This theory was in-
tended to cover exactly those regions that have full interior and smooth bound-
aries. Even though this theory does not include all possible sets of a topological



space, the notion of interior and closure are available. In [10] it was shown
that the models of Asher and Vieu’s theory RT− are equivalent to Stonian (or
Stonean) p-ortholattices. This observation now allows an algebraic treatment of
that theory. First, recall pseudocomplemented and orthocomplemented lattices.

Definition 1. A pseudocomplemented lattice (or p-algebra) is an algebraic struc-
ture 〈L,+, ·,∗ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

P0. 〈L,+, ·, 0, 1〉 is a bounded lattice,
P1. a∗ is the pseudocomplement of a, i.e. a · x = 0 ⇐⇒ x ≤ a∗.

Definition 2. An ortholattice (or orthocomplemented lattice) is an algebraic
structure 〈L,+, ·,⊥ , 0, 1〉 of type 〈2, 2, 1, 0, 0〉 such that

O0. 〈L,+, ·, 0, 1〉 is a bounded lattice,
O1. a⊥ is an orthocomplement of a, i.e. for all a, b ∈ L we have

(a) a⊥⊥ = a,
(b) a · a⊥ = 0,
(c) a ≤ b implies b⊥ ≤ a⊥.

A lattice that is both pseudocomplemented and orthocomplemented is called a
p-ortholattice. A Stonian p-ortholattice additionally satisfies the Stone identity
(PO.2). Notice that p-ortholattices are not necessarily distributive. In fact any
distributive Stonian p-ortholattice is a Boolean algebra (cf. [10]).

Definition 3. A Stonian p-ortholattice is an algebraic structure 〈L,+, ·,∗ ,⊥ , 0, 1〉
of type 〈2, 2, 1, 1, 0, 0〉 such that

PO0. 〈L,+, ·,∗ , 0, 1〉 is a pseudocomplemented lattice,
PO1. 〈L,+, ·,⊥ , 0, 1〉 is an ortholattice,
PO2. (a · b)∗ = a∗ + b∗ holds for all a, b ∈ L.

P-ortholattices are always quasicomplemented (also known as ‘dually pseudo-
complemented’) and thus double p-algebras. In a Stonian p-ortholattice one
may define the quasicomplement a+ of a, i.e. the smallest element b such that
a+ b = 1, as a+ = a⊥∗⊥.

The following basic properties of Stonian p-ortholattices were shown in [10].

Lemma 1. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then:

1. 0+ = 0⊥ = 0∗ = 1 and 1+ = 1⊥ = 1∗ = 0,
2. a · a+ = a · a⊥ = a · a∗ = 0 and a+ a+ = a+ a⊥ = a+ a∗ = 1,
3. a+ ≤ a⊥ ≤ a∗ and a++ ≤ a ≤ a∗∗
4. a+++ = a+ and a∗∗∗ = a∗,
5. a ≤ b implies b∗ ≤ a∗, b+ ≤ a+, and b⊥ ≤ a⊥,
6. (a+b)∗ = a∗ ·b∗, (a ·b)+ = a+ +b+, (a+b)⊥ = a⊥ ·b⊥ and (a ·b)⊥ = a⊥+b⊥,
7. a∗⊥ = a⊥+ = a∗+ = a++ and a+⊥ = a⊥∗ = a+∗ = a∗∗.

Throughout this paper we will use the properties above without mentioning.



1

a

tttttttt
a∗

HHHHHHH

a++ a⊥

0

IIIIIII
vvvvvv

Fig. 1. The non-modular, non-distributive Stonian p-ortholattice C6

2.1 Topological models

Topological models of the theory of Stonian p-ortholattices are given by those
sets that have full interior and smooth boundaries, i.e. are based on RT(X) =
{a ⊆ X | int(a) = int(cl(a))∧cl(a) = cl(int(a))} where int and cl are the interior
and closure operation of the topological space 〈X, τ〉. On those elements we
define the following operations. The notations x ∩∗ y and x ∪∗ y are maintained
from [1].

x ∩∗ y = x ∩ y ∩ cl(int(x ∩ y)),
x ∪∗ y = x ∪ y ∪ int(cl(x ∪ y)),

x∗ = cl(X \ x),

x⊥ = X \ x.

The next lemma provides some basic properties of those operations.

Lemma 2. Let 〈X, τ〉 be a topological space. Then we have:

1. cl(x ∪∗ y) = cl(x) ∪ cl(y),
2. int(x ∩∗ y) = int(x) ∩ int(y),
3. X \ (x ∩∗ y) = (X \ x) ∪∗ (X \ y),
4. X \ (x ∪∗ y) = (X \ x) ∩∗ (X \ y).

Proof. 1. Consider the following computation

cl(x ∪∗ y) = cl(x ∪ y ∪ int(cl(x ∪ y)))
= cl(x ∪ y) ∪ cl(int(cl(x ∪ y)))
= cl(x ∪ y) cl(int(cl(z))) ⊆ cl(z)
= cl(x) ∪ cl(y).

2. is shown analogously.



3. This property is shown by

X \ (x ∩∗ y) = X \ (x ∩ y ∩ cl(int(x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ (X \ cl(int(x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ int(cl(X \ (x ∩ y)))
= (X \ x) ∪ (X \ y) ∪ int(cl((X \ x) ∪ (X \ y)))
= (X \ x) ∪∗ (X \ y).

4. is shown analogously. ut

The next theorem verifies that the class of all structures RT(X) can be seen as
the class of standard topological models of this kind of mereotopology.

Theorem 1. Let 〈X, τ〉 be a topological space. Then 〈RT(X),∪∗,∩∗,∗ ,⊥ , ∅, X〉
is a Stonian p-ortholattice.

Proof. First, we have to show that RT(X) is closed under all operations. Con-
sider the following computations

cl(x ∪∗ y) = cl(x) ∪ cl(y) Lemma 2(1)
= cl(int(x)) ∪ cl(int(y)) x, y ∈ RT(X)
= cl(int(x) ∪ int(y))
⊆ cl(int(x ∪ y))
⊆ cl(int(x ∪∗ y)),

and

int(cl(x ∪∗ y))
= int(cl(x) ∪ cl(y)) Lemma 2(1)
= int(int(cl(x) ∪ cl(y)))
= int(int(cl(x)) ∪ int(cl(y)) ∪ int(cl(x) ∪ cl(y))) int(z1) ∪ int(z2)

⊆ int(z1 ∪ z2)
= int(int(x) ∪ int(y) ∪ int(cl(x) ∪ cl(y))) x, y ∈ RT(X)
= int(int(x) ∪ int(y) ∪ int(cl(x ∪ y)))
⊆ int(x ∪ y ∪ int(cl(x ∪ y)))
= int(x ∪∗ y).

In both cases the converse inclusion is trivial. The properties int(x ∪∗ y) =
int(cl(x ∪∗ y)) and int(x ∩∗ y) = int(cl(x ∩∗ y)) are shown analogously.

cl(x⊥) = cl(X \ x)
= X \ int(x)
= X \ int(cl(x)) x ∈ RT(X)
= cl(int(X \ x))

= cl(int(x⊥)),



int(x⊥) = int(X \ x)
= X \ cl(x)
= X \ cl(int(x)) x ∈ RT(X)
= int(cl(X \ x))

= int(cl(x⊥)),
cl(x∗) = cl(cl(X \ x))

= cl(X \ x)

= cl(x⊥)

= cl(int(x⊥)) see above
= cl(int(X \ x))
⊆ cl(int(cl(X \ x)))
= cl(int(x∗)),

int(x∗) = int(cl(X \ x))
= int(cl(cl(X \ x)))
= int(cl(x∗)).

Now, assume x, y, z ∈ RT(X) with z ⊆ x and z ⊆ y. Then z ⊆ x∩y, and we have
z = z ∩ cl(z) = z ∩ cl(int(z)) ⊆ x ∩ y ∩ cl(int(x ∩ y)) = x ∩∗ y. This verifies that
x∩∗ y is the greatest lower bound of x and y in RT(X). It is shown analogously
that x ∪∗ y is the least upper bound of x and y in RT(X).

It is easy to verify that x⊥ is an orthocomplement of x. In order to prove that
x∗ is a pseudocomplement consider the following computation

x ∩∗ x∗ = x ∩ cl(X \ x) ∩ cl(int(x ∩ cl(X \ x)))
⊆ cl(int(x ∩ cl(X \ x)))
= cl(int(x) ∩ int(cl(X \ x)))
= cl(int(x) ∩ int(X \ x)) X \ x ∈ RT(X)
= cl(int(x ∩ (X \ x)))
= cl(int(∅))
= ∅.

In order to verify that x∗ is the pseudocomplement of X it remains to show that
x∗ is the largest element z with x ∩∗ z = ∅. Therefore, assume z ∈ RT(X) with
x∩∗ z = ∅. Then we have int(x)∩ int(z) = int(x∩∗ z) = int(∅) = ∅ using Lemma
2(2). We conclude int(z) ⊆ X \int(x) = cl(X \x) = x∗. This immediately implies
z ⊆ cl(z) = cl(int(z)) ⊆ cl(x∗) = x∗.

The following computation verifies the Stone property



(x ∩∗ y)∗ = cl(X \ (x ∩∗ y))
= cl((X \ x) ∪∗ (X \ y)) Lemma 2(3)
= cl(X \ x) ∪ cl(X \ y) Lemma 2(1)
= x∗ ∪ y∗

= x∗ ∪ y∗ ∪ int(x∗ ∪ y∗)
= x∗ ∪ y∗ ∪ int(cl(X \ x) ∪ cl(X \ y))
= x∗ ∪ y∗ ∪ int(cl(cl(X \ x) ∪ cl(X \ y)))
= x∗ ∪ y∗ ∪ int(cl(x∗ ∪ y∗))
= x∗ ∪∗ y∗.

This completes the proof. ut

2.2 Skeleton

Skeletons (also called centers) have been first defined by Glivenko in 1929 for
Brouwerian lattices [9], showing that pseudocomplementation is a closure map-
ping. Frink [8] generalized this result by showing that the skeleton of a pseudo-
complemented meet-semilattices is always a Boolean algebra.

Definition 4. Let 〈L, ·,∗ , 0〉 be a pseudocomplemented semilattice. Let S(L) =
{a∗|a ∈ L} be the skeleton of L, maintaining the order relation of L and with
meet a ∧ b = a · b and union a ∨ b = (a∗ · b∗)∗.

Theorem 2 (Glivenko-Frink Theorem). [8] Let L be a pseudocomplemented
semilattice. Then S(L) is a Boolean algebra. The (unique) complement of an
element a ∈ S(L) is its pseudocomplement a∗ ∈ L.

Since Stonian p-ortholattices form a subclass of the class of pseudocomplemented
meet-semilattices, the previous theorem immediately implies the following corol-
lary (cf. [10]). Notice that here we have a stronger notion: the skeleton is not
just a Boolean algebra, but a Boolean subalgebra.

Corollary 1. If 〈L,+, ·,∗ ,⊥ , 0, 1〉 is a Stonian p-ortholattice, then S(L) is a
Boolean subalgebra of L.

2.3 Additional Properties of Stonian p-Ortholattices

Motivated by the topological interpretation of the operations (cf. [10]), we call
an element a ∈ S(L), i.e. an element with a∗∗ = a, closed. Dually, we call a open
if a++ = a, and clopen if it is open and closed.



L is called connected iff 0, 1 are the only clopen elements of L.

A topological space is called normal if any two disjoint closed sets can be
separated by disjoint open sets. Following this definition we call a Stonian p-
ortholattice L ∗-normal if for all a, b ∈ L with a∗∗ ≤ b+ there is an element
c ∈ L with a∗∗ ≤ c++ and b∗∗ ≤ c+. Notice that in this case c+ = c⊥⊥+ = c⊥++.
Then c · c⊥ = 0 implies c++ · c⊥++ = 0 and hence c++ · c+ = 0, ensuring that
the open sets c+ and c++ are disjoint.

A bounded sublattice L′ of L is called (downwards) dense in L if for every
0 6= a ∈ L there is a 0 6= b ∈ L′ with b ≤ a.

In Section 4 we are going to show that denseness, ∗-normality and connectedness
correspond to well-known additional properties of Boolean contact algebras. But
beforehand, we review Boolean contact algebras and their embedding into the
Boolean algebra of regular closed sets of a topological space.

3 Boolean Contact Algebras

Boolean contact algebras were introduced as the algebraic counterpart of me-
reotopologies induced by the Region Connection Calculus RCC [3]. Therefore,
they are intended to cover closed sets with full interior and smooth boundaries,
i.e. regular closed sets.

Definition 5. A binary relation C on a Boolean algebra 〈B,+, ·,∗ , 0, 1〉 is called
a contact relation if it satisfies:

C0. (∀a)0(−C)a;
C1. (∀a)[a 6= 0⇒ aCa];
C2. (∀a)(∀b)[aCb⇒ bCa];
C3. (∀a)(∀b)(∀c)[(aCb ∧ b ≤ c)⇒ aCc];
C4. (∀a)(∀b)(∀c)[aC(b+ c)⇒ (aCb ∨ aCc)].

The pair 〈B,C〉 is called a Boolean Contact Algebra (BCA).

Additionally, the following properties are of importance:

C5. (∀a)(∀b)[(∀c)(aCc⇒ bCc)⇔ a = b]. (The extensionality axiom).
C6. (∀a)(∀b)[(∀c)(aCc ∨ bCc∗)⇒ aCb] (The interpolation axiom).
C7. (∀a)[(a 6= 0 ∧ a 6= 1)⇒ aCa∗] (The connection axiom).

As shown in [12], in the presence of the other axioms we can replace C5 by

C5’. (∀a 6= 1)(∃b 6= 0)[a(−C)b].



As already mentioned above, the standard models of Boolean contact algebras
are given by the regular closed sets of a topological space together with the
following operations:

x+ y := x ∪ y,
x · y := cl(int(x ∩ y)),
x∗ = cl(X \ x).

The contact relation is given by the standard Whiteheadean contact relation
xCy iff x ∩ y 6= ∅.

Since their introduction several representation theorems for BCA’s were proven.
The most general version is the following:

Theorem 3 (Representation Theorem [5]). For each Boolean contact alge-
bra 〈B,C〉 there exists an embedding h : B → RC(X) into the Boolean algebra
of regular closed sets of a topological space 〈X, τ〉 with aCb iff h(a) ∩ h(b) 6= ∅.
h is an isomorphism if B is complete.

Notice that the original theorem lists further properties of the topological space
which are not important for the current work.

4 The Skeleton as a BCA

As already mentioned in Section 2.2 the skeleton of a Stonian p-ortholattice is a
Boolean algebra. In this section we verify that it is in fact a BCA with a contact
relation induced by the outer lattice.

Theorem 4. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice, then S(L) to-
gether with

aCb ⇐⇒ a � b⊥

is a Boolean contact algebra.

Proof. C0. Assume 0Ca for an a ∈ S(L). Then 0 � a⊥, a contradiction.
C1. From a ≤ a⊥ we conclude a = 0, and, hence, C1.
C2. aCb implies a � b⊥, which is equivalent to b � a⊥. The latter shows bCa.
C3. Let aCb and b ≤ c. This implies a � b⊥ and c⊥ ≤ b⊥. Together we conclude

a � c⊥, and , hence, aCc.
C4. Assume aC(b+c). Then we have a � (b+c)⊥ = b⊥ ·c⊥. This implies a � b⊥

or a � c⊥, and, hence, aCb or aCc. ut

Notice that the definition of C in the theorem above uses an element b⊥ that is
not necessarily in the skeleton, i.e. the definition of C is external to the Boolean
algebra S(L). By definition of the skeleton, all elements in S(L) are regular
closed.



Lemma 3. Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice and 〈S(L), C〉 its
skeleton BCA. Then we have:

1. S(L) is dense in L iff C satisfies C5.
2. L is ∗-normal iff C satisfies C6.
3. L is connected iff C satisfies C7.

Proof. 1. Assume S(L) is dense in L. We want to show that C5’ holds. There-
fore, let 1 6= x ∈ S(L). Then x⊥ 6= 0 which implies that there is an element
0 6= y ∈ S(L) with y ≤ x⊥, i.e. x(−C)y. Conversely, assume C5’, and let
0 6= y ∈ L. If y++ = 0 we conclude y ≤ y∗∗ = (y⊥⊥)∗∗ = y⊥+∗∗ = y++∗∗ =
0∗∗ = 0, a contradiction. This implies y∗ = y⊥∗∗ = y++⊥ 6= 1 and y∗ ∈ S(L).
By C5’ there is an element 0 6= x ∈ S(L) with y∗(−C)x, i.e. y∗ ≤ x⊥. The
latter implies x ≤ y∗⊥ = y++ ≤ y.

2. Assume L is ∗-normal, and let x, y ∈ S(L) with x(−C)y. Then we have
x∗∗ = x ≤ y⊥ = y∗∗⊥ = y+. We obtain an element c ∈ L with x∗∗ ≤ c++

and y∗∗ ≤ c+. The elements x, y and c∗ are closed and we get

x = x∗∗ ≤ c++ = c∗⊥ and y = y∗∗ ≤ c+ = c+++ = c∗∗⊥,

which implies x(−C)c∗ and y(−C)c∗∗ and thus C6 holds. Conversely, let
a∗∗ � c++ = c∗⊥ or b∗∗ � c+ = c∗∗⊥ for all c ∈ L. Then a∗∗Cc∗ and b∗∗Cc∗∗

for all c ∈ L. Since {c∗ | c ∈ L} = S(L) we conclude by C6 that a∗∗Cb∗∗,
and, hence, a∗∗ � b∗∗⊥ = b+.

3. Assume C does not satisfy C7. Then there is a closed element x 6= 0, 1 with
x(−C)x∗, i.e. x ≤ x∗⊥ = x++. The latter shows that x is also open, and,
hence, L is not connected.
Conversely, assume L is not connected. Then there is a clopen element x 6=
0, 1. We conclude x = x++ = x∗⊥ which implies x(−C)x∗. ut

We want to illustrate the previous lemma by some examples.

Example 1. Consider the Stonian p-ortholattices C18 and C14 from Figure 3
and 4. The pairs (1, 0), (d, c++), (d++, c), (a, f++), (a++, f), (e, b++), (e++, b)
define the orthocomplements of each other. The pseudocomplements are given by
1∗ = 1, 0∗ = 0 and for all other elements {x, x++}∗ = x. The closed elements are
0, a, b, c, d, e, f, 1 and the open elements are 0, a++, b++, c++, d++, e++, f++, 1.
Consequently, the only clopen elements are 0 and 1. On the other hand every
element of the skeleton is in contact to its complement (within the skeleton).
For example, we have a∗ = f and f⊥ = a++. Since a is not open, i.e. a 6= a++,
we obtain a � a++ = f⊥ = a∗⊥.

S(L) is not dense in either of those Stonian p-ortholattices. For example, a++ 6= 0
but there is no closed element between a++ and 0. As a consequence the skeleton
is not extensional. We have f 6= 1 and no non-zero closed element is smaller than
f⊥ = a++.



Finally, both lattices are not ∗-normal. For example, the closed elements a and
c satisfy a = a∗∗ ≤ d++ = c+. The open elements above a are d++, 1 but none
of d+ = c++, 1+ = 0 is above c. Consequently, the skeleton does not satisfy
C6. Indeed, a ≤ d++ = c⊥, and, hence, a(−C)c, but C(a) = S(L) \ {0, c} and
C(b) = S(L) \ {0, a} so that we have aCb or cCb∗ for all b ∈ S(L).

Example 2. For the second example consider the structure RT(R) of the real
line with the usual topology. Notice that, for example, the set of all rationals r
between 0 and 1 is not in RT(R) since cl(r) = [0, 1] and cl(int(r)) = cl(∅) = ∅.
The skeleton of this Stonian p-ortholattice is the Boolean algebra of all regular
closed sets. Since RT(R) has just two clopen elements, namely ∅ and R, its
skeleton satisfies C7. Furthermore, for every element x ∈ RT(R) there is a non-
empty regular closed set included in int(x). Therefore, the skeleton is extensional.
Finally, the space is normal so that any pair of disjoint regular closed sets can be
separated by disjoint open sets, i.e. RT(R) is ∗-normal, and, hence, its skeleton
satisfies C6.

5 Embedding a BCA into a Stonian p-Ortholattice

In this section we focus on the converse process. We verify that every BCA is
isomorphic to the skeleton of some Stonian p-ortholattice. The following theorem
shows a way how to construct the Stonian p-ortholattice.

Theorem 5. Let 〈B,C〉 be an arbitrary BCA. Then there is a Stonian p-ortho-
lattice 〈L,+, ·,∗ ,⊥ , 0, 1〉 so that the skeleton S(L) is isomorphic to 〈B,C〉.

Proof. Let 〈X, τ〉 be the topological space induced by Theorem 3 and let h :
B → RC(X). Define L = {x ∈ RT(X) | ∃b ∈ B : cl(x) = h(b)}. Notice that if
x ∈ L, i.e. cl(x) = h(b) for some b ∈ B, then we have

h(b∗) = cl(X \ h(b)) h homomorphism
= cl(X \ cl(x))
= X \ int(cl(x))
= X \ int(x) x ∈ RT(X)
= cl(X \ x).

We have to show that the skeleton S(L) is exactly the image of h, that L is
closed with respect to all operations of RT(X), and that aCb iff h(a) * X \h(b)
for all a, b ∈ B.

Obviously every h(a) is closed, i.e. h(a) ∈ S(L). Conversely, suppose x is closed.
Then x = cl(x) = h(b) for some b ∈ B, i.e. x is in the image of h.



Now, suppose there are elements b1, b2 ∈ B with cl(x) = h(b1) and cl(y) = h(b2).
and consider the following computations:

cl(x ∩∗ y) = cl(int(x ∩∗ y)) x ∩∗ y ∈ RT(X)
= cl(int(x) ∩ int(y)) Lemma 2(2)
= cl((X \ cl(X \ x)) ∩ (X \ cl(X \ y)))
= cl((X \ h(b∗1)) ∩ (X \ h(b∗2))) see above
= cl(X \ (h(b∗1) ∪ h(b∗2)))
= cl(X \ h(b∗1 + b∗2)) h homomorphism

= h((b∗1 + b∗2)∗) h homomorphism
= h(b1 · b2),

cl(x ∪∗ y) = cl(x) ∪ cl(y) Lemma 2(1)
= h(b1) ∪ h(b2)
= h(b1 + b2), h homomorphism

cl(x∗) = cl(cl(X \ x))
= cl(X \ x)
= h(b∗1), see above

cl(x⊥) = cl(X \ x)
= h(b∗1). see above

Finally, using Theorem 3 we immediately conclude aCb iff h(a) ∩ h(b) 6= ∅ iff
h(a) * X \ h(b). ut

The Stonian p-ortholattice from the previous theorem is not necessarily the only
lattice that has 〈B,C〉 as its skeleton BCA.
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��������
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C c
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Fig. 2. A Boolean Contact Algebra



Example 3. Consider the BCA from Figure 2. The diagram just shows external
connection between atoms ( C edges). The actual contact relation C on this
Boolean algebra is given as the smallest relation that contains those edges, over-
lap and is upwards closed, i.e. closed with respect to C3. Notice that this BCA
satisfies C7 but neither C5 nor C6.

The topological space that is constructed in the proof of Theorem 3 (see [5]) for
this example is based on a set isomorphic to X = {0, 1, 2, 3, 4} with open sets

τ = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, {0, 1, 3},
{1, 2, 4}, {0, 1, 2, 3}, {0, 1, 2, 4}, {0, 1, 2, 3, 4}}.

From those open sets {0, 1}, {1, 2}, {0, 1, 2}, {0, 1, 2, 4} and {0, 1, 2, 3} are not
regular open, e.g. we have int(cl({1, 2})) = int({1, 2, 3, 4}) = {1, 2, 4}. We obtain
the Stonian p-ortholattice from Figure 3. Notice that this is the lattice C18, one
of the four structures characterizing models of RT [10].
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WWWWWWWWWWWWWWWWWWW

{0, 2, 3}

ooooooooooo
{0, 2, 4}
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b , {1, 3, 4}
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Fig. 3. The Stonian p-Ortholattice C18
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Fig. 4. The Stonian p-Ortholattice C14

On the other hand, the Stonian p-ortholattice C14 from Figure 4 has the same
skeleton as C18. A careful investigation also shows that the contact relations
induced on the skeleton is the same for both lattices.

6 Conclusion and Future Work

In this paper we have established the relationship between BCAs and Stonian p-
ortholattices. Due to the equivalence of those theories to subtheories of RCC and
RT0 we obtain similar results for those mereotopologies. Our theoretical work
directly implies that every connected, ∗-normal model of RT− with a dense
skeleton is a model of the full RCC. On the other extreme, any model of the
RT− is a model of the RCC without the axioms C5, C6, and C7. Conversely,
every model of the RCC is a model of RT−: The BCA corresponding to an RCC
model is isomorphic to the skeleton S(L) of some Stonian p-ortholattice L by
Theorem 5. However, the skeleton S(L) itself is a Stonian p-ortholattice, since
the Boolean algebras are a subclass of the Stonian p-ortholattices. Consequently,
every RCC model is a RT− model as well. With little effort we can show the
relation to models of full RT0: if the RCC model contains some minimal set of
regular open sets, it can always be extended to a model of the full theory RT0.

More generally speaking, by using previously published algebraic representa-
tions of the theories RCC and RT0 and clarifying the relationship between their
algebraic representations, this work contributes to the understanding of the re-
lationship between different logical theories of mereotopology. Establishing a
formal relationship between models of subtheories of RCC and RT0 would have



been extremely difficult without the lattice-theoretic account of their models.
This emphasizes the benefit of algebraic representations of logical theories, in
particular of mereotopological theories. Ultimately, we want to gain a deeper
understanding of the relationship between the major theories of mereotopology.
Part of our future work will focus on algebraic representations of other me-
reotopologies. In the long-term, this will allow to obtain similar relationships
between the various mereotopological theories. By doing so, we hope to foster
a deeper understanding of the different mereotopologies, their models, and the
relationships amongst them.

As a separate issue, even though we verified that the structure RT(X) for a topo-
logical space X is indeed a Stonian p-ortholattice, a topological representation
theorem has not yet been established. Future work will concentrate on this as-
pect as well. In particular, it is of interest whether a representation theorem can
be developed that corresponds on the skeleton to the known results for BCAs.

7 Acknowledgement

We thank the anonymous reviewers for their suggestions to improve the paper.

References

1. N. Asher and L. Vieu. Toward a geometry of common sense: a semantics and a
complete axiomatization for mereotopology. In Proc. of the 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI’95), pp. 846–852. Morgan Kaufmann, 1995.

2. B. Clarke. A calculus of individuals based on ‘Connection’. Notre Dame Journal
of Formal Logic, 22(3):204–218, July 1981.

3. A. G. Cohn, B. Bennett, J. M. Gooday, and N. M. Gotts. RCC: a calculus for
region based qualitative spatial reasoning. GeoInformatica, 1:275–316, 1997.

4. A. G. Cohn and J. Renz. Qualitative spatial representation and reasoning. In
Handbook of Knowledge Representation. Elsevier, 2008.

5. G. Dimov and D. Vakarelov. Contact Algebras and Region-based Theory of Space:
A Proximity Approach. Fundamenta Informaticae, 74(2-3):209–282, 2006.

6. I. Düntsch and M. Winter. A representation theorem for boolean contact algebras.
Theoretical Computer Science, 347:498–512, 2005.

7. I. Düntsch and M. Winter. Weak contact structures. In Relational Methods in
Computer Science, LNCS 3929, pp. 73–82. Springer, 2006.

8. O. Frink. Pseudo-Complements in Semi-Lattices. Duke Mathematical Journal,
29(4):505–514, 1962.

9. V. Glivenko. Sur quelque points de la logique de M. Brouwer. Bulletin de la Classe
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